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Abstract 
In this paper, a continuous two-dimensional dynamic system is proposed. 
This system was analyzed by finding the equilibrium points. Also, the stability 
of the system was analyzed through the roots of the characteristic equation, 
Roth stability criteria, Hurwitz stability criteria, fractional part stability crite-
ria, and Lyapunov function. It turns out that the system is chaotic at one 
point of equilibrium and stable at the other point. Also, it was found that the 
roots of the characteristic equation of the system were in the form of complex 
numbers, and the real part was relied upon in the stability analysis. And then 
the system was controlled using adaptive control technology. 
 

Subject Areas 
Mathematics 
 

Keywords 
Lyapunov Function, Stability, Hopf Bifurcation, Lyapunov Dimension 

 

1. Introduction 

Research on chaotic phenomena has been increasingly important in recent years 
because of the growing range of chaotic applications in scientific and technical 
systems [1]. Chaotic phenomena arise from the reactivity of adversaries to 
changes in the structural parameters and initial conditions of some types of dy-
namic systems. The aperiodicity, broad spectrum, and random-like properties of 
chaotic signals are characteristics of these phenomena [2]-[7]. The chaotic orbits 
must be packed in phase space, it is not a transitional topology, and it is sensitive 
to perturbations in its initial conditions, all of which should lead to unpredicta-
ble behavior over time [8] [9]. Studies claim that some of the produced chaos at-
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tractors include Chen’s [10], the 4-wing attractor [11], Sundarapandian V. Peh-
livan [12], and the Rabinovitch system [13] [14] [15]. The fact that a chaotic sys-
tem has at least one Lyapunov exponent greater than zero is one of its funda-
mental properties. A system becomes extremely chaotic and sensitive to even the 
slightest changes in its dynamics when it has a lot of positive Lyapunov expo-
nents [16] [17]. Researchers are paying more and more attention to chaos man-
agement because of its synchronizability and controllability, which suggests that 
it will be helpful in a range of designs, such as biometric identification, artificial 
intelligence, and secure communications [18] [19]. Dissipative systems can be 
settled successfully using one of the Lyapunov stability [20]. A stable system will 
have consistent and predictable behavior, while an unstable system will have be-
havior that changes significantly over time [21]. If small perturbations in the ini-
tial conditions of the system result in only small changes in the long-term beha-
vior of the variables, then the system is considered stable. Conversely, if small 
perturbations result in large changes in the long-term behavior of the variables, 
then the system is considered unstable. There are several methods for analyzing 
the stability of a two-dimensional continuous-time dynamical system, including 
linear stability analysis, eigenvalue analysis, and Lyapunov stability analysis. 
Each of these methods involves analyzing the properties of the system’s equa-
tions and determining how the variables behave over time in response to differ-
ent initial conditions [22] [23] [24].  

2. System Description 

Here are the equations that make up the new two-dimensional system: 

x bx sxy
y dy esxy
= −
= − +





                         (1) 

x and y are state variables and b, d, e and s are constants. 
Were 

35.5, 4.2, 31.3, 29.4b d e s= = = =                  (2) 

3. System Analysis 

When Equation (1) is set to zero, just one equilibrium point, the origin point, is 
produced, allowing us to examine a dynamical system’s equilibrium points  

( )0 0,0E = , ( )1 0.041,1.207E = . 

3.1. Stability Analysis 

A necessary and sufficient condition for the stability of the system is that the 
characteristic equation’s eigenvalues have negative real components. Following 
is the Jacobian matrix for the new system (1) up to ( )0 0,0E = : 

35.5 0
,

0 4.2
J  
=  − 

                       (3) 
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The characteristic equation is: 
2 31.3 149.1 0,λ λ− − =                       (4) 

Roots of the characteristic equation: 

1 235.5, 4.2,λ λ= = −  

Thus, the system is unsteady. 

3.2. Routh Stability Criterion 

A system meets the Routh requirement for stability (all poles in the half-loop 
level), if and only if the components in the first column of the Routh row have 
only positive values for all of their values. The number of sign changes in the 
first column multiplied by the sum of the non-OLHP columns [25]. Regarding 
the Roth stability test, see Table 1. 

0 1 2149.1, 31.3, 1,a a a= − = − =  

The system is unstable because the first column has four negative elements.  

3.3. Hurwitz Stability Criteria 

Determinants generated from the coefficients of the characteristic equation are 
used to implement this criterion. System (1) is stable if the tiny minors of its 
square matrix J are all positive; if not, it is unstable [25]. 

From Equation (3): 

1 1 1 31.3 0,na a−∆ = = = − <  

1 3 1
2

2 2 0

0 31.3 0
4666.83 0,

1 149.1
n n

n n

a a a
a a a a
− −

−

−
∆ = = = = − <  

System (1) is unstable because some of the values of the determinants are less 
than zero. 

3.4. Lyapunov Function 

Where we assume the Lyapunov function is: 

( ) ( )2 2
1 4 22

1, ,
2

x x x x= +  

( ) 1 2
1 2

1 2

, ,
x xv vx x

x t x t
∂ ∂∂ ∂

= +
∂ ∂ ∂ ∂

                    (5) 

The system is stable, 0 >   if 
We get: (5) in Equation (1) substituting. 
Since 0> , as a result, new system (1) is unstable. 

 
Table 1. Routh array. 

2λ  1 −149.1 

1λ  −31.3 0 

0λ  −149.1 0 
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3.5. Continued Fraction Stability Criteria 

By creating a continuous fraction from the odd and even parts of the equation, 
the characteristic equation of a continuous system is subjected to this condition. 
The distinguishing equation: 

2 31.3 149.1 0,λ λ− − =  

By taking the even terms and then the odd terms, respectively, we have: 

( ) 2
1 149.1Q λ λ= −                        (6) 

( )2 31.3Q λ λ= −                         (7) 

After dividing the even terms by the odd terms and using algebraic steps, we 
get the following results: 

1 20.031, 0.209.h h= − = −  

Since some values of h are negative, the equation of the system has some posi-
tive real roots, so system (1) is chaotic. 

3.6. Dissipativity 

Suppose that 

1 2
d d, .
d d
x yf f
t t

= =  

The obtained vector field,  

( ) ( )T T
1 2, ,x y f f=   

( )T 1 2, 1.207 0.004 .
f fx y b s d es f
x y

∂ ∂
∇ ⋅ = + = − − + =

∂ ∂
   

Note that, 1.207 0.004 0.504f b s d es= − − − + = − , for all values that are posi-
tive and greater than zero, the system (1) dissipates 

Here is the exponential rate: 

( ) 0.504
0 0

d e e
d

ft tV f t
t

−= ⇒ = =     

By flowing into ( 0.504
0e tV − ), the volume element ( 0V ) from the previous equa-

tion is condensed at the time (t). 

4. Hopf Bifurcation 

One of the types of bifurcation that is recognized in mathematics occurs when a 
modest modification to one of the initial conditions causes a qualitative change 
in the behavior of the system at an equilibrium point. We take the Equation (3) 

2 31.3 149.1 0,λ λ− − =  

The roots of Equation (3) are: 

1 235.5, 4.2,λ λ= = −  

Differentiate the Equation (3) and normalize it to zero to find the critical val-
ue. 
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2 31.3 0,λ − =  

So, the critical values are 15.65λ = . 
Derivative at one of the eigenvalues of the equation = −8835774.285 

The critical values 15.65 0.394 0
Derivative at the eigenvalue of the equation 39.7

= = ≠  

4.1. Numerical and Graphical Analysis 

The fourth and fifth order Runge-Kotta method is used to solve the system (1). 
Initial values included 

( ) ( ) [ ]0 0| , 0.5,1x x y =  

4.2. Waveform of the New System (1) 

The waveform exhibits aperiodic structure, the primary defining feature of chao-
tic systems. ( )tx  and ( )ty  for system (1) (as showed in Figure 1). 
 

 
(a) 

 
(b) 

Figure 1. The Waveform of a new system (1). (a): time versus x; (b): time versus y. 
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4.3. The System’s Phase Portrait (1) 

In this paragraph, the strange attractor for the system (1) in (x, y) space is shown 
along with the chaotic strange attractor for the system (1), shown in Figure 2.  

Since the orbit in each graph looks to be dense, the new system exhibits a 
chaotic attractor. 

4.4. Lyapunov Exponent and Lyapunov Dimension 

The typical exponential growth rates of almost divergent trajectories in phase 
space are frequently referred to as the Lyapunov exponent. The new system is 
regarded as chaotic if it has at least one positive Lyapunov exponent. Values of 
the Lyapunov exponent are: 

( )1 21.523, 2.388 .L L= = −  

As a result, the system’s “Kaplan-Yorke dimension” or Lyapunov dimension is 
as follows: 

1

2

1 1.637L
LD
L

= + =  

Figure 3 shows that system (1) is very Chaotic. 

5. Adaptive Controller Technique 
5.1. Theoretical Results 

To stabilize a chaotic system (1) use the sufficiency control law generalized with 
an unknown parameter c as follows: 

1

2

35.5 29.4
4.2 29.4

x x xy u
y y exy u
= − +
= − + +





                     (8) 

where [ ]T1 2,u u  are feedback controllers. 
We now consider the following adaptive control procedures to make sure the 

managed system (7) converges asymptotically to the origin. 
 

 

Figure 2. The system attractor in (x, y). 
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Figure 3. Lyapunov exponent of the system (1). 
 

1 1

2 2

35.5 29.4
ˆ4.2 29.4

u x xy x
u y exy y

µ
µ

= − + −
= − −

                   (9) 

where 1 2,µ µ  are constants, ĉ  is an estimator of the parameter c. 
Substituting (8) into (7), we get: 

( )
1

2ˆ29.4
x x
y xy e e y

µ
µ

= −

= − −





                    (10) 

Let the estimation error of the parameter be: 
ˆce c c= −                          (11) 

Using (10), system (9) can be written as: 

1

2

,
29.4 ,e

x x
y e xy y

µ
µ

= −
= −





                     (12) 

The parameter estimates ĉ  is changed using the Lyapunov method of ob-
taining the updated law. It is thought that the quadratic Lyapunov function: 

( ) ( )2 2 2
1 2 1 2

1, ,
2 ex x x x e= + +                   (13) 

Which definite, positive-in 3 . 
Also 

ˆc ce = −

                           (14) 

Differentiate V & substituting (11) and (13), we get: 

( )2 2 2
1 2 29.4 ˆex y e xy eµ µ= − − + −   

Assume that: 

3ˆ exye eµ= +                          (15) 

where 3µ  is higher than 0 in value. 
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Substitute (14) into V , we get: 
2 2 2 2

1 2 3 29.4e e ex y e e y x e xyµ µ µ= − − − + −            (16) 

Which is negative-definite on 3 . 
The outcome is as follows because of Lyapunov stability, Eigenvalues, and the 

Routh array criteria. 
Proposition 1. Byadaptive control (10), where 3ˆ cxyc eµ= +  and 1 2 3, ,µ µ µ  

are positive constants, The chaotic system (8) is stabilized for ( ) 20x ∈ . 

5.2. Simulation and Numerical Results 

The controlled extremely chaotic system (8) was simulated using 

( ) ( )
[ ]

0 01 2| , 3,9x x x =  

[ ]2 1, 30,15µ µ =  and 25.3ce = . 

The new system (1)’s-controlled state trajectories are displayed in Figure 4. 
 

 

Figure 4. The behavior of state variables x, y for the controlled (8). 

6. A Table of Comparisons before and after the Control 

More results can be found in Tables 2-5. A comparison before and after control 
of system (1) was done, for eigenvalues given in Table 2, Routh array criterion 
values in Table 3, calculated values of Hurwitz stability criteria in Table 4, and 
calculated values of continued fraction in Table 5, all shows that system(1) is 
stable after control. 
 
Table 2. Eigenvalues of a new system (1). 

Equilibrium point Before Control After Control 

(0, 0) 
1 35.5λ =  1 57λ = −  

2 2.617λ = −  2 2λ = −  
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Table 3. Calculated Routh array criterion values for a new system (1). 

Equilibrium point λ Before Control After Control 

(0, 0) 

2λ  1 −149.1 1 24 
1λ  −31.3 0 14 0 
0λ  −149.1 0 24 0 

 
Table 4. Calculated values of Hurwitz stability criteria of a new system (1). 

Equilibrium point Before Control After Control 

(0, 0) 
1 31.3∆ = −  1 14∆ =  

2 4666.83= −∆  2 366∆ =  

 
Table 5. Calculated values of continued fraction stability criteria of new. 

Equilibrium point Before Control After Control 

(0, 0) 
1 0.031h = −  1 0.071h =  

2 0.209h = −  2 0.583h =  

7. Conclusion 

In this study, a two-dimensional model of continuous dynamical systems was 
taken. The permissible equilibrium points for the analysis of this system were 
found, and the parameters of stability were evaluated in various ways, which are: 
 Roots of the characteristic equation. 
 Roth stability criterion. 
 The criterion of the stability of Hurwitz. 
 Lyapunov function. 
 Fractional stability criterion. 

The Lyapunov exponentially was examined, and the system was found to be 
chaotic. The proposed system dissipation detected Hopf bifurcation, and then 
the system was regulated using an adaptive control approach. Finally, for the 
system under study, the numerical and morphological results before and after 
the control were compared.  
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