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Abstract 
GCOOH-WO3 composites mixed with different amounts of Graphene-COOH 
functionalized (GCOOH) (0, 0.05, 0.1 and 0.2 wt%) were prepared by hydro-
thermal method at 180˚C for 10 h and 24 h. The as-prepared WO3 and 
GCOOH-WO3 composites were characterized by X-ray diffraction (XRD), 
scanning electron microscopy (SEM) and Raman spectroscopy and other 
equipment. The effect of the amount of graphene in the composites on the 
gas-sensing responses and the gas-sensing selectivity of the materials was in-
vestigated. The experimental results revealed that the sensor based on 0.1 
wt% GCOOH-WO3 composite exhibited high response and good selectivity 
to acetone at 260˚C. 
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1. Introduction 

Volatile organic compounds (VOCs) can pollute the environment and harm 
human health. Acetone is one of VOCs and one of the gas in human respiration. 
It is used as a respiratory marker for non-invasive diagnosis of diabetes mellitus. 
Therefore, the detection of acetone is important for environmental safety and 
human health. In recent decades, many metal oxides (ZnO, In2O3, Fe2O3, SnO2, 
MnO2, Co3O4) have been used in sensitive studies of acetone [1] [2] [3]. Among 
them, WO3 crystal, as a typical n-semiconductor, has the advantages of high 
cost-effectiveness, low pollution and good stability. Many experimental and 
theoretical results prove that WO3 has great potential to detect VOCs in the field 
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of gas sensing [4] [5] [6] [7] [8]. 
Graphene oxide (GO) with different oxygen-containing groups such as car-

boxylndndnd, amino, carbonyl and other functions is extracted by gas. More 
adsorption sites are provided, thereby improving gas sensor sensitivity. Oxy-
gen-containing groups in graphene oxide make it an insulating material. Gra-
phene oxide is not a suitable gas-sensitive material because it is difficult to con-
trol the content of these groups during oxidation [9] [10] [11]. In this chapter, 
the effect of carboxyl (-COOH) functionalized carboxy graphene (GCOOH) on 
the sensing performance of WO3 sensor is studied. Nano-composite materials 
with different GCOOH content, named GCOOH-WO3, were prepared by hy-
drothermal method. The structure of the prepared GCOOH-WO3 was characte-
rized, and its gas sensitivity was tested and analyzed [12]-[19]. Therefore, this 
paper studies the influence of the guiding agent and graphene on the hexagonal 
WO3, in order to optimize the sensing performance of the hexagonal WO3 gas 
sensor, improve the response value of the hexagonal WO3 sensor to acetone gas, 
reduce the operating temperature, and shorten the response and recovery time. 

2. Experimental Section 

Tungsten oxide GCOOH-WO3 was synthesized by simple hydrothermal me-
thod. The preparation process is as follows: three different amounts of carbox-
yl-functionalized graphene were extracted from carboxyl-functionalized graphene 
GCOOH and dripped into deionized water for ultrasonic dispersion. Dissolve a 
suitable amount of sodium tungstate dihydrate in the above solution and stir for 
30 minutes. Drop 6 mol·L−1 hydrochloric acid into the solution at a constant 
speed. Stir side-dropping until the pH value reaches 1.0 to 2.0. Set aside for 1 hour. 
Add ammonium acetate and oxalic acid to make the quality of GCOOH and 
WO3 0.05 wt%, 0.1 wt%, 0.2 wt%, respectively. Stir the configured solution on a 
magnetic stirrer. After 3 hours of vigorous stirring, the solution turns dark blue. 
GCOOH-WO3-1, GCOOH-WO3-2, and GCOOH-WO3-3, respectively. The milky 
white column powders, namely GCOOH-WO3-1, GCOOH-WO3-2, GCOOH- 
WO3-3, were obtained by hydrothermal treatment, centrifugation and drying at 
180˚C for 24 h. 

3. Results and Discussion 

Figure 1 shows the morphology of GCOOH-WO3-2 composite. According to 
Figure 1(a) and Figure 1(b), it can be found that the columnar WO3 is covered 
with graphene in flakes and agglomerates, covering the material surface, pre-
venting the reaction with the gas to be measured, reducing the surface active 
sites, and affecting the reaction with the gas to be measured.  

Figure 2 shows the XRD pattern of GCOOH-WO3 composite. The main cha-
racteristic peaks are (100), (001), (110), (101), (200), (201), (220), (204). Most of 
the diffraction peaks of GCOOH-WO3 can be well indexed to the XRD spectra of 
hexagonal tungsten trioxide WO3 (JCPDS:00-033-1387) GCOOH-WO3, which  
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Figure 1. The SEM images of GCOOH-WO3.  
 

 
Figure 2. XRD patterns of GCOOH-WO3. 

 
shows that it has good crystallinity. The graphene phase cannot be detected by 
XRD because the modification of WO3 nanocrystals causes the flakes of gra-
phene to fall off. 

As shown in Figure 3, GCOOH-WO3-2 composite can detect clear peaks at 
265 cm−1, 704 cm−1 and 803 cm−1. The Raman peak at 265 cm−1 is the stretching 
vibration peak of O-W-O; We can also observe two peaks at 1369 and 1620 in 
GCOOH-WO3-2 complex, which are the two characteristic peaks of graphene, D 
and G. 

Figure 4(a) shows the full spectrum of GCOOH-WO3-2. The characteristic 
peaks of C1s, O1s and W4f can be observed from the figure, which proves the 
existence of C, O and W. Figure 4(b) shows the full spectrum of W. W4f7/2 and 
W4f5/2 represent the non-stoichiometric tungsten oxide composition at the 
binding energy of 35.9 eV and 54.0 eV, respectively, which further proves the 
formation of WO3. 

Figure 5 shows that the temperature test range is 225˚C - 325˚C, and the sen-
sitivity of all sensors increases first and then decreases with the increase of tem-
perature. GCOOH-WO3-2 gas sensor has the highest sensitivity of 5.5 at 260˚C; 
The working state of the sensor at lower than 225˚C is not shown in the figure,  
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Figure 3. The Raman spectra of GCOOH-WO3-2. 

 

 
Figure 4. XPS, (a) The full spectrum of GCOOH-WO3-2; (b) The W diagram of 
GCOOH-WO3-2. 
 

 
Figure 5. GCOOH-WO3 sensitivity to different operating temperatures of 100 ppm ace-
tone gas. 
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Figure 6. GCOOH-WO3-2 100 ppm gas selectivity diagram. 

 
because when a certain amount of GCOOH is added, the resistance of the com-
posite material will rise, exceeding the instrument range, and can not be meas-
ured accurately at present. 

The mechanism of GCOOH-WO3 on acetone can be described as follows. 
When exposed to air, oxygen gets adsorbed on GCOOH-WO3 surface, and 2O− , 
O− or O2− ions will form by obtaining electrons from the conduction band, then 
resulting in the increased resistance. The related reactions could be expressed as 
Equation (1): 

( ) ( )2 2 2O gas O adsorbed e O e 2O− − − −↔ + ↔ + ↔          (1) 

( )3 3 2 2CH COCH 8O ads 3CO 3H O 8e− −+ → + +           (2) 

( )2
3 3 2 2CH COCH 6O ads 3CO 3H O 12e− −+ → + +          (3) 

The introduction of acetone on GCOOH-WO3 surface will trigger the reaction 
with adsorbed oxygen, and meanwhile, electrons are released back to conduction 
band, which causing the decrease in the resistance of GCOOH-WO3. The rele-
vant reaction can be proposed as Equations (2)-(3). As the products (CO2 and 
H2O) desorbed from the surface, the gas sensor recovers to the initial condition. 
Thus, one cycle of the acetone detection is over and the sensor is ready for the 
next cycle (Figure 6). 

4. Conclusion 

In this study, GCOOH-WO3 with different mass fractions of GCOOH was pre-
pared by hydrothermal method. Many round graphene sheets are attached to the 
nanorods. GCOOH-WO3 only responds to acetone gas. The sensing perfor-
mance depends on the mass fraction of GCOOH added. It is found that only a 
proper amount of GCOOH can have good sensing performance. 
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