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Abstract 
In this paper, we take a three-dimension discrete time model of the interac-
tion of host cells with immune cells and tumor cells fixed point analysis was 
performed to analyze the stability of the system. the necessary conditions have 
been created to control the growth of cancer cells the introduction of chemo-
therapy and the disordered behavior was diagnosed the system by finding ex-
ponent and dimension of Lyapunov in order, and the numerical simulation of 
the system was done using the iterative fixed point method, as well as study 
the dissipative and Neimark-Sacker bifurcation of system. Finally, the tumor 
cells of the system and its disorder were controlled using the adaptive control 
technique, and a stable and regular system was obtained. 
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1. Introduction 

Mathematical modeling is one of the tools that can enhance the understanding 
of physical, chemical and biological phenomena. Physical modeling and chemi-
cal modeling are completely different disciplines compared to biological systems 
modeling. Biological systems are subject to the law of chemistry and physics, yet 
the specific functions of representing living systems are what distinguish biology 
from other sciences. In recent years, the use of integer order and fractional order 
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mathematical modeling has become increasingly popular the fixed-point theory 
has also been used to study the properties of these systems of the study by many 
researchers [1] [2] [3] [4] [5]. 

Mathematical models representing the number of cancer cells and their inte-
raction with Immune cells are generally a language that explains complex phe-
nomena; and for more than a century, a lot of resources, whether economic or 
human, have been expended to fight cancer. The increase in the incidence of 
cancer among people has proven to be an important area of interdisciplinary re-
search that requires expert medical and biological researchers and recent studies 
of cancer. 

I realized the importance and support of mathematics and computer science 
in treating cancer and the immune system is the body’s first line of defense 
against parasites, infections, etc. Although studies of tumor immune dynamics 
date back to the 1890s, questions about tumor growth and its interaction with 
immune cells remain today. And diagnosing the tumor early is the most impor-
tant stage, as the chances of detecting the tumor in the early stages are very less 
It plays an important role in the development of the tumor immune model and 
has a vital role in the analysis of parameters that affect the success or failure of 
the immune response against the tumor [6] [7] [8]. 

The study of tumor model immune reaction dynamics is complex but has 
gained great interest and attracted many researchers to research in this field. The 
dynamic system may undergo changes in the stability zone at various parame-
ters. These changes in the system in the initial state are considered chaotic beha-
vior. Chaotic behavior is not always unexpected and in certain cases, chaos can 
be predicted the chaos in the tumor can occur it often indicates that the immune 
reaction model leads to long-term tumor relapse and interpretation of the dis-
order of tumor growth is the lack of response to treatment. Thus, chaotic beha-
vior somehow provides knowledge of some necessary controls that can be im-
plemented for development in the fight against cancer [9]. 

Two-dimensional system is dissipative if det 1fD ≤ , where fD  is the Jaco-
bi matrix of f at p [10].,A dissipative map satisfies det 1fD b≤ < , so that the 
two Lyapunov numbers of each trajectory satisfy 1 2L L b≤  [10]. 

In this paper, the stability of a three-dimensional kinetic system representing 
the interaction of host cells with cancer cells and immune cells [11] was studied 
and analyzed, and system chaos was diagnosed. Thus, distributed as follows: 
system description in Section 2 and the fixed points existence in Section 3, sta-
bility analysis (characteristic equation roots test, Jury table, Lyapunov function 
test) [12] [13] [14] [15] in Section 4, dissipativity [16] in Section 5, numerical 
analysis and dynamic behavior of system [17], and Neimark-Sacker [18] in Sec-
tion 6, Lyapunov exponent in Section 7, and adaptive control technique [15] in 
Section 8. 

2. System Description 

The nonlinear dynamical system that is three-dimensional and discrete time 

https://doi.org/10.4236/oalib.1109577


M. M. Aziz, S. A. Mohammed 
 

 

DOI: 10.4236/oalib.1109577 3 Open Access Library Journal 
 

represent Host-Immune-Tumor Cells Interaction Model given as follows:  

( )
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t t t t t t t
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= + − −
+

= + − −

= + − − −
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                (1) 

where: 

tx : Host cell population represent. 

ty : Effector Immune cells represent. 

tz : Tumor cells represent. 
r: growth rate host cell. 

1β : rate of tumor cells killing host cells. 
ρ : rate growth effector immune cells. 

2β : Tumor cells inhibition rate of effector immune cells. 
µ : rate of effector cells natural death. 

1r : tumor cells growth rate. 

3β : rate host cells tumor killing. 

4β : rate tumor killing by effector immune cells. 
When 0.25r = , 1 0.85β = , 0.605ρ = , 2 0.02β = , 0.11µ = , 1 0.2r = , 

3 0.1β = , 4 0.2β = . 

3. The Fixed Points Existence 

The following non-negative points are the fixed points of System (1), obtained 
by solving the following equations: 
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             (2) 

( )0 0,0,0p =  

( )1 1,0,0p =  

( )2 0,0,1p =  
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1 2
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4 2 2
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4. Stability Analysis 

First, the Jacobi matrix of System (1) must be found before analyzing its stability 

( )

11 13

22 23, ,

31 32 33

0
0x y z

a a
J a a

a a a

 
 =  
  

                     (3) 

When: 

( )11 11 1
1

za r x rx
z

β= + − − −
+

 

( )13 1 1 21 1
x xza

z z
β β= − +

+ +
 

22 21a z zρ β µ= + − −  

23 1a y yρ β= −  

3
31 1
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32 4a zβ= −  
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β β
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a) Characteristic Equation Roots Test 
Proposition (1): let  

( ) 3 2
3 2 1 0 0c a a a aλ λ λ λ= + + + =                  (4) 

Is the characteristic equation of the system, the cases following are true: 
1) Sink fixed point if all 1iλ < , 1,2,3i =  and is asymptotically stable. 
2) Saddle fixed point if at least one of 1iλ > , 1,2,3i =  and is unstable.  
3) Source if all 1iλ >  (i.e., the fixed point unstable). 
Now, to check the system’s fixed points stability by characteristic equation 

roots substitute the fixed points into the Jacobi matrix we get characteristic po-
lynomials are the form:  

( ) ( ) ( )3 2 det 0tr J M J Jλ λ λ− + − =∑               (5) 

Were 

( ) 1 2 3tr J λ λ λ= + +  

( ) 1 2 1 3 2 3M J λ λ λ λ λ λ= + +∑  

( ) 1 2 3det J λ λ λ=  

To test the stability of the system, we substituted the fixed points in the Jacobi 
matrix.  

Now we check stability of point 3p , substitute the point  
( )3 0,0.811966,0.188034p =  in to the Jacobi matrix weget:  

( )0,0.811966,0.188034

1.15468 0 0
0 0.99999 0.4750

0.00158 0.37607 0.96239
J

 
 =  
 − − 
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Find (Det(λI-J) = 0) we get: 
3 23.1171 3.24718 1.13302 0λ λ λ− + − =  

From Equation (5) then 

( ) ( ) ( )3.2473.1171, det 1.133018, 2r J Jt M J= =⇒ =∑  

We will get the eigenvalues: 

1 2 31.1761, , 0.9705 0.1466iλ λ λ= = ±  

Then from Proposition (1) we get  

1 1.1761 1λ = >  and 2 3, 0.98150 1λ λ = <  

Then 3p  is called saddle point and is unstable.  
Now we check stability of point 4p , substitute the point  

( )4 0.46187,0.61758,0.188034p =  in to the Jacobi matrix we get: 

( )0.46187,0.61758,0.188034

0.88453 0 0.27815
0 0.99999 0.36128

0.15827 0.03761 0.96855
J

 
 =  
 − − 

 

Find (Det(λI-J) = 0) we get: 
3 22.853078 2.718973 0.864326 0λ λ λ− + − =  

From Equation (5) then 

( ) ( ) ( )2.7182.853078, det 0.8643973, 26r Jt JJ M= =⇒ =∑  

We will get the eigenvalues: 

1 2 30.8630, , 0.9950 0.1969iλ λ λ= = ±  

Then from Proposition (1) we get 

1 0.6830 1λ = <  and 2 3, 1.00073 1λ λ = >  

Then 4p is called saddle point and is unstable. 
Similarly, we test the point 0 1 2, ,p p p  and we get all fixed points are unstable, 

so System (1) is unstable. 
Table 1 summarizes the stability results for all fixed points of System (1) using 

the roots of the characteristic equation. 
b) Jury Test 
Proposition (2): let  

( ) 3 2
3 2 1 0 0C a a a aλ λ λ λ= + + + =  

Characteristic equation from Jacobi matrix for System (1) and Table 2 is the 
Jury’s table defined as following: 

Such that  

0 n k
k

n k

a a
b

a a
−= , 3n = , 0,1,2k =  

0 1

1

n k
k

n k

b b
c

b b
− −

−

= , 3n = , 0,1,2k =  
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Table 1. Stability of the system using the roots characteristic test. 

Status Eigenvalues Fixed Points 

unstable 
1 1.2λ = , 

2 0.89λ = , 

3 1.25λ =  

( )0 0,0,0p =  

unstable 
1 0.75λ = , 

2 1.1λ = , 

1 0.89λ =  

( )1 1,0,0p =  

unstable 
1 0.89λ = , 

2 1.25λ = , 

3 1λ =  

( )2 0,0,1p =  

unstable 
1 1.1761λ = , 

2 3, 0.98150λ λ =  
( )3 0,0.811966,0.188034p =  

unstable 
1 0.8630λ = , 

1 3, 1.00073λ λ =  
( )4 0.461870,0.617581,0.188034p =  

 
Table 2. Jury table. 

3λ  2λ  1λ  0λ  

a3 a2 a1 a0 

a0 a1 a2 a3 

 b2 b1 b0 

 b0 b1 b2 

  c1 c0 

  c0 c1 

 
The fixed points are said to be stable if they satisfy the following conditions: 
1) ( )1 0C > . 
2) ( ) ( )11 0n C− − > . 
3) 0 1nb b −< . 
4) 0 2nc c −< . 
Otherwise, conditions, the fixed points are unstable. 
We check the stability of point 0p  from the equation following we got by 

substituting ( )0 0,0,0p =  into the Jacobi matrix 
3 23.34 3.6805 1.335 0λ λ λ− + − =  

We form Table 3. 
From Proposition (2) Condition (3) is not achieved therefore the point 0p  is 

unstable. 
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Table 3. Jury table. 

3λ  2λ  1λ  0λ  

1 −3.34 3.6805 −1.335 

−1.335 3.6805 −3.34 1 

 0.7784 −1.5734674 0.782225 

 0.782225 −1.5734674 0.7784 

  −6.018515 × 10−3 5.969391 

  5.969391 −6.018515 × 10−3 

 
and in the same way test all of the fixed points 1 2 3 4, , ,p p p p  we get all points 
are unstable, so System (1) is unstable.  

c) Lyapunov Function Test 
Proposition (3): Let the Lyapunov function equation of System (1) as follow-

ing: ( )
2 2 2

, , 0
t t t t t tx y zV x y z= + + >  When , , 0t t tx y z >  by using ΔV we get: 

( ) ( )2 2
1 1 1t t t t t tV V x y z V x y z+ + +∆ = + + − + +              (6) 

Then called is stable fixed point if they are 0V∆ ≤ , otherwise the point is 
unstable. 

We check stability of System (1) by Lyapunov function method 
Now test the stability of point 3p  and 4p  substitute in Equation (6) we get: 

( )

( )( ) (

)

( )

2

2

0 0.1880340 0.25 0 1 0 0.85 0.811966 0.605 0.811966
1 0.188034

0.188034 0.02 0.811966 0.188034 0.11 0.811966

0 0.1880340.188034 0.2 0.188034 1 0.188034 0

0,0.811966,0.188034

.1
1 0.188034

0

V∆

∗ = + − − + + ∗ + 

∗ − ∗ ∗ − ∗

∗+ + ∗ − −



+







−



2
2 2 2.2 0.188034*0.811966 0 0.811966 0.188034

1.2389290 0

∗ − −




−


= >

 

( )

( )

(

)

2

2

0.461870 0.1880340.461870 0.25 0.461870 1 0.461870 0.85
1 0.188034

0.617581 0.605 0.617581 0.188034 0.02 0.617581 0.188034

0.11 0.617581 0.188034 0.2 0.188034

0.461870,0.617581,0.18803

1 0

4

.

V∆

 ∗ = + ∗ − −  + 
+ + ∗ ∗ − ∗ ∗

− ∗ + + ∗ +( )
2

2

2 2 3

188034

0.461870 0.1880340.1 0.2 0.188034 0.617581 0.461870
1 0.188034

0.617581 0.188034 5.350775083 10 0−





∗ − − ∗ ∗ −+ 
− − = ∗ >

 

Then 3p  and 4p  are unstable points. 
In the same way, we tested the rest of the fixed points and got an unstable sys-
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tem. 

5. Dissipativity 

The Jacobi matrix of the point 1p  is:  

0.75 0 0.85
0 0.89 0
0 0 1.1

J
− 

 =  
  

 

when calculating its determinant, we get: 

( )1,0,0det 0.73425 1J = <  

Then is dissipative, and similarly we calculate the rest of the fixed points and 
we get a dissipative system. 

6. Numerical Analysis and Dynamic Behavior  

a) Fixed point iteration method  
In this section Fixed point iteration method was used to find the solution of 

System (1) with less error (0.9) written program in MABLE gives a result with (x, 
y, z) = (0.29315, 0.68038, 0.12214).  

b) Time Behavior of System (1) 
A time series of System (1) was generated for 1000 iterations with System (1) 

with the values we got from the fixed point iteration method we get Figure 1: 
[(1): x(t) and time(t), (2): y(t) and time(t), (3): z(t) and time(t)]. 

We get phase space of the system in Figure 2. 
c) Neimark-Sacker Bifurcation 
For a Neimark-Sacker bifurcation to occur the eigenvalues ( 1,2,3λ ) must satisfy 

the following conditions:  
1) At the bifurcation point the true eigenvalue is not equal to ±1.  
2) The absolute value of the eigenvalue equals 1. 
The bifurcation from the eigenvalues at point 4p  was obtained from the bi-

furcation taking into account the above from the parameters are 1 0.8630λ =
and 2,3 0.9950 0.1969iλ = ±  ( 1,2 1λ = ). 

Thus, the system undergoes Neimark-Sacker bifurcation at r = 0.25 in the 
fixed point 4p  where all the conditions for a Neimark-Sacker bifurcation are 
satisfied. Figure 3 shows us the bifurcation diagram. 

7. Lyapunov Exponent 

In this part of the article, we will use the Lyapunov exponential test, to study the 
chaos of System (1) and if at least one value of the Lyapunov exponent is greater 
than zero, then this means that the system is chaotic, and the values we obtained 
are as follows: 1 1.250000L = , 2 0.890000L = , 3 2.55334L = − . 

We use the following basic formula to calculate the Lyapunov dimension  
1 2

3

1.250000 0.8900002 2 2.8381179
2.55334L

L LD
L
+ +

= + = + =
−
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Figure 1. Time series of System (1). 
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Figure 2. Time trajectories of the system variables , ,t t tx y z . 

 

 
Figure 3. Bifurcation diagram. 
 

Thus, System (1) is highly chaotic and Figure 4 shows it. 

8. Adaptive Control Technique 

We will use adaptive control technology to manipulate the chaos of the chaotic 
System (1) and design a law for the adaptive control with the unknown parame-
ter r, we get the following system after adding the controllers to System (1): 
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Figure 4. Lyapunov exponent. 
 

( )
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x z
z z r z z z y u
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ρ β µ

β β

+

+

+

= + − − +
+

= + − − +
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             (7) 

As they 1 2,u u  are the control units for air-conditioned feeding and defined 
as follows:  

( )1 1ˆ 1
1

t t
t t t t

t

x z
u x rx x Mx

z
β= − − − + −

+
 

1 2t t t t t t tu y y z y z y Myρ β µ= − − + + −                 (8) 

( )1 1 3 41
1

t t
t t t t t t

t

x z
u z r z z z y Mz

x
β β= − − − + + −

+
 

Since 1 2,M M  they are positive numbers and the parameter r̂  is an estima-
tion parameter for parameter r and with a substitution (8) in (7) 

We get:  

( )1 1

1 2

1 3

1t r t t t

t t

t t

x e x x M x
y M y
z M z

+

+

+

= + − −

= −

= −

                   (10) 

Since ( )ˆre r r= −  is the error for the estimating parameter and 1 0.3M = , 

2 0.6M = , 3 0.2M =  and ˆ 0.24r =  is the [10]. estimated parameter of r. 
Fixed point stability analysis of the System (10). 
a) Characteristic equation roots 
Before analyzing the stability of the System (10), we find the Jacobi matrix of 

the system: 
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( )
( ) 1

2

3

1 0 0
, , 0 0

0 0

r t r t

t t t

e x e x M
J x y z M

M

 − − −
 = − 
 − 

        (11) 

To test the point 0p , we substitute the fixed point ( )0 0,0,0p =  in Equation 
(11) we get: 

( )0,0,0

0.3 0 0
0 0.6 0
0 0 0.2

J
− 
 = − 
 − 

 

And by finding the determinant (Det(λI-J) = 0), we get: 
3 21.1 0.36 0.036 0λ λ λ+ + + =                   (12) 

( ) 1.1tr J = − , ( ) 0.36M J =∑ , ( )det 0.036J = −  

We will get the eigenvalues: 

1 0.6λ = − , 2 0.3λ = − , 3 0.2λ = −  

According to Proposition (1), we obtain: 

1 0.6λ = , 2 0.3λ = , 3 0.2λ = , Therefore, the point 0p  is stable. 
The same method was tested for the rest of the points, and the results of the 

test points obtained are shown in Table 4 which turned out to be stable points, 
that is System (10) is stable. 

b) Jury test 
To test the point 0p , from the coefficients of the characteristic Equation (12) 

for the point, we get:  

0 1 2 30.036, 0.36, 1.1, 1a a a a= = = =  

Accordingly, we form Table 5, which represents a Jury’s table for point 0p , 
as follows: 

From Table 5, it is clear that all the conditions of the Jury test for point 0p  
are fulfilled (Proposition (2)) 0p  is stable. 

In the same way, the rest of the fixed points were tested, which turned out to 
be stable as well the System (10) is a stable system. 

c) Lyapunov function test 
 
Table 4. Results of the test fixed points using the test for the roots of the characteristic 
equation. 

state eigenvalues Fixed point 

stable 1 2 30.6, 0.3, 0.2λ λ λ= = =  ( )0 0,0,0p =  

stable 1 2 30.6, 0.2, 0.31λ λ λ= = =  ( )1 1,0,0p =  

stable 1 2 30.6, 0.3, 0.2λ λ λ= = =  ( )3 0,0,1p =  

stable 1 2 30.6, 0.3, 0.2λ λ λ= = =  ( )4 0,0.811966,0.188034p =  

stable 1 2 30.2, 0.6, 0.2992λ λ λ= = =  ( )5 0.461870,0.617581,0.188034p =  
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Here we will analyze the stability of the System (10) using the Lyapunov func-
tion test, now test for the fixed point 1p  based on Proposition (3) we get: 

( ) ( ) ( )( ) ( )( ) ( )( )2 2 2 2
1 0,0,0 0.01 1 1 0.3 1 0.6 0 0.2 0 1 0.91 0Vp∆ = − − + − + − − = − <  

Then the fixed point 1p  is stable. In the same way, the stability of the rest of 
the fixed points was tested, and we obtained that all the fixed points are stable, 
and this indicates that the system is stable. 

d) Lyapunov Exponent of system 
We diagnose the chaos in the controlled System (10) using the adaptive con-

trol technique of the Lyapunov exponent of System (10) and the following values 
were obtained: 

1 0.2L = − , 2 0.29L = − , 3 0.6L = −  

Since all the obtained values are negative, this indicates that System (10) is 
regular, and Figure 5 shows us the behavior of the controlled system. 
 
Table 5. Jury table of 0p . 

3λ  2λ  1λ  0λ  

1 1.1 0.36 0.036 

0.036 0.36 1.1 1 

 −0.3204 −1.098704 −0.998704 

 −0.998704 −1.098704 −0.3204 

  0.745255 0.89475 

  0.89475 0.745255 

 

 
Figure 5. Lyapunov exponent after adaptive control. 
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9. Conclusion 

The separate three-dimensional immune tumor cell model that was dealt with in 
this research, and after finding the fixed points of the system, five fixed points 
were obtained, all of which are real points, so that the system is self-attracting, 
and the stability of the system was analyzed using (the characteristic equation 
test and Jury’s table, and the Lyapunov function test), and we got an unstable 
system for all fixed points. The chaos of the system was diagnosed and the Lya-
punov exponent was found where two values were found, which two positives 
are 1.250000 and 0.890000, and a third negative is −2.55334, and thus the system 
was very chaotic. As well as finding the Neimark-sacker bifurcation of the sys-
tem at the complex eigenvalues resulting from the substitution of the fixed point 

4p  in the Jacobi matrix, the application of adaptive control technology on the 
system, thus controlling the system and obtaining a new, stable and regular sys-
tem with Lyapunov exponent all are negative. 
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