Generalized Stability of the Quadratic Type λ-Functional Equation with $3 k$-Variables in Non-Archimedean Banach Space and Non-Archimedean Random Normed Space

Ly Van An
Faculty of Mathematics Teacher Education, Tay Ninh University, Tay Ninh, Vietnam
Email: lyvanan145@gmail.com, lyvananvietnam@gmail.com

How to cite this paper: An, L.V. (2023) Generalized Stability of the Quadratic Type λ-Functional Equation with $3 k$-Variables in Non-Archimedean Banach Space and NonArchimedean Random Normed Space. Open Access Library Journal, 10: e9821.
https://doi.org/10.4236/oalib. 1109821

Received: January 30, 2023
Accepted: February 21, 2023
Published: February 24, 2023

Copyright © 2023 by author(s) and Open Access Library Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Abstract

In this paper, we study to solve the quadratic type λ-functional equation with $3 k$ variables. First, we investigated in non-Archimedean Banach spaces with a fixed point method, next, we investigated in non-Archimedean Banach spaces with a direct method and finally we do research in non-Archimedean random spaces. I will show that the solutions of the quadratic type λ-functional equation are quadratic type mappings. These are the main results of this paper.

Subject Areas

Mathematics

Keywords

Quadratic λ-Functional Equation, Non-Archimedean Normed Space, Non-Archimedean Banach Space, Fixed Point Method, Direct Method, Hyers-Ulam Stability, Random Normed Spaces, Non-Archimedean Random Normed Space

1. Introduction

Let \mathbf{X} and \mathbf{Y} be a normed spaces on the same field \mathbb{K}, and $f: \mathbf{X} \rightarrow \mathbf{Y}$. We use the notation $\|\cdot\|$ for all the norm on both \mathbf{X} and \mathbf{Y}. In this paper, I study and expand the λ-function equation from non-Archimedean normed space to non-Archimedean random normed space.

In fact, when \mathbf{X} is non-Archimedean normed space and \mathbf{Y} is non-Archimedean Banach spaces.

Or \mathbf{X} is a vector over field \mathbb{K} and (\mathbf{Y}, Γ, T) be a non-Archimedean random Banach space over field \mathbb{K}. We solve and prove the Hyers-Ulam-Rassisa type stability of forllowing quadratic λ-functional equation.

$$
\begin{align*}
& 2 \sum_{j=1}^{k} f\left(z_{j}\right)+2 \sum_{j=1}^{k} f\left(x_{j}+y_{j}\right) \\
& =f\left(\sum_{j=1}^{k} x+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right)+\lambda^{-2 m} f\left(\lambda^{m}\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}-\sum_{j=1}^{k} z_{j}\right)\right) \tag{1}
\end{align*}
$$

where: Let $|2 k| \neq 1, \lambda$ is a fixed non-Archimedean number with $\lambda^{-2 m} \neq 4 k-1$ and k, m is a positive integer. The notions of non-Archimedean normed space and non-Archimedean Banach spaces and non-Archimedean random Banach space over field \mathbb{K} will remind in the next section. The study the stability of generalized stability of the quadratic type λ-functional equation with variables in non-Archimedean Banach space and non-Archimedean Random normed space originated from a question of S.M. Ulam [1], concerning the stability of group homomorphisms. Let $(\mathbf{G}, *)$ be a group and let $\left(\mathbf{G}^{\prime}, \circ, d\right)$ be a metric group with metric $d(\cdot, \cdot)$. Geven $\varepsilon>0$, does there exist a $\delta>0$ such that if $f: \mathbf{G} \rightarrow \mathbf{G}^{\prime}$ satisfies

$$
d(f(x * y), f(x) \circ f(y))<\delta, \forall x \in \mathbf{G}
$$

then there is a homomorphism $h: \mathbf{G} \rightarrow \mathbf{G}^{\prime}$ with

$$
d(f(x), h(x))<\varepsilon, \forall x \in \mathbf{G}
$$

The Hyers [2] gave firts affirmative partial answer to the equation of Ulam in Banach spaces. After that, Hyers' Theorem was generalized by Aoki [3] additive mappings and by Rassias [4] for linear mappings considering an unbouned Cauchy difference. Gajda following the same approach as in Rassias gave an affirmative solution to this question for $p>1$. It was shown by Gajda [5], as well as by Rassias and Semr [6] that one cannot prove a Rassias, type theorem when $p=1$. The counterexamples of Gajda, as well as of Rassias and Semr have stimulated several matematicians to invent new definition of approximately additive or approximately linear mappings, was obtained by Găvruta [7].

The functional equation

$$
f(x+y)=f(x)+f(y)
$$

is called the Cauchy equation. In particular, every solution of the Cauchy equation is said to be an additive mapping.

The functonal equation

$$
f(x+y)+f(x-y)=2 f(x)+2 f(y)
$$

is called the quadratic functional equation. In particular, every solution of the quadratic functional equation is said to be a quadratic functional mapping.

The stability the quadratic functional equation was proved by Skof [8] for mappings $f: E_{1} \rightarrow E_{2}$, where E_{1} is a normed space and E_{2} is a Banach space.

Recently the author studied the Hyers-Ulam stability for the following α-func-
tional equation.

$$
2 f(x)+2 f(y)=f(x+y)+\alpha^{-2} f(\alpha(x-y))
$$

in Non-Archimedean Banach spaces and non-Archimedean Random normed space.

In this paper, we solve and proved the Hyers-Ulam stability for λ-functional Equation (1.1), i.e. the λ-functional equation with $3 k$-variables. Under suitable assumptions on spaces \mathbf{X} and \mathbf{Y}, we will prove that the mappings satisfying the λ-functional Equation (1.1). Thus, the results in this paper are generalization of those in [9] for λ-functional equation with $3 k$-variables.

In this paper, based on the work of world mathematicians [1]-[33], I introduce a new generalized quadratic function equation with $3 k$-variables to improve the classical form, which is a new breakthrough for the development of this field functional equation.

The paper is organized as followns: In section preliminarier we remind some basic notations in [10] [11] [12] [13] [14] such as non-Archimedean field, NonArchimedean normed space and non-Archimedean Banach space, Random normed spaces, Non-Archimedean random normed space.

Section 3: Establishing the solution for (1.1) by the fixed point method in Non-Archimedean Banach space.

+ Condition for existence of solutions for Equation (1.1)
+ Constructing a solution for (1.1).
Section 4: Establishing the solution for (1.1) by the direct method in NonArchimedean Banach space

Section 5: Construct a solution for (1.1) on non-Archimedean Random normed space.

2. Preliminaries

2.1. Non-Archimedean Normed and Banach Spaces

A valuation is a function $|\cdot|$ from a field \mathbb{K} into $[0, \infty)$ such that 0 is the unique element having the 0 valuation,

$$
|r \cdot s|=|r| \cdot|s|, \forall r, s \in \mathbb{K}
$$

and the triangle inequality holds, i.e.;

$$
|r+s| \leq|r|+|s|, \forall r, s \in \mathbb{K}
$$

A field \mathbb{K} is called a valued filed if \mathbb{K} carries a valuation. The usual absolute values of \mathbb{R} and \mathbb{C} are examples of valuation. Let us consider a vavluation which satisfies a stronger condition than the triangle inaquality. If the tri triangle inequality is replaced by

$$
|r+s| \leq \max \{|r|,|s|\}, \forall r, s \in \mathbb{K}
$$

then the function $|\cdot|$ is called a norm-Archimedean valuational, and filed. Clearly $|1|=|-1|=1$ and $|n| \leq 1, \forall n \in N$. A trivial example of a non-Archimedean valu-
ation is the function $|\cdot|$ talking everything except for 0 into 1 and $|0|=0$ this paper, we assume that the base field is a non-Archimedean filed, hence call it simply a filed. Let be a vecter space over a filed \mathbb{K} with a non-Archimedean $|\cdot|$. A function $\|\cdot\|: X \rightarrow[0, \infty)$ is said a non-Archimedean norm if it satisfies the follwing conditions:

1) $\|x\|=0$ if and only if $x=0$;
2) $\|r x\|=|r|\|x\|(r \in \mathbb{K}, x \in X)$;
3) the strong triangle inequlity

$$
\|x+y\| \leq \max \{\|x\|,\|y\|\}, x, y \in X
$$

hold. Then $(X,\|\cdot\|)$ is called a norm-Archimedean norm space.

1) Let $\left\{x_{n}\right\}$ be a sequence in a non-Archimedean normed space X. Then sequence $\left\{x_{n}\right\}$ is called cauchy if for a given $\varepsilon>0$ there a positive integer N such that

$$
\left\|x_{n}-x\right\| \leq \varepsilon
$$

for all $n, m \geq N$
2) Let $\left\{x_{n}\right\}$ be a sequence in a norm-Archimedean normed space X. Then sequence $\left\{x_{n}\right\}$ is called cauchy if for a given $\varepsilon>0$ there a positive integer N such that

$$
\left\|x_{n}-x\right\| \leq \varepsilon
$$

for all $n, m \geq N$. The we call $x \in X$ a limit of sequence x_{n} and denote $\lim _{n \rightarrow \infty} x_{n}=x$.
3) If every sequence Cauchy in X converger, then the norm-Archimedean normed space X is called a norm-Archimedean Bnanch space.

2.2. Random Normed Spaces

A random normed space is triple (\mathbf{X}, Γ, T), where \mathbf{X} is a vector space, T is a is a continuous t-norm, and Γ is a mapping from \mathbf{X} into \mathbf{D}^{+}such that, the following conditions hold:

1) $\left(\mathrm{RN}_{1}\right) \Gamma_{x}(t)$ for all $t>0$ if and only if $x=0$;
2) $\left(\mathrm{RN}_{2}\right) \Gamma_{\alpha x}(t)=\Gamma_{x}\left(\frac{t}{|\alpha|}\right)$ for all $x \in \mathbf{X}, \alpha \neq 0$;
3) $\left(\mathrm{RN}_{3}\right) \quad \Gamma_{x+y}(t+s) \geq T\left(\Gamma_{x}(t), \Gamma_{y}(s)\right)$ for all $x, y \in \mathbf{X}, t, s \geq 0$;

Note: If (\mathbf{X}, Γ, T) is a random normed space an $\left\{x_{n}\right\}$ is a sequence such that $x_{n} \rightarrow x$ then $\lim _{n \rightarrow \infty} \Gamma_{x_{n}}(t)=\Gamma_{x}(t)$ almost everywhere.

2.3. Non-Archimedean Random Normed Space

A non-Archimedean random normed space is triple (\mathbf{X}, Γ, T), where \mathbf{X} is a linear space over a non-Archimedean filed \mathbb{K}, T is a is a continuous t-norm, and Γ is a mapping from \mathbf{X} into \mathbf{D}^{+}such that, the following conditions hold:

1) (NA-RN $\left.\mathrm{R}_{1}\right) \Gamma_{x}(t)=\varepsilon_{0}(t)$ for all $t>0$ if and only if $x=0$;
2) $\left(\mathrm{NA}-\mathrm{RN}_{2}\right) \quad \Gamma_{\alpha x}(t)=\Gamma_{x}\left(\frac{t}{|\alpha|}\right)$ for all $x \in \mathbf{X}, t>0, \alpha \neq 0$;
3) (NA-RN $\left.)_{3}\right) \Gamma_{x+y}(\max \{t, s\}) \geq T\left(\Gamma_{x}(t), \Gamma_{y}(s)\right)$ for all $x, y \in \mathbf{X}, t, s \geq 0$;

It is easy to see that if $\left(\mathrm{NA}-\mathrm{RN}_{3}\right)$ hold then so is $\left(\mathrm{RN}_{3}\right)$
$\Gamma_{x+y}(\max \{t, s\}) \geq T\left(\Gamma_{x}(t), \Gamma_{y}(s)\right)$
Let (\mathbf{X}, Γ, T) is a non-Archimedean random normed space. Suppose $\left\{x_{n}\right\}$ is a sequence in \mathbf{X}. Then $\left\{x_{n}\right\}$ is said to be convergent if there exists $x \in \mathbf{X}$ such that

$$
\lim _{n \rightarrow \infty} \Gamma_{x_{n}-x}(t)=1
$$

for all $t>0$. In that case, x is called the limit of sequence $\left\{x_{n}\right\}$
Theorem 1. Let (X, d) be a complete generalized metric space and let $J: X \rightarrow X$ be a strictly contractive mapping with Lipschitz constant $L<1$. Then for each given element $x \in X$, either

$$
d\left(J^{n}, J^{n+1}\right)=\infty
$$

for all nonegative integers n or there exists a positive integer n_{0} such that

1) $d\left(J^{n}, J^{n+1}\right)<\infty, \quad \forall n \geq n_{0}$;
2) The sequence $\left\{J^{n} x\right\}$ converges to a fixed point y^{*} of j;
3) y^{*} is the unique fixed point of J in the set $Y=\left\{y \in X \mid d\left(J^{n}, J^{n+1}\right)<\infty\right\}$;
4) $d\left(y, y^{*}\right) \leq \frac{1}{1-l} d(y, J y) \quad \forall y \in Y$

2.4. Solutions of the Equation

The functional equation

$$
f(x+y)=f(x)+f(y)
$$

is called the cauchuy equation. In particular, every solution of the cauchuy equation is said to be an additive mapping.

The functional equation

$$
f(x+y)+f(x-y)=2 f(x)+2 f(y)
$$

is called the quadratic functional equation In particular, every solution of the quadratic functional equation is said to be an quadratic mapping.

The functional equation

$$
2 f\left(\frac{x+y}{2}\right)+2 f\left(\frac{x-y}{2}\right)=f(x)+f(y)
$$

is called a Jensen type the quadratic functional equation

3. Establishing the of (1.1) in Non-Archimedean Banach Space

3.1. Condition for Existence of Solutions for Equation (1.1)

Note that for Quadratic λ-functional equation, \mathbb{X} and \mathbb{Y} is be vector space.
Lemma 2. Suppose \mathbb{X} and \mathbb{Y} be vector space. If mapping $f: \mathbb{X} \rightarrow \mathbb{Y}$ sa-
tisfying

$$
\begin{align*}
& 2 \sum_{j=1}^{k} f\left(z_{j}\right)+2 \sum_{j=1}^{k} f\left(x_{j}+y_{j}\right) \\
& =f\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right)+\lambda^{-2 m} f\left(\lambda^{m}\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}-\sum_{j=1}^{k} z_{j}\right)\right) \tag{2}
\end{align*}
$$

for all $x_{j}, y_{j}, z_{j} \in \mathbb{X}$ for all $j=1 \rightarrow k$ then $f: \mathbb{X} \rightarrow \mathbb{Y}$ is quadratic type
Proof. Assume that $f: \mathbb{X} \rightarrow \mathbb{Y}$ satisfies (2)
We replacing $\left(x_{1}, \cdots, x_{k}, y_{1}, \cdots, y_{k}, z_{1}, \cdots, z_{k}\right)$ by $(0, \cdots, 0,0, \cdots, 0,0, \cdots, 0)$ in (2), we get

$$
\begin{equation*}
(4 k-1) f(0)=\lambda^{-2 m} f(0) \tag{3}
\end{equation*}
$$

So $f(0)=0$.
Next we replacing $\left(x_{1}, \cdots, x_{k}, y_{1}, \cdots, y_{k}, z_{1}, \cdots, z_{k}\right)$ by $(x, 0, \cdots, 0,0, \cdots, 0,0, \cdots, 0)$ in (2), we have

$$
\begin{equation*}
f(x)=\lambda^{-2 m} f\left(\lambda^{m} x\right) \tag{4}
\end{equation*}
$$

and so $f\left(\lambda^{m} x\right)=\lambda^{2 m} f(x)$ for all $x \in \mathbb{X}$. Thus from (2)

$$
\begin{align*}
& 2 \sum_{j=1}^{k} f\left(z_{j}\right)+2 \sum_{j=1}^{k} f\left(x_{j}+y_{j}\right) \\
& =f\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right)+\lambda^{-2 m} f\left(\lambda^{m}\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}-\sum_{j=1}^{k} z_{j}\right)\right) \tag{5}\\
& =f\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right)+f\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}-\sum_{j=1}^{k} z_{j}\right)
\end{align*}
$$

for all $x_{j}, y_{j}, z_{j} \in \mathbb{X}$ for all $j=1 \rightarrow k$
Next now we replacing $\left(x_{1}, \cdots, x_{k}, y_{1}, \cdots, y_{k}, z_{1}, \cdots, z_{k}\right)$ by $(x, 0, \cdots, 0,0, \cdots, 0, x, \cdots, 0)$ in (2), we have

$$
\begin{equation*}
f(2 x)=2^{2} f(x) \tag{6}
\end{equation*}
$$

for all $v \in \mathbb{X}$.
Next we replace x by $2 x$, we get

$$
\begin{equation*}
f\left(2^{2} x\right)=2^{4} f(x) \tag{7}
\end{equation*}
$$

for all $x \in \mathbb{X}$. for all $x \in \mathbb{X}$, So from (6) and (7) we have the general case for every m being a positive integer, we have

$$
\begin{equation*}
f\left(2^{m} x\right)=2^{2 m} f(x) \tag{8}
\end{equation*}
$$

for all $x \in \mathbb{X}$, So we get the desired result.
Notice now we replacing $\left(x_{1}, \cdots, x_{k}, y_{1}, \cdots, y_{k}, z_{1}, \cdots, z_{k}\right)$ by $(x, \cdots, 0,0, \cdots, 0, y, \cdots, 0)$ in (5) we have

$$
f(x+y)+f(x-y)=2 f(x)+2 f(y)
$$

So, the function f is quadratic.

3.2. Constructing a Solution for (1.1)

Now, we first study the solutions of (1.1). Note that for Quadratic λ-functional equation, \mathbb{X} is a non-Archimedean normed space and \mathbb{Y} is a non-Archimedean Banach spacebe then use fixed point method, we prove the Hyers-Ulam stability of the Quadratic λ-functional equation in Non-Archimedean Banach space. Under this setting, we can show that the mapping satisfying (1.1) is quadratic. These results are give in the following.

Theorem 3. Suppose $\varphi: \mathbb{X}^{3 k} \rightarrow[0, \infty)$ be a function such that there exists an $0<L<1$ with

$$
\begin{align*}
& \varphi\left(\frac{x_{1}}{2 k}, \frac{x_{2}}{2 k}, \cdots, \frac{x_{k}}{2 k}, \frac{y_{1}}{2 k}, \frac{y_{2}}{2 k}, \cdots, \frac{y_{k}}{2 k}, \frac{z_{1}}{2 k}, \frac{z_{2}}{2 k}, \cdots, \frac{z_{k}}{2 k}\right) \tag{9}\\
& \leq \frac{L}{|4 k|} \varphi\left(x_{1}, x_{2}, \cdots, x_{k}, y_{1}, y_{2}, \cdots, y_{k}, z_{1}, z_{2}, \cdots, z_{k}\right)
\end{align*}
$$

for all $x_{j}, y_{j}, z_{j} \in \mathbb{X}$, for all $j=1 \rightarrow k$. Let $f: \mathbb{X} \rightarrow \mathbb{Y}$ be a mapping satisfying $f(0)=0$ and

$$
\begin{align*}
& \| 2 \sum_{j=1}^{k} f\left(z_{j}\right)+2 \sum_{j=1}^{k} f\left(x_{j}+y_{j}\right)-f\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right) \\
& -\lambda^{-2 m} f\left(\lambda^{m}\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}-\sum_{j=1}^{k} z_{j}\right)\right) \| \tag{10}\\
& \leq \varphi\left(x_{1}, \cdots, x_{k}, y_{1}, \cdots, y_{k}, z_{1}, \cdots, z_{k}\right)
\end{align*}
$$

for all $x_{j}, y_{j}, z_{j} \in \mathbb{X}$, for all $j=1 \rightarrow k$. Then there exists a unique quadratic type mapping $H: \mathbb{X} \rightarrow \mathbb{Y}$ such that

$$
\begin{equation*}
\|f(x)-H(x)\| \leq \frac{L}{|4 k|(1-L)} \varphi(x, \cdots, x, x, \cdots, x, x, \cdots, x) \tag{11}
\end{equation*}
$$

for all $x \in \mathbb{X}$.
Proof. We replacing $\left(x_{1}, \cdots, x_{k}, y_{1}, \cdots, y_{k}, z_{1}, \cdots, z_{k}\right)$ by $(x, \cdots, x, 0, \cdots, 0, x, \cdots, x)$ in (10), we get

$$
\begin{equation*}
\|f(2 k x)-4 k f(x)\| \leq \varphi(x, \cdots, x, 0, \cdots, 0, x, \cdots, x) \tag{12}
\end{equation*}
$$

for all $x \in \mathbb{X}$ for all $j=1 \rightarrow k$.
Now we consider the set

$$
\mathbb{M}:=\{h: \mathbb{X} \rightarrow \mathbb{Y}, h(0)=0\}
$$

and introduce the generalized metric on S as follows:

$$
d(g, h):=\inf \{\beta \in \mathbb{R}:\|g(x)-h(x)\| \leq \beta \varphi(x, \cdots, x, 0, \cdots, 0, x, \cdots, x), \forall x \in \mathbb{X}\}
$$

where, as usual, inf $\phi=+\infty$. That has been proven by mathematicians (\mathbb{M}, d) is complete see [14]

Now we cosider the linear mapping $T: \mathbb{M} \rightarrow \mathbb{M}$ such that

$$
T g(x):=4 k g\left(\frac{x}{2 k}\right)
$$

for all $x \in \mathbb{X}$. Let $g, h \in \mathbb{M}$ be given such that $d(g, h)=\varepsilon$ then

$$
\|g(x)-h(x)\| \leq \varepsilon \varphi(x, \cdots, x, 0, \cdots, 0, x, \cdots, x)
$$

for all $x \in \mathbb{X}$.
Hence

$$
\begin{aligned}
\|T g(x)-T h(x)\| & =\left\|4 k g\left(\frac{x}{2 k}\right)-4 k h f\left(\frac{x}{2 k}\right)\right\| \\
& \leq|4 k| \varepsilon \varphi\left(\frac{x}{2 k}, \frac{x}{2 k}, \cdots, \frac{x}{2 k}, 0,0, \cdots, 0, \frac{x}{2 k}, \frac{x}{2 k}, \cdots, \frac{x}{2 k}\right) \\
& \leq|4 k| \varepsilon \frac{L}{|4 k|} \varphi(x, x, \cdots, x, 0,0, \cdots, 0, x, x, \cdots, x) \\
& \leq L \varepsilon \varphi(x, x, \cdots, x, 0,0, \cdots, 0, x, x, \cdots, x)
\end{aligned}
$$

for all $x \in \mathbb{X}$. So $d(g, h)=\varepsilon$ implies that $d(T g, T h) \leq L \cdot \varepsilon$. This means that

$$
d(T g, T h) \leq L d(g, h)
$$

for all $g, h \in \mathbb{M}$. It folows from (12) that

$$
\begin{aligned}
\left\|f(x)-4 k f\left(\frac{x}{2 k}\right)\right\| & \leq \varphi\left(\frac{x}{2 k}, \frac{x}{2 k}, \cdots, \frac{x}{2 k}, 0,0, \cdots, 0, \frac{x}{2 k}, \frac{x}{2 k}, \cdots, \frac{x}{2 k}\right) \\
& \leq \frac{L}{|4 k|} \varphi(x, x, \cdots, x, 0,0, \cdots, 0, x, x, \cdots, x)
\end{aligned}
$$

for all $x \in \mathbb{X}$. So $d(f, T f) \leq \frac{L}{|4 k|}$ for all $x \in \mathbb{X}$ By Theorem 1.2, there exists a mapping $H: \mathbb{X} \rightarrow \mathbb{Y}$ satisfying the fllowing:

1) H is a fixed point of T, i.e.,

$$
\begin{equation*}
H(x)=4 k H\left(\frac{x}{2 k}\right) \tag{13}
\end{equation*}
$$

for all $x \in \mathbb{X}$. The mapping H is a unique fixed point T in the set

$$
\mathbb{Q}=\{g \in \mathbb{M}: d(f, g)<\infty\}
$$

This implies that H is a unique mapping satisfying (13) such that there exists a $\beta \in(0, \infty)$ satisfying

$$
\|f(x)-H(x)\| \leq \beta \varphi(x, x, \cdots, x, 0,0, \cdots, 0, x, x, \cdots, x)
$$

for all $x \in \mathbb{X}$
2) $d\left(T^{l} f, H\right) \rightarrow 0$ as $l \rightarrow \infty$. This implies equality

$$
\lim _{l \rightarrow \infty}(4 k)^{n} f\left(\frac{x}{(2 k)^{n}}\right)=H(x)
$$

for all $x \in \mathbb{X}$
3) $d(f, H) \leq \frac{1}{1-L} d(f, T f)$. Which implies

$$
\|f(x)-H(x)\| \leq \frac{L}{|4 k|(1-L)} \varphi(x, x, \cdots, x, 0,0, \cdots, 0, x, x, \cdots, x)
$$

for all $x \in \mathbb{X}$. It follows (9) and (10) that

$$
\begin{aligned}
\| & \| \sum_{j=1}^{k} H\left(x_{j}+y_{j}\right)+2 \sum_{j=1}^{k} H\left(z_{j}\right)-H\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right) \\
& -\lambda^{-2 m} H\left(\lambda^{m}\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}-\sum_{j=1}^{k} z_{j}\right)\right) \| \\
= & \lim _{n \rightarrow \infty}|4 k|^{n} \| 2 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{(2 k)^{n}}\right)+2 \sum_{j=1}^{k} f\left(\frac{z_{j}}{(2 k)^{n}}\right) \\
& -f\left(\frac{\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}}{(2 k)^{n}}\right) \\
& -\lambda^{-2 m} f\left(\lambda^{m}\left(\frac{\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}}{(2 k)^{n}}\right) \|\right.
\end{aligned}
$$

$$
\leq \lim _{n \rightarrow \infty}|4 k|^{n} \varphi\left(\frac{x_{1}}{(2 k)^{n}}, \frac{x_{2}}{(2 k)^{n}}, \cdots, \frac{x_{k}}{(2 k)^{n}}, \frac{y_{1}}{(2 k)^{n}}, \frac{y_{2}}{(2 k)^{n}}, \cdots, \frac{y_{k}}{(2 k)^{n}},\right.
$$

$$
\left.\frac{z_{1}}{(2 k)^{n}}, \frac{z_{2}}{(2 k)^{n}}, \cdots, \frac{z_{k}}{(2 k)^{n}}\right)
$$

$$
=0
$$

for all $x_{j}, y_{j}, z_{j} \in \mathbb{X}$ for all $j \rightarrow k$. So

$$
\begin{aligned}
& 2 \sum_{j=1}^{k} H\left(x_{j}+y_{j}\right)+2 \sum_{j=1}^{k} H\left(z_{j}\right)-H\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right) \\
& -\lambda^{-2 m} H\left(\lambda^{m}\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}-\sum_{j=1}^{k} z_{j}\right)\right)=0
\end{aligned}
$$

for all $x_{j}, y_{j}, z_{j} \in \mathbb{X}$ for all $j=1 \rightarrow k$. By Lemma 3.1, the mapping $H: \mathbb{X} \rightarrow \mathbb{Y}$ is quadratic type.

Theorem 4. Suppose $\varphi: \mathbb{X}^{3 k} \rightarrow[0, \infty)$ be a function such that there exists an $0<L<1$ with

$$
\begin{align*}
& \varphi\left(x_{1}, x_{2}, \cdots, x_{k}, y_{1}, y_{2}, \cdots, y_{k}, z_{1}, z_{2}, \cdots, z_{k}\right) \\
& \leq|4 k| K \varphi\left(\frac{x_{1}}{2 k}, \frac{x_{2}}{2 k}, \cdots, \frac{x_{k}}{2 k}, \frac{y_{1}}{2 k}, \frac{y_{2}}{2 k}, \cdots, \frac{y_{k}}{2 k}, \frac{z_{1}}{2 k}, \frac{z_{2}}{2 k}, \cdots, \frac{z_{k}}{2 k}\right) \tag{14}
\end{align*}
$$

for all $x_{j}, y_{j}, z_{j} \in \mathbb{X}$, for all $j=1 \rightarrow k$. Let $f: \mathbb{X} \rightarrow \mathbb{Y}$ be a mapping satisfying $f(0)=0$ and

$$
\begin{align*}
& \| 2 \sum_{j=1}^{k} f\left(z_{j}\right)+2 \sum_{j=1}^{k} f\left(x_{j}+y_{j}\right)-f\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right) \\
& -\lambda^{-2 m} f\left(\lambda^{m}\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}-\sum_{j=1}^{k} z_{j}\right)\right) \| \tag{15}\\
& \leq \varphi\left(x_{1}, \cdots, x_{k}, y_{1}, \cdots, y_{k}, z_{1}, \cdots, z_{k}\right)
\end{align*}
$$

for all $x_{j}, y_{j}, z_{j} \in \mathbb{X}$, for all $j=1 \rightarrow k$. Then there exists a unique quadratic
type mapping $H: \mathbb{X} \rightarrow \mathbb{Y}$ such that

$$
\begin{equation*}
\|f(x)-H(x)\| \leq \frac{L}{|4 k|(1-L)} \varphi(x, \cdots, x, x, \cdots, x, x, \cdots, x) \tag{16}
\end{equation*}
$$

for all $x \in \mathbb{X}$.
The rest of the proof is similar to the proof of theorem 3.2 with note that mapping $T: \mathbb{M} \rightarrow \mathbb{M}, \quad \operatorname{Tg}(x):=\frac{1}{4 k} g(2 k x)$.

Corollary 1. Let $r<2$ and θ be nonegative real numbers and let $f: \mathbb{X} \rightarrow \mathbb{Y}$ be a mapping satisfying $f(0)=0$ and

$$
\begin{align*}
& \| 2 \sum_{j=1}^{k} f\left(z_{j}\right)+2 \sum_{j=1}^{k} f\left(x_{j}+y_{j}\right)-f\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right) \\
& -\lambda^{-2 m} f\left(\lambda^{m}\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}-\sum_{j=1}^{k} z_{j}\right)\right) \| \tag{17}\\
& \leq \theta\left(\sum_{j=1}^{k}\left\|x_{j}\right\|^{r}+\sum_{j=1}^{k}\left\|y_{j}\right\|^{r}+\sum_{j=1}^{k}\left\|z_{j}\right\|^{r}\right)
\end{align*}
$$

for all $x \in X$. Then there exists a unique quadratic type mapping $H: \mathbb{X} \rightarrow \mathbb{Y}$ such that

$$
\begin{equation*}
\|f(x)-H(x)\| \leq \frac{2 \theta}{|2 k|^{r}-|4 k|}\|x\|^{r} \tag{18}
\end{equation*}
$$

for all $x \in \mathbb{X}$.
Corollary 2. Let $r>2$ and θ be nonegative real numbers and let $f: \mathbb{X} \rightarrow \mathbb{Y}$ be a mapping satisfying $f(0)=0$ and

$$
\begin{align*}
& \| 2 \sum_{j=1}^{k} f\left(z_{j}\right)+2 \sum_{j=1}^{k} f\left(x_{j}+y_{j}\right)-f\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right) \\
& -\lambda^{-2 m} f\left(\lambda^{m}\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}-\sum_{j=1}^{k} z_{j}\right)\right) \| \tag{19}\\
& \leq \theta\left(\sum_{j=1}^{k}\left\|x_{j}\right\|^{r}+\sum_{j=1}^{k}\left\|y_{j}\right\|^{r}+\sum_{j=1}^{k}\left\|z_{j}\right\|^{r}\right)
\end{align*}
$$

for all $x \in \mathbb{X}$. Then there exists a unique quadratic type mapping $H: \mathbb{X} \rightarrow \mathbb{Y}$ such that

$$
\begin{equation*}
\|f(x)-H(x)\| \leq \frac{2 \theta}{|4 k|-|2 k|^{r}}\|x\|^{r} \tag{20}
\end{equation*}
$$

for all $x \in \mathbb{X}$.

4. Establishing a Solution to the Quadratic λ-Functional Equation Using the Direct Methoduse in Non-Archimedean Banach Space

Next, we are going to study the solutions of (1.1) for Quadratic λ-functional eq-
uation use direct method, we prove the Hyers-Ulam stability of the Quadratic λ-functional equation, the \mathbb{X} is a Non-Archimedean normed space and \mathbb{Y} is a Non-Archimedean Banach space, and the field \mathbb{K} satisfy $|2 k| \neq 1, \lambda^{-2 m} \neq 4 k-1$. Under this setting, we can show that the mapping satisfying (1.1) is quadratic. These results are give in the following

Theorem 5. Let $\varphi: \mathbb{X}^{3 k} \rightarrow[0, \infty)$ be a function and let $f: \mathbb{X} \rightarrow \mathbb{Y}$ be a mapping satisfying $f(0)=0$ and

$$
\begin{align*}
& \lim _{j \rightarrow \infty}|4 k|^{j} \varphi\left(\frac{x_{1}}{(2 k)^{j}}, \frac{x_{2}}{(2 k)^{j}}, \cdots, \frac{x_{k}}{(2 k)^{j}}, \frac{y_{1}}{(2 k)^{j}}, \frac{y_{2}}{(2 k)^{j}}, \cdots,\right. \tag{21}\\
& \left.\frac{y_{k}}{(2 k)^{j}}, \frac{z_{1}}{(2 k)^{j}}, \frac{z_{2}}{(2 k)^{j}}, \cdots, \frac{z_{k}}{(2 k)^{j}}\right)=0 \\
& \| 2 \sum_{j=1}^{k} f\left(z_{j}\right)+2 \sum_{j=1}^{k} f\left(x_{j}+y_{j}\right)-f\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right) \\
& -\lambda^{-2 m} f\left(\lambda^{m}\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}-\sum_{j=1}^{k} z_{j}\right)\right) \| \tag{22}\\
& \leq \varphi\left(x_{1}, \cdots, x_{k}, y_{1}, \cdots, y_{k}, z_{1}, \cdots, z_{k}\right)
\end{align*}
$$

for all $x_{j}, y_{j}, z_{j} \in \mathbb{X}$ for all $j=1 \rightarrow k$. Then there exists a unique quadratic type mapping $H: \mathbb{X} \rightarrow \mathbb{Y}$ such that

$$
\begin{align*}
& \|f(x)-H(x)\| \\
& \leq \sup _{j \in \mathbb{N}}\left\{|4 k|^{j-1} \varphi\left(\frac{x}{(2 k)^{j}}, \cdots, \frac{x}{(2 k)^{j}}, \frac{x}{(2 k)^{j}}, \cdots, \frac{x}{(2 k)^{j}}, \frac{x}{(2 k)^{j}}, \cdots, \frac{x}{(2 k)^{j}}\right)\right\} \tag{23}
\end{align*}
$$

for all $x \in \mathbb{X}$.
Proof. We replacing $\left(x_{1}, \cdots, x_{k}, y_{1}, \cdots, y_{k}, z_{1}, \cdots, z_{k}\right)$ by $(x, \cdots, x, 0, \cdots, 0, x, \cdots, x)$ in (22), we have

$$
\begin{equation*}
\|f(2 k x)-4 k f(x)\| \leq \varphi(x, \cdots, x, 0, \cdots, 0, x, \cdots, x) \tag{24}
\end{equation*}
$$

for all $x \in \mathbb{X}$. Therefore

$$
\begin{equation*}
\left\|f(x)-4 k f\left(\frac{x}{2 k}\right)\right\| \leq \varphi\left(\frac{x}{2 k}, \cdots, \frac{x}{2 k}, 0, \cdots, 0, \frac{x}{2 k}, \cdots, \frac{x}{2 k}\right) \tag{25}
\end{equation*}
$$

for all $x \in \mathbb{X}$.
Hence

$$
\begin{aligned}
& \left\|(4 k)^{l} f\left(\frac{x}{(2 k)^{l}}\right)-(4 k)^{m} f\left(\frac{x}{(2 k)^{m}}\right)\right\| \\
& \leq \max \left\{\left\|(4 k)^{l} f\left(\frac{x}{(2 k)^{l}}\right)-(4 k)^{l+1} f\left(\frac{x}{(2 k)^{l+1}}\right)\right\|, \cdots,\right. \\
& \left.\left\|(4 k)^{m-1} f\left(\frac{x}{(2 k)^{m-1}}\right)-(4 k)^{m} f\left(\frac{x}{(2 k)^{m}}\right)\right\|\right\}
\end{aligned}
$$

$$
\begin{align*}
\leq & \max \left\{|4 k|^{l}\left\|f\left(\frac{x}{(2 k)^{l}}\right)-4 k f\left(\frac{x}{(2 k)^{l+1}}\right)\right\|, \cdots,\right. \\
& \left.|4 k|^{m-1}\left\|f\left(\frac{x}{(2 k)^{m-1}}\right)-4 k f\left(\frac{x}{(2 k)^{m}}\right)\right\|\right\} \tag{26}\\
\leq & \sup _{j \in\{l, l+1, \cdots\}}\left\{| 4 k | ^ { j } \varphi \left(\frac{x_{1}}{(2 k)^{j+1}}, \cdots, \frac{x_{k}}{(2 k)^{j+1}}, \frac{y_{1}}{(2 k)^{j+1}}, \cdots,\right.\right. \\
& \left.\left.\frac{y_{k}}{(2 k)^{j+1}}, \frac{z_{1}}{(2 k)^{j+1}}, \cdots, \frac{z_{k}}{(2 k)^{j+1}}\right)\right\}
\end{align*}
$$

for all nonnegative integers m and I with $m>l$ and all $x \in \mathbf{X}$. It follows (26) that the sequence $\left\{(4 k)^{n} f\left(\frac{x}{(2 k)^{n}}\right)\right\}$ is a Cauchy sequence for all $x \in \mathbf{X}$. Since \mathbf{Y} is complete, the sequence $\left\{(4 k)^{n} f\left(\frac{x}{(2 k)^{n}}\right)\right\}$ converger so one can define the mapping $H: \mathbf{X} \rightarrow \mathbf{Y}$ by

$$
H(x):=\lim _{n \rightarrow \infty}(4 k)^{n} f\left(\frac{x}{(2 k)^{n}}\right)
$$

for all $x \in \mathbf{X}$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (26), we get (23). It follows from (21) and (22) that

$$
\begin{aligned}
\| & \mid \sum_{j=1}^{k} H\left(x_{j}+y_{j}\right)+2 \sum_{j=1}^{k} H\left(z_{j}\right)-H\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right) \\
- & \lambda^{-2 m} H\left(\lambda^{m}\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}-\sum_{j=1}^{k} z_{j}\right)\right) \mid \\
= & \lim _{n \rightarrow \infty}|4 k|^{n} \| 2 \sum_{j=1}^{k} f\left(\frac{x_{j}+y_{j}}{(2 k)^{n}}\right)+2 \sum_{j=1}^{k} f\left(\frac{z_{j}}{(2 k)^{n}}\right) \\
& -f\left(\frac{\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}}{(2 k)^{n}}\right) \\
& -\lambda^{-2 m} f\left(\lambda^{m}\left(\frac{\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}}{(2 k)^{n}}\right)\right) \| \\
\leq & \lim _{j \rightarrow \infty}|4 k|^{n} \varphi\left(\frac{x}{(2 k)^{j}}, \cdots, \frac{x}{(2 k)^{j}}, \frac{x}{(2 k)^{j}}, \cdots, \frac{x}{(2 k)^{j}}, \frac{x}{(2 k)^{j}}, \cdots, \frac{x}{(2 k)^{j}}\right) \\
= & 0
\end{aligned}
$$

for all $x \in \mathbf{X}$.

$$
2 \sum_{j=1}^{k} H\left(x_{j}+y_{j}\right)+2 \sum_{j=1}^{k} H\left(z_{j}\right)-H\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right)
$$

$$
-\lambda^{-2 m} H\left(\lambda^{m}\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}-\sum_{j=1}^{k} z_{j}\right)\right)=0
$$

for all $x \in \mathbf{X}$. By Lemma 3.1, the mapping $H: \mathbf{X} \rightarrow \mathbf{Y}$ is quadratic. Now, let $T: \mathbf{X} \rightarrow \mathbf{Y}$ be another quadratic mapping satisfying (23). Then we have

$$
\begin{aligned}
\|H(x)-T(x)\|= & \left\|(4 k)^{q} H\left(\frac{x}{(2 k)^{q}}\right)-(4 k)^{q} T\left(\frac{x}{(2 k)^{q}}\right)\right\| \\
& \leq \max \left\{\left\|(4 k)^{q} H\left(\frac{x}{(2 k)^{q}}\right)-(4 k)^{q} f\left(\frac{x}{(2 k)^{q}}\right)\right\|,\right. \\
& \left.\left\|(4 k)^{q} T\left(\frac{x}{(2 k)^{q}}\right)-(4 k)^{q} f\left(\frac{x}{(2 k)^{q}}\right)\right\|\right\} \\
& \leq \sup _{j \in \mathbb{N}}\left\{| 4 k | ^ { q + j - 1 } \varphi \left(\frac{x_{1}}{(2 k)^{j+1}}, \cdots, \frac{x_{k}}{(2 k)^{j+1}}, \frac{y_{1}}{2^{j+1}}, \cdots,\right.\right. \\
& \left.\left.\frac{y_{k}}{(2 k)^{j+1}}, \frac{z_{1}}{(2 k)^{j+1}}, \cdots, \frac{z_{k}}{2^{j+1}}\right)\right\}
\end{aligned}
$$

which tends to zero as $q \rightarrow \infty$ for all $x \in \mathbf{X}$. So we can conclude that $H(x)=T(x)$ for all $x \in \mathbf{X}$. This proves the uniqueness of H. Thus the mapping $H: \mathbf{X} \rightarrow \mathbf{Y}$ is a unique quadratic mapping satisfying (23)

Theorem 6. Let $\varphi: \mathbf{X}^{3 k} \rightarrow[0, \infty)$ be a function and let $f: \mathbf{X} \rightarrow \mathbf{Y}$ be a mapping satisfying $f(0)=0$ and

$$
\begin{align*}
& \lim _{j \rightarrow \infty}\left\{\frac { 1 } { | 4 k | ^ { j } } \varphi \left((2 k)^{j-1} x_{1}, \cdots,(2 k)^{j-1} x_{k},(2 k)^{j-1} y_{1}, \cdots,\right.\right. \\
& \left.\left.\quad(2 k)^{j-1} y_{k},(2 k)^{j-1} z_{1}, \cdots,(2 k)^{j-1} z_{k}\right)\right\}=0 \tag{28}\\
& \| 2 \sum_{j=1}^{k} f\left(z_{j}\right)+2 \sum_{j=1}^{k} f\left(x_{j}+y_{j}\right)-f\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right) \\
& -\lambda^{-2 m} f\left(\lambda^{m}\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}-\sum_{j=1}^{k} z_{j}\right)\right) \| \tag{29}\\
& \leq \varphi\left(x_{1}, x_{2}, \cdots, x_{k}, y_{1}, y_{2}, \cdots, y_{k}, z_{1}, z_{2}, \cdots, z_{k}\right)
\end{align*}
$$

for all $x_{j}, y_{j}, z_{j} \in \mathbf{X}$ for all $j=1 \rightarrow n$. Then there exists a unique quadratic type mapping $H: \mathbf{X} \rightarrow \mathbf{Y}$ such that

$$
\begin{align*}
\|f(x)-H(x)\| \leq & \sup _{j \in \mathbb{N}}\left\{\frac { 1 } { | 4 k | ^ { j - 1 } } \varphi \left((2 k)^{j-1} x, \cdots,(2 k)^{j-1} x,(2 k)^{j-1} x, \cdots,\right.\right. \\
& \left.\left.(2 k)^{j-1} x,(2 k)^{j-1} x, \cdots,(2 k)^{j-1} x\right)\right\} \tag{30}
\end{align*}
$$

for all $x \in \mathbf{X}$.

The rest of the proof is similar to the proof of theorem 4.1.
Corollary 3. Let $r<2$ and θ be nonegative real numbers and let $f: \mathbf{X} \rightarrow \mathbf{Y}$ be a mapping satisfying $f(0)=0$ and

$$
\begin{align*}
& \| 2 \sum_{j=1}^{k} f\left(z_{j}\right)+2 \sum_{j=1}^{k} f\left(x_{j}+y_{j}\right)=f\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right) \\
& +\lambda^{-2 m} f\left(\lambda^{m}\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}-\sum_{j=1}^{k} z_{j}\right)\right) \| \tag{31}\\
& \leq \theta\left(\sum_{j=1}^{k}\left\|x_{j}\right\|^{r}+\sum_{j=1}^{k}\left\|y_{j}\right\|^{r}+\sum_{j=1}^{k}\left\|z_{j}\right\|^{r}\right)
\end{align*}
$$

for all $x \in \mathbf{X}$. Then there exists a unique quadratic mapping $H: \mathbf{X} \rightarrow \mathbf{Y}$ such that

$$
\|f(x)-H(x)\| \leq \frac{2 k \theta}{|2 k|^{r}}\|x\|^{r}
$$

for all $x \in \mathbf{X}$.
Corollary 4. Let $r>2$, and θ be nonegative real numbers and let $f: \mathbf{X} \rightarrow \mathbf{Y}$ be a mapping satisfying $f(0)=0$ and

$$
\begin{align*}
& \| 2 \sum_{j=1}^{k} f\left(z_{j}\right)+2 \sum_{j=1}^{k} f\left(x_{j}+y_{j}\right)=f\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right) \\
& +\lambda^{-2 m} f\left(\lambda^{m}\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}-\sum_{j=1}^{k} z_{j}\right)\right) \| \tag{32}\\
& \leq \theta\left(\sum_{j=1}^{k}\left\|x_{j}\right\|^{r}+\sum_{j=1}^{k}\left\|y_{j}\right\|^{r}+\sum_{j=1}^{k}\left\|z_{j}\right\|^{r}\right)
\end{align*}
$$

for all $x \in \mathbf{X}$. Then there exists a unique quadratic mapping $H: \mathbf{X} \rightarrow \mathbf{Y}$ such that

$$
\|f(x)-H(x)\| \leq \frac{2 k \theta}{|4 k|}\|x\|^{r}
$$

for all $x \in X$.

5. Construct a Solution for (1.1) on Non-Archimedean Random Normed Space

In this section, \mathbf{K} be a non-Archimedean field, \mathbf{X} is a vector space over \mathbf{K} and let (\mathbf{X}, Γ, T) be a non-Archimedean random Banach space over \mathbf{K}

We investigate the stability of the quadratic functional equation

$$
\begin{align*}
& 2 \sum_{j=1}^{k} f\left(z_{j}\right)+2 \sum_{j=1}^{k} f\left(x_{j}+y_{j}\right) \\
& =f\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right)+\lambda^{-2 m} f\left(\lambda^{m}\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}-\sum_{j=1}^{k} z_{j}\right)\right) \tag{33}
\end{align*}
$$

where $f: \mathbf{X} \rightarrow \mathbf{Y}$ and $f(0)=0$.
Next, we define a random approximately quadrtic function. Let
$\varphi: \mathbf{X}^{3 k+1} \rightarrow[0, \infty)$ be a distribution function such that
$\varphi\left(x_{1}, x_{2}, \cdots, x_{k}, y_{1}, y_{2}, \cdots, y_{k}, z_{1}, z_{2}, \cdots, z\right)_{k}$ is symmetric, nondecreasing and

$$
\begin{equation*}
\varphi\left(x, \cdots, x, 0, \cdots, 0, x, \cdots, x, \frac{t}{|\lambda|}\right) \leq \varphi(\lambda x, \cdots, \lambda x, 0, \cdots, 0, \lambda x, \cdots, \lambda x, t) \tag{34}
\end{equation*}
$$

For $x \in \mathbf{X}, \quad \lambda \neq 0$.
Next, we define:
A mapping $f: \mathbf{X} \rightarrow \mathbf{Y}$ is said to be φ-approximately quadratic mapping if

$$
\begin{align*}
& \qquad \tag{35}\\
& \\
& \\
& \\
& \quad \leq \varphi\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right)+\lambda^{-2 m} f\left(\lambda^{m}\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}-\sum_{j=1}^{k}, x_{1}, y_{2}\right)\right)-2 \sum_{j=1}^{k} f\left(z_{j}\right)-2 \sum_{j=1}^{k} f\left(x_{j}+y_{j}\right) \\
& \text { for all } \left.\quad x_{j}, y_{j}, z_{j}, \cdots, z_{k}, t\right) \\
& \text {, for all } j=1 \rightarrow k, t>0 .
\end{align*}
$$

* Note: We assume that $2 k \neq 0$ in \mathbb{K}

Theorem 7 For $f: \mathbf{X} \rightarrow \mathbf{Y}$ be a φ-approximately quadratic mapping if there exist an $\beta \in \mathbb{R}(\beta>0)$ and an integer $h, h \geq 2$ with $\beta>\left|(2 k)^{h}\right|$ and $|2 k| \neq 0$ such that
$\varphi\left((2 k)^{-h} x_{1}, \cdots,(2 k)^{-h} x_{k},(2 k)^{-h} y_{1}, \cdots,(2 k)^{-h} y_{k}, \cdots,(2 k)^{-h} z_{1}, \cdots,(2 k)^{-h} z_{k}, t\right)$
$\geq \varphi\left((2 k)^{-h} x_{1}, \cdots,(2 k)^{-h} x_{k},(2 k)^{-h} y_{1}, \cdots,(2 k)^{-h} y_{k}, \cdots,(2 k)^{-h} z_{1}, \cdots,(2 k)^{-h} z_{k}, \beta t\right)$
for all $x_{j}, y_{j}, z_{j} \in \mathbf{X}$ for all $j=1 \rightarrow k, t>0$ and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} T_{j=n}^{\infty} M\left(x, \frac{\beta^{j} t}{\left|(2 k)^{h j}\right|}\right)=1 \tag{37}
\end{equation*}
$$

$x_{j} y_{j}, z_{j} \in \mathbf{X}$ forall $j=1 \rightarrow k, t>0$ and
for all $x \in \mathbf{X}$ and $t>0$.
Then there exists a unique quadratic type mapping $Q: \mathbf{X} \rightarrow \mathbf{Y}$ such that

$$
\begin{equation*}
\Gamma_{f(x)-Q(x)}(t) \geq T_{i=1}^{\infty} M\left(x, \frac{\beta^{i+1} t}{\left|(2 k)^{h i}\right|}\right)=1 \tag{38}
\end{equation*}
$$

In there

$$
\begin{align*}
M(x, t)= & Q(\varphi(x, \cdots, x, 0, \cdots, 0, x, \cdots, x, t), \varphi(2 k x, \cdots, 2 k x, 0, \cdots, 0,2 k x, \cdots, 2 k x, t), \\
& \cdots, \varphi\left((2 k)^{h-1} x, \cdots,(2 k)^{h-1} x, 0, \cdots, 0,(2 k)^{h-1} x, \cdots,(2 k)^{h-1} x, t\right) \tag{39}
\end{align*}
$$

for all $x \in \mathbf{X}$ and $\forall t>0$.
Proof. First, we show by induction on j that for each $x \in \mathbf{X}, t>0$ and $j \geq 1$,

$$
\begin{align*}
& \Gamma_{f\left((2 k)^{j} x\right)-(4 k)^{j} f(x)}(t) \geq M_{j}(x, t) \\
& :=T(\varphi(x, \cdots, x, 0, \cdots, 0, x, \cdots, x, t), \varphi(2 k x, \cdots, 2 k x, 0, \cdots, 0,2 k x, \cdots, 2 k x, t), \cdots, \tag{40}\\
& \quad \varphi\left((2 k)^{h-1} x, \cdots,(2 k)^{h-1} x, 0, \cdots, 0,(2 k)^{h-1} x, \cdots,(2 k)^{h-1} x, t\right)
\end{align*}
$$

we replacing $\left(x_{1}, \cdots, x_{k}, y_{1}, \cdots, y_{k}, z_{1}, \cdots, z_{k}, t\right)$ by $(x, \cdots, x, 0, \cdots, 0, x, \cdots, x, t)$ in (35), we obtain

$$
\begin{equation*}
\Gamma_{f((2 k) x)-(4 k) f(x)}(t) \geq \varphi(x, \cdots, x, 0, \cdots, 0, x, \cdots, x, t) \tag{41}
\end{equation*}
$$

$x \in \mathbf{X}, t>0$. This proves (40) for $j=1$. We now assume that (40) holds for some $j \geq 1$ Next we replacing ($\left.x_{1}, \cdots, x_{k}, y_{1}, \cdots, y_{k}, z_{1}, \cdots, z_{k}, t\right)$ by $\left((2 k)^{j} x, \cdots,(2 k)^{j} x, 0, \cdots, 0,(2 k)^{j} x, \cdots,(2 k)^{j} x, t\right)$ in (35) we have $\Gamma_{f\left((2 k)^{j+1} x\right)-(4 k) f\left((2 k)^{j} x\right)}(t) \geq \varphi\left((2 k)^{j} x, \cdots,(2 k)^{j} x, 0, \cdots, 0,(2 k)^{j} x, \cdots,(2 k)^{j} x, t\right)($

Since $|4 k| \leq 1$

$$
\begin{align*}
& \Gamma_{f\left((2 k)^{j+1} x\right)-(4 k)^{j+1} f(x)}(t) \\
& \geq T\left(\Gamma_{f\left((2 k)^{j+1} x\right)-(4 k) f\left((2 k)^{j} x\right)}(t), \Gamma_{(4 k) f\left((2 k)^{j} x\right)-(4 k)^{j+1} f(x)}(t)\right) \\
& =T\left(\Gamma_{f\left((2 k)^{j+1} x\right)-(4 k) f\left((2 k)^{j} x\right)}(t), \Gamma_{f\left((2 k)^{j} x\right)-(4 k)^{j} f(x)}\left(\frac{t}{|4 k|}\right)\right) \tag{43}\\
& =T\left(\Gamma_{f\left((2 k)^{j+1} x\right)-(4 k) f\left((2 k)^{j} x\right)}(t), \Gamma_{f\left((2 k)^{j} x\right)-(4 k)^{j} f(x)}(t)\right) \\
& =T\left(\varphi\left((2 k)^{j} x, \cdots,(2 k)^{j} x, 0, \cdots, 0,(2 k)^{j} x, \cdots,(2 k)^{j} x, t\right), M_{j}(x, t)\right) \\
& =M_{j+1}(x, t)
\end{align*}
$$

for all $x \in \mathbf{X}$. So in (40) holds for all $j \geq 1$.
Other way

$$
\begin{equation*}
\Gamma_{f\left((2 k)^{h} x\right)-(4 k)^{h} f(x)}(t) \geq M(x, t), \forall x \in \mathbf{X}, t>0 \tag{44}
\end{equation*}
$$

Next we replacing x by $(2 k)^{-(h n+h)} x$ in (44) and using inequality (36), we have

$$
\begin{align*}
& \Gamma_{f\left(\frac{x}{(2 k)^{h n}}\right)-(4 k)^{h} f\left(\frac{x}{(2 k)^{h+h}}\right)}(t) \\
& \geq M\left(\frac{x}{(2 k)^{h n+h}}, t\right) \geq M\left(x, \beta^{n+1} t\right), \forall x \in \mathbf{X}, t>0, n \in \mathbb{N} . \tag{45}
\end{align*}
$$

Then

$$
\begin{equation*}
\Gamma_{(4 k)^{n h} f\left(\frac{x}{(2 k)^{h n}}\right)-(4 k)^{h+1} f\left(\frac{x}{(2 k)^{h n+h}}\right)}(t) \geq M\left(x, \frac{\beta^{n+1}}{|4 k|^{h n}} t\right), \forall x \in \mathbf{X}, t>0, n \in \mathbb{N} . \tag{46}
\end{equation*}
$$

Hence,

$$
\begin{align*}
& \Gamma_{(4 k)^{h n} f\left(\frac{x}{(2 k)^{h n}}\right)-(4 k)^{h(n+p)} f\left(\frac{x}{(2 k)^{h(n+p)}}\right)}(t) \\
& \geq T_{j=n}^{n+p}\left(\sum_{(4 k)^{h j} f\left(\frac{x}{(2 k)^{h j}}\right)-(4 k)^{h(n+j)} f\left(\frac{x}{(2 k)^{h(n+j)}}\right)}(t)\right) \tag{47}\\
& \geq T_{j=n}^{n+p} M\left(x, \frac{\beta^{j+1}}{|4 k|^{h j}} t\right) \\
& \geq T_{j=n}^{n+p} M\left(x, \frac{\beta^{j+1}}{|4 k|^{j}} t\right), \forall x \in \mathbf{X}, t>0, n \in \mathbb{N} .
\end{align*}
$$

Since

$$
\lim _{n \rightarrow \infty} T_{j=n}^{n+p} M\left(x, \frac{\beta^{j+1}}{|4 k|^{h j}} t\right)=1, \forall x \in \mathbf{X}, t>0, n \in \mathbb{N},
$$

$\left\{(4 k)^{h n} f\left(\frac{x}{(2 k)^{h n}}\right)\right\}$ is a Cauchy sequence in the non-Archimedean random
Banach space (\mathbf{Y}, Γ, T). Hence, we can define a mapping $Q: \mathbf{X} \rightarrow \mathbf{Y}$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \Gamma_{(4 k)^{h n} f\left(\frac{x}{(2 k)^{h n}}\right)-Q(x)}(t)=1, \forall x \in \mathbf{X}, t>0 \tag{48}
\end{equation*}
$$

Next for each $n \geq 1, \forall x \in \mathbf{X}$ and $t>0$.

$$
\begin{align*}
\Gamma_{f(x)-(4 k)^{h n} f\left(\frac{x}{(2 k)^{h n}}\right)}(t) & =\Gamma_{\sum_{i=0}^{n-1}(4 k)^{h i} f\left(\frac{x}{(2 k)^{h i}}\right)-(4 k)^{h(i+1)} f\left(\frac{x}{(2 k)^{h(i+1)}}\right)}(t) \\
& \geq T_{i=0}^{n+p}\left(\begin{array}{l}
\Gamma_{i=0}^{n-1}(4 k)^{h i} f\left(\frac{x}{\left.(2 k)^{h i}\right)}-(4 k)^{h(i+1)} f\left(\frac{x}{(2 k)^{h(i+1)}}\right)\right.
\end{array}\right) \tag{49}\\
& \geq T_{i=0}^{n-1} M\left(x, \frac{\beta^{i+1} t}{|4 k|^{h i}}\right)
\end{align*}
$$

Therefore,

$$
\begin{align*}
\Gamma_{f(x)-Q(x)}(t) & \geq T\left(\Gamma_{f(x)-(4 k)^{h n} f\left(\frac{x}{(2 k)^{h n}}\right)}(t), \Gamma_{(4 k)^{h n} f\left(\frac{x}{(2 k)^{h n}}\right)-Q(x)}(t)\right) \tag{50}\\
& \geq T\left(T_{i=0}^{n-1} M\left(x, \frac{\beta^{i+1} t}{|4 k|^{h i}}\right), \Gamma_{(4 k)^{h n} f\left(\frac{x}{(2 k)^{h n}}\right)-Q(x)}(t)\right)
\end{align*}
$$

By letting $n \rightarrow \infty$, we obtain

$$
\begin{equation*}
\Gamma_{f(x)-Q(x)}(t) \geq T_{i=0}^{n-1} M\left(x, \frac{\beta^{i+1} t}{|4 k|^{h i}}\right) \tag{51}
\end{equation*}
$$

As T is continuous, from a well-known result in probabilistic metric space see [12].

Now we put

$$
\begin{align*}
\Delta x= & 2(2 k)^{h n} \sum_{j=1}^{k} f\left((2 k)^{-h n} z_{j}\right)+2(2 k)^{h n} \sum_{j=1}^{k} f\left((2 k)^{-h n}\left(x_{j}+y_{j}\right)\right) \\
& \left.-(2 k)^{h n} f\left((2 k)^{h n}\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j}\right)\right)\right) \tag{52}\\
& +\lambda^{-2 m}(2 k)^{h n} f\left((2 k)^{-h n} \lambda^{m}\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}-\sum_{j=1}^{k} z_{j}\right)\right)
\end{align*}
$$

it follows that
$\lim _{n \rightarrow \infty} \Gamma_{\Delta x}=\Gamma_{f\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}+\sum_{j=1}^{k} z_{j} z_{j}\right)+\lambda^{-2 m} f\left(\lambda^{m}\left(\sum_{j=1}^{k} x_{j}+\sum_{j=1}^{k} y_{j}-\sum_{j=1}^{k} z_{j}\right)\right)-2 \sum_{j=1}^{k} f\left(z_{j}\right)-2 \sum_{j=1}^{k} f\left(x_{j}+y_{j}\right)}(t)$
for almost all $t>0$,
On the other hand, replacing x_{j}, y_{j} by $(2 k)^{h n} x_{j},(2 k)^{h n} y_{j}$, respectively, in (35) and suing (NA-RN2) and (36), we have

$$
\begin{aligned}
& \qquad \Gamma_{\Delta x} \geq \varphi\left((2 k)^{-h n} x_{1}, \cdots,(2 k)^{-h n} x_{k}, 0, \cdots, 0,(2 k)^{-h n} z_{1}, \cdots,(2 k)^{-h n} z_{k}, \frac{t}{|2 k|^{h n}}\right) \\
& \quad \geq \varphi\left(x_{1}, \cdots, x_{k}, 0, \cdots, 0, z_{1}, \cdots, z_{k}, \frac{\beta^{n} t}{|2 k|^{h n}}\right) \\
& \text { for all } x_{j}, y_{j}, z_{j} \in \mathbf{X}, j=1 \rightarrow k . \text { Sence } \\
& \quad \lim _{n \rightarrow \infty} \varphi\left(x_{1}, \cdots, x_{k}, 0, \cdots, 0, z_{1}, \cdots, z_{k}, \frac{\beta^{n} t}{|2 k|^{h n}}\right)=1,
\end{aligned}
$$

We infer that Q is a quadratic function.
Finally we have to prove that Q is a unique quadratic mapping.
Let $Q^{\prime}: \mathbf{X} \rightarrow \mathbf{Y}$ is another quadratic mapping such that

$$
\begin{equation*}
\Gamma_{Q^{\prime}(x)-f(x)}(t) \geq M(x, t) \tag{55}
\end{equation*}
$$

for all $x \in \mathbf{X}$ and $t>0$, then for each $n \in \mathbb{N}, x \in \mathbf{X}, t>0$

$$
\begin{equation*}
\Gamma_{Q(x)-Q^{\prime}(x)}(t) \geq T\left(\Gamma_{Q(x)-(4 k)^{b m} f\left(\frac{x}{(2 k)^{m i n}}\right)}(t), \Gamma_{(4 k)^{b n} f\left(\frac{x}{(2 k)^{m n}}\right)-Q^{\prime}(x)}(t), t\right) . \tag{56}
\end{equation*}
$$

Form (48), we infer that $Q^{\prime}=Q$.
From the theorem 5.1 we get the following corollary:
Corollary 5. For $f: \mathbf{X} \rightarrow \mathbf{Y}$ be a φ-approximately quadratic mapping if there exist an $\beta \in \mathbb{R}(\beta>0)$ and an integer $h, h \geq 2$ with $\beta>\left|(2 k)^{h}\right|$ and $|2 k| \neq 0$ such that
$\varphi\left((2 k)^{-h} x_{1}, \cdots,(2 k)^{-h} x_{k},(2 k)^{-h} y_{1}, \cdots,(2 k)^{-h} y_{k}, \cdots,(2 k)^{-h} z_{1}, \cdots,(2 k)^{-h} z_{k}, t\right)$
$\geq \varphi\left((2 k)^{-h} x_{1}, \cdots,(2 k)^{-h} x_{k},(2 k)^{-h} y_{1}, \cdots,(2 k)^{-h} y_{k}, \cdots,(2 k)^{-h} z_{1}, \cdots,(2 k)^{-h} z_{k}, \beta t\right)$
for all $x_{j}, y_{j}, z_{j} \in \mathbf{X}$ for all $j=1 \rightarrow k, t>0$, then there exists a unique quadratic type mapping $Q: \mathbf{X} \rightarrow \mathbf{Y}$ such that

$$
\begin{equation*}
\Gamma_{f(x)-Q(x)}(t) \geq T_{i=1}^{\infty} M\left(x, \frac{\beta^{i+1} t}{\left|(2 k)^{h i}\right|}\right) \tag{58}
\end{equation*}
$$

for all $x \in \mathbf{X}$ and $\forall t>0$. In there

$$
\begin{align*}
& M(x, t)= Q(\varphi(x, \cdots, x, 0, \cdots, 0, x, \cdots, x, t), \varphi(2 k x, \cdots, 2 k x, 0, \cdots, 0,2 k x, \cdots, 2 k x, t), \\
& \cdots, \varphi\left((2 k)^{h-1} x, \cdots,(2 k)^{h-1} x, 0, \cdots, 0,(2 k)^{h-1} x, \cdots,(2 k)^{h-1} x, t\right) \tag{59}
\end{align*}
$$

for all $x \in \mathbf{X}$ and $\forall t>0$.

Application Example: For $\left(\mathbf{X}, \Gamma, T_{M}\right)$ non-Archimedean random normed space in which

$$
\Gamma_{x}(t)=\frac{t}{t+\|t\|}, \forall x \in \mathbf{X}, t>0
$$

and assuming that $\left(\mathbf{Y}, \Gamma, T_{M}\right)$ complete non-Archimedean random normed space.

Now we define

$$
\varphi\left(x_{1}, \cdots, x_{k}, y_{1}, \cdots, y_{k}, z_{1}, \cdots, z_{k}, t\right)=\frac{t}{1+t}
$$

It is easy to see that for $\beta=1$ then (36) holds, sence

$$
M(x, t)=\frac{t}{1+t}
$$

We have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} T_{j=n}^{\infty} M\left(x, \frac{\beta^{j}}{|4 k|^{h j}} t\right) & =\lim _{n \rightarrow \infty}\left(\lim _{m \rightarrow \infty} T_{j=n}^{m} M\left(x, \frac{t}{|4 k|^{h j}} t\right)\right) \\
& =\lim _{n \rightarrow \infty} \cdot \lim _{m \rightarrow \infty}\left(\frac{t}{t+\left|(4 k)^{h}\right|^{n}}\right)=1,
\end{aligned}
$$

$\forall x \in \mathbf{X}, t>0$.

6. Conclusion

In this paper, I have built the condition for existence of a solution for a functional equation of general form and then I have used two fixed point methods and a direct method to show their solutions on non-Archimedean space and finally establish their solution on the non-Archimedean Random normed space.

Conflicts of Interest

The author declares no conflicts of interest.

References

[1] Ulam, S.M. (1960) A Collection of the Mathematical Problems. Interscience Publ., New York.
[2] Hyers, D.H. (1941) On the Stability of the Linear Functional Equation. Proceedings of the National Academy of Sciences of the United States of America, 27, 222-224. https://doi.org/10.1073/pnas.27.4.222
[3] Aoki, T. (1950) On the Stability of the Linear Transformation in Banach Spaces. Journal of the Mathematical Society of Japan, 2, 64-66.
https://doi.org/10.2969/jmsj/00210064
[4] Rassias, Th.M. (1978) On the Stability of the Linear Mapping in Banach Spaces. Proceedings of the AMS, 72, 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
[5] Gajda, Z. (1991) On Stability of Additive Mappings. International Journal of Ma-
thematics and Mathematical Sciences, 14, 431-434.
https://doi.org/10.1155/S016117129100056X
[6] Rassias, Th.M. and Semrl, P. (1993) On the Hyers-Ulam Stability of Linear Mappings. Journal of Mathematical Analysis and Applications, 173, 325-338.
https://doi.org/10.1006/jmaa.1993.1070
[7] Găvruta, P. (1994) A Generalization of the Hyers-Ulam-Rassias Stability of Approximately Additive Mappings. Journal of Mathematical Analysis and Applications, 184, 431-443. https://doi.org/10.1006/jmaa.1994.1211
[8] Skof, F. (1983) Propriet locali e approssimazione di operatori. Rend. Seminario Matematico e Fisico di Milano, 53, 113-129. https://doi.org/10.1007/BF02924890
[9] Parka, C. and Kimb, S.O. (2017) Quadratic α-Functional Equations. International Journal of Nonlinear Analysis and Applications, 8, 1-9.
[10] Moslehian, M.S. and Sadeghi, Gh. (2008) A Mazur-Ulam Theorem in Non-Archimedean Normed Spaces. Nonlinear Analysis, 69, 3405-3408.
https://doi.org/10.1016/j.na.2007.09.023
[11] Serstnev, A.N. (1963) On the Notion of a Random Normed Space. Doklady Akademii Nauk SSSR, 149, 280-283. (In Russian)
[12] Schweizer, B. and Sklar, A. (1983) Probabilistic Metric Spaces. Elsevier, North Holland.
[13] Diaz, J. and Margolis, B. (1968) A Fixed Point Theorem of the Alternative for Contractions on a Generalized Complete Metric Space. Bulletin of the AMS, 74, 305-309. https://doi.org/10.1090/S0002-9904-1968-11933-0
[14] Mihet, D. and Radu, V. (2008) On the Stability of the Additive Cauchy Functional Equation in Random Normed Spaces. Journal of Mathematical Analysis and Applications, 343, 567-572. https://doi.org/10.1016/j.jmaa.2008.01.100
[15] An, L.V. (2022) Generalized Hyers-Ulam-Rassias Type Stability Additive α-Functional Inequalities with 3k-Variable in Complex Banach Spaces. Open Access Library Journal, 9, e9373. https://doi.org/10.4236/oalib. 1109373
[16] Cădarui, L. and Radu, V. (2003) Fixed Points and the Stability of Jensen's Functional Equation. Journal of Inequalities in Pure and Applied Mathematics, 4, Article No. 4.
[17] Gilányi, A. (2002) Eine zur parallelogrammleichung äquivalente ungleichung. Aequations, 5, 707-710. https://doi.org/10.7153/mia-05-71
[18] Alsina, C. (1987) On the Stability of a Functional Equation Arising in Probabilistic Normed Spaces. 5th International Conference on General Inequalities, Oberwolfach, 4-10 May 1986, 263-271. https://doi.org/10.1007/978-3-0348-7192-1_20
[19] Chang, S.S., Rassias, J.M. and Saadati, R. (2010) The Stability of the Cubic Functional Equation in Intuitionistic Random Normed Spaces. Applied Mathematics and Mechanics, 31, 21-26. https://doi.org/10.1007/s10483-010-0103-6
[20] Mirmostafaee, M., Mirzavaziri, M. and Moslehian, M.S. (2008) Fuzzy Stability of the Jensen Functional Equation. Fuzzy Sets and Systems, 159, 730-738. https://doi.org/10.1016/j.fss.2007.07.011
[21] Mirzavaziri, M. and Moslehian, M.S. (2006) A Fixed Point Approach to Stability of a Quadratic Equation. Bulletin of the Brazilian Mathematical Society, 37, 361-376. https://doi.org/10.1007/s00574-006-0016-z
[22] Mihet, D. (2009) The Probabilistic Stability for a Functional Equation in a Single Variable. Acta Mathematica Hungarica, 123, 249-256.
https://doi.org/10.1007/s10474-008-8101-y
[23] Mihet, D. (2009) The Fixed Point Method for Fuzzy Stability of the Jensen Functional Equation. Fuzzy Sets and Systems, 160, 1663-1667. https://doi.org/10.1016/j.fss.2008.06.014
[24] Mirmostafaee, A.K. (2009) Stability of Quartic Mappings in Non-Archimedean Normed Spaces. Kyungpook Mathematical Journal, 49, 289-297. https://doi.org/10.5666/KMJ.2009.49.2.289
[25] Mihet, D., Saadati, R. and Vaezpour, S.M. (2010) The Stability of the Quartic Functional Equation in Random Normed Spaces. Acta Applicandae Mathematicae, 110, 797-803. https://doi.org/10.1007/s10440-009-9476-7
[26] Najati, A. and Moradlou, F. (2008) Hyers-Ulam-Rassias Stability of the Apollonius Type Quadratic Mapping in Non-Archimedean Spaces. Tamsui Oxford Journal of Mathematical Sciences, 24, 367-380.
[27] Mihet, D., Saadati, R. and Vaezpour, S.M. (2011) The Stability of an Additive Functional Equation in Menger Probabilistic f-Normed Spaces. Mathematica Slovaca, 61, 817-826. https://doi.org/10.2478/s12175-011-0049-7
[28] Baktash, E., Cho, Y., Jalili, M., Saadati, R. and Vaezpour, S.M. (2008) On the Stability of Cubic Mappings and Quadratic Mappings in Random Normed Spaces. Journal of Inequalities and Applications, 2008, Article ID: 902187. https://doi.org/10.1155/2008/902187
[29] Eshaghi Gordji, M., Zolfaghari, S., Rassias, J.M. and Savadkouhi, M.B. (2009) Solution and Stability of a Mixed Type Cubic and Quartic Functional Equation in Qua-si-Banach Spaces. Abstract and Applied Analysis, 2009, Article ID: 417473. https://doi.org/10.1155/2009/417473
[30] Saadati, R., Vaezpour, S.M. and Cho, Y. (2009) A Note on the "On the Stability of Cubic Mappings and Quadratic Mappings in Random Normed Spaces". Journal of Inequalities and Applications, 2009, Article ID: 214530. https://doi.org/10.1155/2009/214530
[31] Mohamadi, M., Cho, Y., Park, C., Vetro, P. and Saadati, R. (2010) Random Stability of an Additive-Quadratic-Quartic Functional Equation. Journal of Inequalities and Applications, 2010, Article ID: 754210. https://doi.org/10.1155/2010/754210
[32] Van An, L. (2023) Establish an Additive (s;t)-Function in Equalities by Fixed Point Method and Direct Method with n-Variables in Banach Space. Journal of Mathematics, 7, 1-13. https://doi.org/10.53555/m.v9i1.5515
[33] An, L.V. (2023) Generalized Stability of Functional Inequalities with 3k-Variables Associated for Jordan-von Neumann-Type Additive Functional Equation. Open Access Library Journal, 10, e9681. https://doi.org/10.4236/oalib. 1109681 https://www.scirp.org/journal/paperinformation.aspx?paperid=122680

