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Abstract 
In this paper, a six-dimensional model of continuous time dynamical systems 
is proposed. This system was analyzed by finding equilibrium points, and the 
stability of the system was also analyzed using different methods, namely the 
roots of the characteristic equation, Routh’s invariance criterion, Hurwitz’s 
invariance criterion, Lyapunov function, and the continued fraction stability 
criterion. The chaoticity of the system was tested by Lyapunov exponent, the 
hexagonal system was found to be chaotic. The dissipation and Hopf Bifurca-
tion of the proposed system were also found, and then the system was con-
trolled using the adaptive control technique. Finally, the results and numeri-
cal figures before and after control were compared for the system under 
study. An electronic circuit was created as a six-dimensional system applica-
tion consisting of twelve resistors, six capacitors, six voltages and six opera-
tional amplifiers, where the results were obtained from Multisim12, and it 
was found that the designed electronic circuit simulates the theoretical results 
of the six-dimensional dynamical system well. 
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1. Introduction 

Research on chaotic phenomena has been increasingly important in recent years 
because of the growing range of chaotic applications in scientific and technical 
systems [1]. Chaotic phenomena arise from the reactivity of adversaries to 
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changes in the structural parameters and initial conditions of some types of dy-
namic systems [2] [3]. The aperiodicity, broad spectrum, and random-like 
properties of chaotic signals are characteristics of these phenomena [4] [5] [6] 
[7]. The chaotic orbits must be packed in phase space, it is not a transitional to-
pology, and it is sensitive to perturbations in its initial conditions, all of which 
should lead to unpredictable behavior over time [8] [9]. Studies claim that some 
of the produced chaos attractors include Chen’s [10], the 4-wing attractor [11], 
Sundarapandian Pehlivan [12], and the Rabinovich system [13] [14] [15]. The 
fact that a chaotic system has at least one Lyapunov exponent greater than zero 
is one of its fundamental properties. A system becomes extremely chaotic and 
sensitive to even the slightest changes in its dynamics when it has a lot of posi-
tive Lyapunov exponents [16] [17]. Researchers are paying more and more at-
tention to chaos management because of its synchronizability and controllability, 
which suggests that it will be helpful in a range of designs, such as biometric 
identification, artificial intelligence, and secure communications [18] [19] [20]. 
Dissipative systems can be settled successfully using one of the Lyapunov stabil-
ity principles [21] [22] [23] [24]. Owing to the example, some components, such 
as multi-leveled equations, graphics, and tables are not prescribed, although the 
various table text styles are provided. The formatter will need to create these 
components, incorporating the applicable criteria that follow. We presented an 
engineering application of the six-dimensional chaotic system, such as electronic 
circuit simulation. 

2. Description of the System 

The six-dimensional system contains the following six differential equations: 

( )1 2 1 4

2 1 2 1 3 5

3 3 1 2

4 4 1 3

5 2

6 2 6

x a x x x
x cx x x x x
x bx x x
x dx x x
x kx
x lx hx

= − +

= − − +

= − +

= −

= −

= −













                     (1) 

1 2 3 4 5 6, , , , ,x x x x x x  are state variables and , , , , , ,a b c d k l h  are constants. 
Where 

10, 2.6, 28, 2, 8.4, 1.a b c d k l h= = = = = = =              (2) 

3. System Analysis 

When Equation (1) is set to zero, just one equilibrium point, the origin point, is 
produced, allowing us to examine a dynamical system’s equilibrium points Ŏ = 
(0, 0, 0, 0, 0, 0). 

3.1. Stability Analysis 

The characteristic equation’s eigenvalues including negative real components are 

https://doi.org/10.4236/oalib.1109674


M. M. Aziz, A. A. Kalalf 
 

 

DOI: 10.4236/oalib.1109674 3 Open Access Library Journal 
 

a necessary and sufficient condition for the system to remain stable. Following is 
the Jacobian matrix for the new system (1) up to E = (0, 0, 0, 0, 0, 0): 

10 10 0 1 0 0
28 1 0 0 1 0
0 0 2.6 0 0 0
0 0 0 2 0 0
0 8.4 0 0 0 0
0 1 0 0 0 1

J

− 
 − 
 −
 
 
 −


− 

=




                 (3) 

The characteristic equation is: 
6 5 4 3 212.5 248.6 212.76 1387.12 50.4 436.8 0,λ λ λ λ λ λ+ − − + + − =     (4) 

Roots of the characteristic equation: 

1 2 3 4 5 622.823, 2.617, 0.574, 0.581, 1.860, 10.940λ λ λ λ λ λ= − = − = − = = =  

Thus, we conclude that it is unstable system. 

3.2. Routh Stability Criteria 

A system meets the Routh requirement for stability (all poles in the half-loop 
level), if and only if the entries in the Routh array’s first column have values that 
are entirely positive. The number of sign changes in the first column multiplied 
by the sum of the non-OLHP columns [25]. Regarding the Roth stability test, see 
Table 1. 

0 1 2 3 4 5 6436.8, 50.4, 1387.1 212.762, 248.6, 12.5, 1,,a a a a a a a== − = = =− = − =  

5 0 6 7 4 1 5 0
0 1

5 4

436.8, 26.822,
a a a a b a a b

b c
a b
− −

= = − = =  

5 2 6 1 4 3 5 2
2 3

5 4

1383.088, 138.104,
a a a a b a a b

b c
a b
− −

= = = = −  

5 4 6 3 3 0 1 2
4 1

5 2

231.579, 18.259,
a a a a c d c d

b e
a d
− −

= = − = =  

4 0 3 4 1 2 3
0 2

3 3

436.8, 1338.111.
b b c b c b c

d d
c c
− −

= = = = −  

The system is unstable because the first column has four negative elements. 
 
Table 1. Routh array. 

6λ  1 −248.6 1387.12 −436.8 

5λ  12.5 −212.76 50.4 0 

4λ  −231.579 1383.088 −436.8 0 

3λ  −138.104 26.822 0 0 

2λ  −1338.111 436.8 0 0 

1λ  18.259 0 0 0 

0λ  −436.8 0 0 0 
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3.3. Hurwitz Stability Criteria 

Determinants generated from the coefficients of the characteristic equation are 
used to implement this criterion. System (1) is stable if the tiny minors of its 
square matrix J are all positive; if not, it is unstable [25] [26]. 

If 6n = , 
From Equation (3): 

1 1 5 12.5 0,na a−∆ = = = >  

1 3 5 3
2

2 6 4

12.5 212.76
2894.74 0,

1 248.6
n n

n n

a a a a
a a a a
− −

−

−
∆ = = = = − <

−
 

1 3 5

3 2 4

1 3

12.5 212.76 50.4
1 248.6 1387.12 39977.383 0,

0 0 12.5 212.76

n n n

n n n

n n

a a a
a a a

a a

− − −

− −

− −

−
∆ = = − = >

−
 

4 56781.350 0,∆ = − <  

5 79321.51 0,∆ = >  

6 103579.12 0.∆ = <  

System (1) is unstable because some of the values of the determinants are less 
than zero. 

3.4. Lyapunov Function 

Where we assume the Lyapunov function is: 

( ) ( )1 2 3 4
2 2 2 2 2 2
1 25 6 3 4 5 6, , , , , 1 2V x x x x x x x x x x x x= + + + +  

( )1 2 3 4 5 6 1 1 2 2 3 3 5 5 6 6, , , , ,V x x x x x x x x x x x x x x x x= + + + +    

  

2 2 2
1 2 1 1 4 2 2 5 3 1 3 4 2

2 2 2
4 6 638 10 7.4 2.6 2 .V x x x x x x x x x x x x x x x x= − + − − − + − + −   (5) 

Since ( )1 2 3 4 5 6, , , , , 0V x x x x x x > , as a result, New system (1) is unstable. 

3.5. Continued Fraction Stability Criteria 

By creating a continuous fraction from the odd and even parts of the equation, 
the characteristic equation of a continuous system is subjected to this condition 
[25]. The distinguishing equation: 

6 5 4 3 212.5 248.6 212.76 1387.12 50.4 436.8 0,λ λ λ λ λ λ+ − − + + − =  

By taking the even terms and then the odd terms, respectively, we have: 

( ) 6 4 2
1 248.6 1387.12 436.8,λ λ λ λ= − + −               (6) 

( ) 5 3
2 12.5 212.76 50.4 ,λ λ λ λ= − +                  (7) 

After dividing the even terms by the odd terms and using algebraic steps, we 
get the following results: 

1 2 3 4 5 60.08, 0.053, 0.809, 0.21, 21.108, 0.147.h h h h h h= = − = = − = − =  

Since some values of h are negative, the equation of the system has some posi-
tive real roots, so system (1) is chaotic. 
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3.6. Dissipativity 

Suppose that 

3 51 2 4
1 2 3 4 5

d dd d d
, , , ,

d d d d d
x xx x xf f f f f

t t t t t
= = = = =  and 6

6
d
d
x

f
t

= . 

The obtained vector field,  

( ) ( )T T
1 2 3 3 4 5 6 1 2 3 4 5 6, , , , , , , , , , ,V x x x x x x x f f f f f f=        

( )

( )

T 3 5 61 2 4
1 2 3 3 4 5 6

1 2 3 4 5 6

, , , , , ,

1 .

f f ff f fx x x x x x x
x x x x x x

a b d h f

∂ ∂ ∂∂ ∂ ∂
∇ ⋅ = + + + + +

∂ ∂ ∂ ∂ ∂ ∂

= − + + − + =

      

 

Note that, ( )1 12.6f a b d h= − + + − + = − , for all ( ), , ,a b d h  values that are 
positive and greater than zero, the system (1) is dissipative 

The exponential rate is: 

( ) 12.6
0 0

d e e
d

ft tV fV V t V V
t

−= ⇒ = =  

By flowing into ( 12.6
0eV − ), the volume element ( 0V ) from the previous equa-

tion is condensed at the time (t). 

4. Hopf Bifurcation 

One of the types of bifurcation that is recognized in mathematics occurs when a 
modest modification to one of the initial conditions causes a qualitative change 
in the behavior of the system at an equilibrium point [7]. We take the Equation 
(3) 

6 5 4 3 212.5 248.6 212.76 1387.12 50.4 436.8 0λ λ λ λ λ λ+ − − + + − =  
The roots of Equation (3) are: 

1 2 3 4 5 622.823, 2.617, 0.574, 0.581, 1.860, 10.94λ λ λ λ λ λ= − = − = − = = =  

Differentiate the Equation (3) and normalize it to zero to find the critical val-
ue. 

5 4 3 26 62.5 994.4 638.28 5548.48 50.4 0,λ λ λ λ λ+ − − + + =  

So, the critical values are 50.4λ = − . 
Derivative at one of the eigenvalues of the equation = −8835774.285 

The critical values 50.4 0.0000057 0
Derivative at the eigenvalue of the equation 8835774.285

−
= = ≠
−

 

4.1. Numerical and Graphical Analysis 

The fifth- and sixth-order Runge-Kutta method is used to solve the system (1). 
Initial values included 

( ) ( ) ( ) ( ) ( ) ( )
[ ]

0 0 0 0 0 01 2 3 4 5 6| , , , , , 3, 2,0.5,1, 2.5,3.5x x x x x x x =  

4.2. Waveform of the New System (1) 

The waveform exhibits aperiodic structure, the primary defining feature of chao-
tic systems. 

( ) ( ) ( ) ( ) ( )1 2 3 4 5, , , ,
t t t t t

x x x x x  and 
( )6 t

x  for system (1) (Figure 1). 
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Figure 1. The waveform of a new system (1). (a): x1 versus time; (b): x2 versus time; (c): x3 versus time; (d): x4 versus time; (e): x5 
versus time; (f): x6 versus time. 

4.3. Phase Portrait of the System (1) 

Figure 2 and Figure 3 in this paragraph depict the chaotic strange attractor for 
the system (1) in ( )1 2 6,, ,x x x  space and the chaotic strange attractor for the 
system (1) in ( )1 6,x x  the plane, respectively. 

Since the orbit in each graph looks to be dense, the new system exhibits a 
chaotic attractor. 
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Figure 2. The system attractor in ( )1 2 3, ,x x x . 

 

 

Figure 3. The system attractor in ( )4 3,x x . 

4.4. Lyapunov Exponent and Lyapunov Dimension 

The average exponential rates of almost divergent trajectories in phase space are 
frequently referred to as the Lyapunov exponent. The new system is regarded as 
chaotic if it has at least one positive Lyapunov exponent. Values of the Lyapunov 
exponent are: 

1 2 3 4 5 60.524, 0.279, 2.987, 5.435, 9.21, 12.889.L L L L L L= = − = = − = − = −  

As a result, the system’s “Kaplan-Yorke dimension” or Lyapunov dimension is 
as follows: 

1 2 3

4

3 3.59466L
L L L

D
L

+ +
= + =  

Figure 4 show that system (1) is very Chaotic. 
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Figure 4. Lyapunov exponent of the system (1). 

5. Adaptive Controller Technique 
5.1. Theoretical Results 

To stabilize a chaotic system (1) use the sufficiency control law generalized with 
an unknown parameter c as follows: 

( )1 2 1 4 1

2 1 2 1 3 5 2

3 3 1 2 3

4 4 1 3 4

5 2 5

6 2 6 6

10

2.6
2

8.4

x x x x u
x cx x x x x u
x x x x u
x x x x u
x x u
x x x u

= − + +

= − − + +

= − + +

= − +

= − +

= − +













                    (8) 

where [ ]T1 2 3 4 5 6, , , , ,u u u u u u  are feedback controllers. 
We now consider the following adaptive control procedures to make sure the 

managed system (8) converges asymptotically to the origin. 
( )1 2 1 4 1 1

2 1 2 1 3 5 2 2

3 3 1 2 3 3

4 4 1 3 4 4

5 2 5 5

6 2 6 6 6

10

2.6
2

8.4

ˆ
u x x x x
u x x x x x x
u x x x x
u x x x x
u x x
u x x

c

x

µ
µ

µ
µ

µ
µ

= − − + −

= − + + − −

= − −

= − + −

= −

= − + −

                  (9) 

where 1 2 3 4 5 6, , , , ,µ µ µ µ µ µ  are constants, ĉ  is an estimator of the parameter c. 
Substituting (9) into (8), we get: 

( )
1 1 1

2 1 2 2

3 3 3

4 4 4

5 5 5

6 6 6

ˆ
x x
x c x x
x x
x x

x

c

x x
x

µ
µ

µ
µ
µ
µ

= −

= − −

= −

= −
= −

= −













                      (10) 

Let the error of estimating parameter is: 
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ˆce c c= −                           (11) 

Using (11), system (10) can be written as: 

1 1 1

2 1 2 2

3 3 3

4 4 4

5 5 5

6 6 6

c

x x
x e x x
x x
x x
x x
x x

µ
µ

µ
µ
µ
µ

= −
= −

= −

= −
= −

= −













                       (12) 

The parameter estimate ĉ  is changed using the Lyapunov method of obtain-
ing the updated law. It is thought that the quadratic Lyapunov function: 

( ) ( )2 2 2 2 2 2
1 2 3 4 5 6

2
1 2 3 4 5 6

1, , , , , , ,
2c cV x x x x x x e x x x x x x e= + + + + + +     (13) 

Which definite, positive-in 7 . 
Also 

ˆce c= −  .                          (14) 

Differentiate V & substituting (11) and (13), we get: 

( )2 2 2 2 2 2
1 1 2 2 3 3 2 4 5 5 6 6 1 2 ˆ .cV x x x x x x e x x cµ µ µ µ µ µ= − − − − − − + −



  

Assume that: 

1 2 7ˆ .cc x x eµ= +                        (15) 

where 7µ  is greater than zero.  
Substitute (15) into V , we get: 

2 2 2 2 2 2
1 1 2 2 3 3 4 4 5 5 6 6 7

2 .cV x x x x x x eµ µ µ µ µ µ µ= − − − − − − −

          (16) 

Which is negative-definite on 7 . 
The outcome is as follows because of Lyapunov stability, Eigenvalues, and the 

Routh array criteria. 
Proposition 1. By adaptive control (9), where 1 2 7ˆ cc x x eµ= +  and 

1 2 3 4 5 7, , , , ,µ µ µ µ µ µ− − −  are positive constants, The chaotic system (8) is stabi-
lized for ( ) 60x ∈ . 

5.2. Simulation and Numerical Results 

The controlled extremely chaotic system (10) was simulated using 

( ) ( ) ( ) ( ) ( ) ( )
[ ]

0 0 0 0 0 01 2 3 4 5 6| , , , , , 4,5, 2,1, 2.5,3x x x x x x x = − −  

[ ]1 2 3 4 5 6, , , , , 10,6,4,7,5,8,3µ µ µ µ µ µ =  and 19ce = . 

The new system (1)’s-controlled state trajectories are displayed in Figure 5. 

6. A Comparison Table before and Following the Control 

Comparison of the Routh array criterion in Table 3 and the new system (1) ei-
genvalues in Table 2 before and after control at the equilibrium point (0, 0, 0, 0, 
0, 0) (Tables 2-5). 
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Table 2. Eigenvalues of a new system (1). 

Equilibrium point Before Control After Control 

( )0,0,0,0,0,0  

1 22.823λ = −  1 10λ = −  

2 2.617λ = −  2 8λ = −  

3 0.574λ = −  3 7λ = −  

4 0.581λ =  4 6λ = −  

5 1.86λ =  5 5λ = −  

6 10.94λ =  6 4λ = −  

 
Table 3. Calculated values of Routh array criteria of a new system (1). 

Equilibrium 
point 

λ Before Control After Control 

( )0,0,0,0,0,0  

6λ  1 −248.6 1387.12 −436.8 1 655 26,644 0 
5λ  12.5 −212.76 50.4 0 40 5620 66,160 0 
4λ  −231.579 1383.088 −436.8 0 514.5 26478.6 67,200 0 
3λ  −138.104 26.822 0 0 3561.411 60635.51 0 0 
2λ  −1338.11 436.8 0 0 6153.194 6,725,092 0 0 
1λ  18.259 0 0 0 3124.56 0 0 0 
0λ  −436.8 0 0 0 67,200 0 0 0 

 
Table 4. Calculated values of Hurwitz stability criteria of a new system (1). 

Equilibrium point Before Before Control After Control 

( )0,0,0,0,0,0  

1 12.5∆ =  1 40∆ =  

2 2894.74= −∆  2 20580∆ =  

3 39977.383=∆  3 75675∆ =  

4 56781.35= −∆  4 300274=∆  

5 79321.51=∆  5 933521=∆  

6 103579.12=∆  6 2513222=∆  

 
Table 5. Calculated values of continued fraction stability criteria of new. 

Equilibrium point Before Control After Control 

( )0,0,0,0,0,0  

1 0.08h =  1 0.025h =  

2 0.053h = −  2 0.077h =  

3 0.809h =  3 0.139h =  

4 0.21h = −  4 0.16h =  

5 21.108h = −  5 6.275h =  

6 0.147h =  6 0.054h =  
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Figure 5. The behavior of state variables 1 2 3 4 5 6, , , , ,x x x x x x  for the controlled (10). 

7. Electronic Circuit Proposed 

This section outlines the electronic circuit design for the 6-D chaotic system (1). 
Resistors, capacitors, multipliers, and operational amplifiers TL034CN are the 
electronic components that make up this device. Using Kirchhoff’s laws [25], we 
may arrive to the following equations for the analogous circuit  

( )

( )

1
1 2 4

2
1 5 2 1 3

3

3 1 2

4
4 1 3

5

2

6

2 6

1 1 2 1

3 2 4 2 5 2

6 3 7 3

8 4 9 4

10 5

11 6 12 6

d 1 1
d

d 1 1 1
d

d 1 1
d

d 1 1
d

d 1
d

d 1 1
d

x
x x x

x
x x x x x

x
x x x

x
x x x

x
x

x
x x

V
V V V

t R C R C

V
V V V V V

t R C R C R C

V
V V V

t R C R C

V
V V V

t R C R C

V
V

t R C

V
V V

t R C R C

= − +

= + − −

= − +

= −

= −

= +

          (17) 

where the output voltages are 
1 2 3 4 5
, , , ,x x x x xV V V V V  and 

6xV , and the fixed mul-
tipliers constant is 10mk v= , the outputs are 

1 61 2
1 2 1 6

, , x xx x
x x x x

m m

V VV V
V V

k k
= =  

dimensionless state variables were used to control voltage and time 

61 611 V , 1 V , 1 s, 00x xV x V x t t tτ′= ⋅ = ⋅ = ⋅ = µ ⋅           (18) 

when we replace (18) in the system (17) equations, we get: 
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( )

( )

1
1 2 4

1 1 2 1

2
1 5 2 1 3

3 2 4 2 5 2

6
3 1 2

6 3 7 3

4
4 1 3

8 4 9 4

5
2

10 5

6
2 6

11 6 12 6

d
d
d
d
d
d
d
d
d
d
d
d

x I Ix x x
t R C R C
x I I Ix x x x x
t R C R C R C
x I Ix x x
t R C R C
x I Ix x x
t R C R C
x I x
t R C
x I Ix x
t R C R C

= − +
′

= + − −
′

= − +
′

= −
′

= −
′

= +
′

            (19) 

Systems (1) and (19) compared side by side produce the following posterior 
conditions:  

1 1 3 2 6 3 8 4 10 5 11 6

12 6 2 1 4 2 5 2 7 3 9 4

, , , , , ,

, 1

I I I I I Ia c b d k I
R C R C R C R C R C R C

I I I I I Ih
R C R C R C R C R C R C

= = = = = =

= = = = = =
     (20) 

with the following parameters: a = 10, b = 2.6, c = 28, d = 2, k = 8.4, l = h = 1, we 
obtained the empirical electrical circuit (19) for system (1). 

8. Results of the Simulation 

This part uses MultiSIM12 to simulate the circuit created to electronically im-
plement the chaotic system (1). Figure 6 shows the chaotic system (1)’s circuit 
diagram. Figure 7 shows the phase diagrams of an electronic circuit and the 
output voltage signals 

1 2 3 4 5
, , , ,x x x x xV V V V V  and 

6xV  versus time. Comparing 
Figure 7 from MultiSIM 12 to Figure 1, Figure 3 and Figure 5, which were ob-
tained from MATLAB, we can see that there is a strong qualitative agreement 
between experimental successes and numerical simulation. 
 

 

Figure 6. A schematic for an electronic circuit created for a chaotic (1.1) system. 
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Figure 7. The right side displays phase portraits of the proposed electronic circuit in A (V1 versus time), B (V2 versus time), C (V3 
versus time), D (V4 versus time), E (V5 versus time), F (V6 versus time) While The output voltage signals are displayed on the left 
as seen in G (V2, V3), H (V2, V3), I (V4, V5), J (V5, V1), K (V1, V6), L (V6, V2). 

9. Conclusion 

In this study, a six-dimensional model of continuous dynamical systems was 
taken. The permissible equilibrium points for the analysis of this system were 
found, and the parameters of stability were evaluated in various ways, which are: 
 Roots of the characteristic equation. 
 Routh stability criterion. 
 The criterion of the stability of Hurwitz. 
 Lyapunov function. 
 Fractional stability criterion. 
 The Lyapunov exponentially was examined and the hexagonal system was 

found to be chaotic. The proposed system dissipation detected Hopf bifurca-
tion, and then the system was regulated using an adaptive control approach. 
Finally, for the system under study, the numerical and morphological results 
before and after the control were compared. 

 Finally, an electric circuit was designed as an application on a hexagonal 
chaotic system, and was analyzed with the same methods of analyzing the 
hexagonal system, as the results obtained showed good agreement that the 
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designed circuit simulated the theoretical model. 
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