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Abstract 
There is no gainsaying that the field of differential equations opened up in 
numerable fields of research which hitherto remains yet to be fully explored 
in spite of the remarkable achievements made over the centuries. In this 
study, the subject is given renewed interest with a view to addressing a ques-
tion that is considered germane to the field of differential equations (DEs). 
Over the centuries, the field of ordinary differential equations (ODEs) has re-
ceived varied interest from mathematicians across the globe. One problem 
that has remained unresolved hitherto is a deductive proof of the solution to 
linear homogeneous differential equations of order 2, 3 or more. Solutions to 
this set of equations usually come in form of intuitive assumptions such as let 
y = erx or y = xr, which is later confirmed by direct substitution. This study 
aims to provide a deductive solution leading to the proof that y = erx and y = 
xr are not just intuitive assumptions but are indeed accurate in every sense of 
the word. 
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1. Introduction 

Generally, equations are viewed as mathematical statements that relate one or 
more physical quantities usually referred to as variables. These variables are so 
called because they undergo changes. Equations that describe the relationship 
between variables are known as functions. An example of functions is given by 
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the equation below:  
2y x=                                (1) 

In Equation (1), x and y are variables. Functions describing the rates of change 
of variables are called derivatives. Equation (2) below is a function which is also 
a derivative  

d 2
d
y x
x
=                              (2) 

In Equation (2), d
d
y
x

 is the derivative of y with respect to x. Differential  

equations are those which relate one on more functions and their derivatives. As 
noted earlier, the functions represent physical quantities that are subject to 
change while the derivatives represent their rates of change.  

Differential equations occur very commonly in different phenomena, hence 
their role in many disciplines including such fields as engineering, physical and 
chemical sciences, economics and biology [1]. An example of differential equa-
tions is given by the equation below.  

d 2 3
d
y y x
x
+ =                          (3) 

Equations of the kind above first came into existence through the efforts of 
Isaac Newton and Gottfried Leibniz who independently pioneered calculus 
around the 17th century. Others who made significant contributions, to the de-
velopment of differential equations in the 18th century included Jacob Bernoulli, 
Jean Le Rond D’Alembert, Leonard Euler, Daniel Bernoulli, Joseph-Louis Le-
grange, and Laplace. From the 19th century through the 20th and up to the 21st 
century, outstanding achievements were made by quite a lot of great mathemati-
cians prominent among them were Fourier Maxwell and Pioneare [2].  

Reflecting retrospectively on the development of differential equations actual-
ly brings to mind the temptation to think that the field of differential equations 
has been stretched to its elastic limit. In other words, it seems quite likely that 
the field of differential equations has been exhausted of new topics to explore, 
leaving nothing to be investigated any further. This probably accounts for why 
research efforts are grossly directed toward their applications. 

Grappling with the foregoing conception, curiosity drives the mind into re-
trospection of some great works of ancient pioneers of the field of differential 
equations. As a teacher of differential equations, personal experience in the 
teaching of second order linear homogeneous differential equations, pioneered 
by Leonhard Euler [3], always points to students’ curiosity to understand why 
Euler’s assumption of the exponential function 

erxy =                              (4) 

fits well into the solution of the homogeneous linear differential equation of or-
der 2, i.e.  

0y py q′′ ′+ + =                         (5) 
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with constant coefficients p and q. Both researchers and students often desire to 
explore the possibility of solving the Equation (3) above analytically to prove 
that erxy =  is the resultant solution rather than just intuitively assuming it as 
the solution and substituting it in order to prove its accuracy. Indeed, the view 
that erxy =  is an intuitive guess is widely shared by many mathematicians even 
though there has not been any better way of solving the problem [4]. For exam-
ple, Nagy noted that the solution to Equation (3) is obtained by trial and error 
[4]. According to Nagy, erxy =  is first assumed to be the solution to equation 
(3) because the exponential cancels out of the equation leaving only a condition 
for “r”. Frankly, the fact that erxy =  proves to generates the solution to equa-
tion (3) only by trial and error has lead us to investigating these linear systems in 
order to determine their stability and consistency of their solutions.  

Again, while studying the Euler linear homogeneous equation with variable 
coefficients  

2 0x y pxy qy′′ ′+ + =                         (6) 

students are faced with similar questions as with the Equation (3). They often 
want to understand why the Euler substitution 

ry x=                              (7) 

fits well as the solution to the equation (6). Nagy also pointed that Equation (7) 
is obtained by assumption [4]. According to Nagy [4], the solution ery =  is 
being sought for because it has the property that 

1er ry r xy rx−′ ′= → =  and that 

( ) ( )2 21 1r ry r x x y r r x−′′ ′′= − → = − . 

This clearly demonstrates that Euler’s solution were obtained by intuition ra-
ther than deduction. Any curious minded mathematician would want to derive 
the functions in Equations (4) and (7) in order to make assurance doubly sure. 
What can be made of this fact is that there does not seem to be adequate under-
standing of the deductive processes leading to the solutions to Equations (4) and 
(7). Indeed, this lack of adequate understanding must have lead Euler into the 
conclusion that the equation 

2 0y pxy qx y′′ ′+ + =                         (8) 

has no solution in terms of elementary functions. In addition, the area of series 
solutions to homogeneous linear differential equations of order 2 with variable 
coefficients came into existence due to the perception that such equations can-
not be solved in terms of known elementary functions or at least in terms of 
integral functions besides the Euler equation [5]. The general form of homoge-
neous linear ordinary differential equation of order 2 is given by  

( ) ( ) 0y p x y q x y′′ ′+ + =                      (9) 

The conception that Equation (9) has no known solutions in terms of ele-
mentary functions or in terms integral functions besides the Euler equations has 
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been held for centuries and perhaps this is the case because there has not been 
any better away to handle Equation (9). Even the series solutions are usually ob-
tained by assumption [4] [5].  

( )00 – n
nny c x x∞

−
= ∑                       (10) 

Note here that the intention is not to undermine assumption as an essential 
procedure in mathematical analysis. The point projected here is that assump-
tions actually make mathematics more presumptive and less deductive. It is im-
portant, therefore, to try the deductive procedures as well in order to provide 
sufficient ground for acceptance. It becomes pertinent to consider the possibility 
of proving the assumption in Equation (10) by some deductive method.  

In the light of the foregoing, this paper presents a study that sets out to 
achieve the following objectives.  

1) To prove that erxy =  is not just an intuitive assumption by some analyti-
cal derivation of it; 

2) To prove that ery =  is not just another ansatz but one that can be derived 
analytically; and 

3) To prove that ( )00 – n
nny c x x∞

−
= ∑  is equally not just a guess but an ana-

lytically proven derivation, and  
4) To show by these proofs that all linear homogeneous equations of order 2 

actually derive the solutions by the same procedure irrespective of whether the 
coefficients are constants or variables.  

2. Theoretical Framework  

The framework upon which this study is based is quite simple, familiar and easy 
enough to comprehend. If we reexamined closely the actual meanings of the de-
rivatives of the second order, third order, etc. then we might be well on the way 
to determining deductively the derivations of Equations (4), (7), (8) and (9) re-
spectively.  

Recall that  

2

2

3 2

3 2

d
d
d d d

d dd

d d d d d d etc.
d d d dd d

xy
x

y xy
x xx

y y yy
x x x xx x

′ =

 ′′ = =  
 
    ′′′ = = =     

   

 

applying this logically, we can generate the proofs of statements (i), (ii), (iii) and 
(iv). The proofs will now be divided into the four sections following afterward. 

2.1. Solution to the Second Order Linear Homogeneous  
Differential Equations with Constant Coefficient  

Consider the second order linear homogeneous Equation (4) below 

0y py qy′′ ′+ + =                            (5) 
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Using actual notations we have  
2

2
d d 0

dd
y yp qy

xx
+ + =  

Reinterpreting the notations, we get 

d d d 0
d d d

y yp qy
x x x
  + + = 
 

 

Factorizing out d
d
y
x

 give us the following  

d d 0
d d
y p qy
x x
 + + = 
 

 

It must be understood here that the expression in parenthesis is a differential 
operator with a constant. Thus we can denote it by D i.e.  

d
d

p D
x
+ =                           (11) 

The equation above becomes  

d 0
d

D qy
x

+ =                          (12) 

From (12) 
d
d
y D qy
x

= −

 
d   
d
y q y
x D

−
→ =

 
1   d dqy x
y D

−
→ =  

Integrating both sides we get  
1 d dqx x
y D

−
=∫ ∫

   ln qy x
D
−

→ =

 e
qx
Dy
−

=  

If we let  
qr

D
−

= , then we have 

erxy =                                 (4) 

As the solution to the Equation (5) we can equally determine the values of D 
and r by going back to Equation (11). Multiplying Equation (11) by y gives  

d
d

p y Dy
x

 + = 
 

 

d   
d
y py Dy py
x

→ + = −
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d   
d
y Dy py
x

→ = −

 

( )d   
d
y D p y
x

→ = −  

But from (12) 

d
d
y q y
x D

−
=  

Therefore it follows that by substitution 

( )q y D p y
D
−

= −

 
   q D p

D
−

→ = −

 

2    D pD q→ − = −

 

2     0D pD q∴ − + =  

Equation (13) is called the characteristics equation of the differential operator 
D.  

From (13) 

( ) ( )2 4
2

p p q
D

− − ± − −
=

 
2 4

  
2

P P q
D

± −
∴ =  

Thus D has two values D, and D2 which implies also that r has two values 

1 2
1 2

andq qr r
D D
− −

= =  

Therefore, the two linearly independent solutions of the Equation (5) are  
1 2

1 2ane d er x r xy y ==  

1 2
1 2    e er x r xy C C→ = +                            (15) 

We can equally find the characteristic equation in terms of r – in fact Euler [5] 
already demonstrated that even though he was not quite aware that r depends on 
the differential operator D.  

From (4),  

erxy = , erxy r′ =  and  

2erxy r′′ =  which by substitution gives  

2e e e 0ra rx rxr pr q+ + =   

( )2  e 0rxr pr q+→ + =  

2    0r pr q∴ + + =                              (16) 

From Equation (16),  
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2 4
2

P P q
r

− ± −
=                         (17) 

Notice here that the values of r and D are different. They are, however, related 
by the formula 

qr
D
−

=  

Another method we can use to find the solution to Equation (5) is by facto-
rizing y out. See the procedure below.  

2

2
d d 0

dd
y yp qy

xx
+ + =  

Factoring out y gives us  
2

2
d d 0

dd
p q y

xx
 

+ + = 
 

 

Note here that 
2

2
d d d

d dd x xx
 =  
 

, thus if we let d
d

r
x

=  then  

d d d 0
d d d

p q y
x x x

   + =    
 

By substituting  

( ) 0   r r pr q y⋅ + + =→

 ( )2 0   r pr q y→ + + =  

Since 0y ≠ , it follows that  
2 0r pr q+ + =                          (16) 

This is the same characteristics equation that was obtained earlier, but  

d
d

r
x
=  

Multiplying both side by y, we get  

d
d
y ry
x
=  

d   dy r x
y
=→  

d   dy r x
y
=→ ∫ ∫  

    ln y rx∴ =   

e   rxy =→                                 (4) 

Notice here too that the second method is much easier than the first  

2.2. Solution to the Euler Second Order Linear Homogeneous  
Equation with Variable Coefficients  

Given the Euler equation  
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2 0x px qy y y′+ +′ =′                       (6) 

using actual notations, we have  
2

2
2

d d 0
dd

y yx px qy
xx

+ + =  

dividing through by x2,we get  

2

d d 1 d 1 0
d d d

y yp q y
x x x x x
  + + = 
 

 

Factoring out d
d
y
x

 as before, we get 

2
d d 0
d d
y P q y
x x x x
 + + = 
 

 

Now let  

( )d
d

p R x
x x
+ =                        (17) 

Then by substitution, we get  

( ) 2

d 0
d
y qR x y
x x

+ =  

( ) 2

d
d
y qR x y
x x

−
→ =  

( ) 2

d 1
d
y q y
x R x x

−
→ = ×                           (18) 

From (17), multiplying by y gives  

( )d
d
y p y R x y
x x
+ =  

( )d
d
y pR x y y
x x

→ = −  

By substitution, we get  

( )
( ) 2

p qR x y y y
x R x e

−
− =  

( ) ( )22x R x px R x q→ − = −        

( ) ( )22 0x R x pxR x q∴ − + =                    (19) 

Equation (19) is the characteristic equation of the differential operator R(x).  
From Equation (19),  

( )
( ) ( )

( )

2

2

2

2

2 2

2

2

2

2

2

4
2

4
2

4
2

4

2

px px x q
x

px p x q
x

px x p q
x

x q

x

x

p p

x

R
− ± − −

± −
=

± −
=

± −
=

= −
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( ) ( )21 4
2

R x p p q
x

∴ = ± −                         (20) 

By substituting (20) in (18), we get  

( )2 2

d
1d 4

2

y qy
x p p q x

x
−

−
=

±
 

( )2

d
d 4

2

y qy
xx p p q

−
→ =

± −
 

2

d 1 2 d

4

y q x
y x p p q

−
→ = ×

± −
 

Integrating both sides gives  

2

d 2 1 d
4

y q x
y xp p q

−
=

± −
∫ ∫  

2

2ln ln
4

qy x
p p q

−
→ =

± −
 

Let  

2

2

4

qr
p p q

−
=

± −
 

Then  

ln lny r x=  

ln ln ry x→ =  
ry x∴ =                                (7) 

Another method of doing this is to factor out y instead of d
d
y
x

. Let us consider 

this method from (6), we get  
2

2
2

d d 0
dd

y yx px qy
xx

+ + =  

Factoring out y gives  
2

2
2

d d 0
dd

x px q y
xx

 
+ + = 

 
  

Let 

( )d
d

R x
x
=  

Then  

( ) ( ){ }22 0x R x pxR x q y+ + =    

Since y ≠ 0, it follows that  

( ) ( )22x R x pxR x q+  +                      (21) 
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From 

( )
( ) ( )2 2

2

2 2 2

2

2

2

2

2

4
2

4
2

4
2

4
2

41
2

px px x q
x

px p x x q
x

px x p q
x

p p q
x

px x p

R

q

x

x

− ± −
→

− ± −

− ± −

− ± −

 − ± −
 =

=



=



=



=



 

But 

( )d
d

R x
x
=  

Multiplying both sides by y gives  

( )d
d
y
x

R x y=  

( )d dy xR x
y

→ =  

( )d dy
y

xR x→ =∫ ∫  

2 41ln d
2

px x p q
y x

x

 − ± −
 =
 
 

∫  

2

2

4 1ln d
2

4
ln

2

px x p q
y x

x
px x p q

x

− ± −
→ =

− ± −
=

∫
 

Let 
2 4

2
px x p q

r
− ± −

= , then  

ln lny r x=  
ry x=  

It is already common knowledge that  
ry rx= ,  

and  

( ) –2–1 ry r r x′′ =  

which by substitution leads to 

( )2 2 11 0r r rx r r x pxrx qx− −− + + =  
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( )1 0r r rr r x prx qx→ − + + =  

( )2 0rr r pr q x→ − + + =   

( )( )2 1 0rr p r q x→ + − + =  

( )2 1 0r p r q+ − + =                           (22) 

Note here that Equation (22) is a very familiar characteristics equation and 
from it  

( ) ( )21 1 4
2

p p q
r

− − ± − −
=  

This gives a different value of r when compared to the previous value.  

3. Solution to the Equation ′′ ′ 2 0y pxy qx y+ + =  

Euler’s prediction that Equation (7) would be an appropriate solution to Equa-
tion (6) was in indeed commendable achievement. However, it seemed likely 
that Euler did not envisage the possibility the Equation (8) 

2 0y pxy qx y′′ ′+ + =                         (8) 

could equally have a solution in terms of elementary functions. While we cannot 
claim to have found a solution for Equation (8) with uttermost certainty, it is 
only fitting to demonstrate at this point that Equation (8) could possibly have a 
solution in terms of elementary functions. Rewriting Equation (8) with the usual 
notations, we have the following  

2

2
2 0d d

dd
y y qxpx

xx
y+ + =  

2d d d
d d d

0qx yy ypx
x x x
 → + + 


=


 

2 0d d
d d
y px
x x

qx y → + + 


=


 

Let  

( )d
d

px S x
x
+ =  

Then by substitution, we get  

( ) 2d 0
d
y S x qx
x

y+ =  

( )
2d

d
y
x S x

qx y−
→ =                             (23) 

From (23), we have  

( )
2d dy qx x

y S x
−

=  

Integrating both sides, we get  
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( )
2d dy qx x

y S x
−

=∫ ∫  

( )
2

ln dqxy x
S x
−

= ∫  

( )
2

d
e

qx x
S xy
−
∫

=                              (24) 

Recall also that  

( )d
d

pxy x
x

y S y+ =  

( )d
d
y S x y px
x

y→ = −  

( )( )d
d
y S
x

pxx y=∴ −                          (25) 

From both (23) and (25), we have  

( )( ) ( )
2

px y qx yS x
S x
−

=−  

( ) ( )
2

p xx
x

x qS
S

=
−

→ −  

( ) ( )2 2pxS x S x qx=→ − −    

( ) ( )2 2 0pS x S x qxx→ − +  =                      (26) 

Equation (26) gives us the value of S(x) to establish the solution to Equation (8) 

( )
( ) ( ) ( )2 2

2 2 2

2

1 4

2
4

2
4

2

p px qx
S x

px p x qx

px x p q

− − ± − −
∴ =

± −
=

± −
=

 

( )
2 4

2
px x p q

S x x
 ± −
 ∴ =
 
 

                   (27) 

Substituting (27) in (24) gives 
2

2

d
1 4

e

qx x

p p q x
xy

−
 ± − 
 

∫

=  

2

2 d

4e
qx x

p p qy
−

−
± −

∫
→ =  

2

2

2

2

2

2 d
4

2
24

4

e

e

e

q x x
p p q

q x

p p q

qx

p p q

y
−

± −

−
± −

−
± −

∫
→ =

=

=
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If we let 

2 4
qm

P P q
−

=
± −

 

Then  
2

emxy =                            (28) 

Equation (28) is the solution to Equation (8). However, we cannot conclude 
that until we are able to establish more facts about it, so it is proper to take equa-
tion (28) as a tentative solution.  

Another method we can use to find the solution to Equation (8) is given as 
shown below. 

From Equation (8), we already have  
2

2
2

d d   0
dd

y ypx qx y
xx

+ + =  

If we decide to factor out y, then we have  
2

2
2

d d 0
dd

px qx y
xx

 
+ + = 

 
 

Let  

( )d
d

S x
x
=  

Then by substitution, we have  

( ) ( ){ }2 2 0S x pxS x qx y+ + =    

( )( ) ( )2 2 0S x pxS x qx→ + + =                     (29) 

( )
( ) ( )

( )

2 2

2 2 2

2 2

2

4

2
4

2

4

2
4

2

px px qx
S x

px p x qx

px p q x

px p q

− ± −
∴ =

− ± −
=

− ± −
=

− ± −
=

 

( )
2 4

2
px p q

S x x
 − ± −
 ∴ =
 
 

                    (30) 

But  

( )d
d

S x
x
=  

Multiplying both side by y, we get  

( )d
d
y S x y
x
=  

( )d dy S x x
y

→ =  
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Integrating both sides and ignoring constants, gives  

( )d dy S x x
y
=∫ ∫  

( )ln dy S x x→ = ∫  

( )

2

2 2

2
2

d

4
d

2

4
2 2

4
4

e

e

e

e

S x x

p p q
x x

p p q x

p p q
x

y
 − ± − 
 
 

 − ± − 
 
 

 − ± − 
 
 

∫

∫

∴ =

=

=

=

 

If we let,  
2 4

4
p p q

m
− ± −

=  

Then by substitution,  
2

emxy =                             (28) 

Now, in order to investigate Equation (28), we need to substitute it into the 
original differential equation. Thus from Equation (28) we have 

2
2 emxy mx′ =  

2 224 e 2 emx mxy mx m′′ = +  

Substituting into (8) gives  

( )2 2 2 22 24 e 2 e 2 e e 0mx mx mx mxpxmx qxm mx+ + =+  

( ) 2 22 2e4 2 0e2mx mxm pm q x m→ + + + =  

( ){ } 22 24 2 2 0emxm pm q x m+→ + + =  

From which we get  
24 2 0m pm q+ + =                           (31) 

And                     2 0m =                              (32) 

From (32),                 0m =  

And from (31),  

( )2

2

2

2 2 4 4
2 4

2 4 4 4
8

2 2 4
8

p p q
m

p p q

p p q

− ± − × ×
=

×

− ± − ×
=

− ± −
=
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2 4
4

p p q
m

− ± −
∴ =  

This value of m is same as that obtained earlier, therefore, 
2 2

1 2 3
4 4

0,   and 
4 4

p p q p p q
m m m

− + − − − −
= = =  

Since the solutions are independent, it follows that  

0 1 1 2 2 3y c y c y c y= + +  

22 2
31 2

0 1 2e e em xm x m xy c c c= + +∴  
222

320
0 1 2e e em xm xxy c c c×= + +→  

22
32

0 1 2e em xm xy c c c+∴ = +  

Solution to the General Equation 

It is generally agreed that an equation of the form 

( ) ( )   0y p x y q x y′′ ′+ + =                     (33) 

is called the general equation of second order homogenous linear differential 
equation. The solution to this equation can be found by adopting the same pro-
cedures as in the other cases. For instance, re-writing the equation, we get,  

( ) ( )
2

2

d d 0
dd

y yp x q x y
xx

+ + =  

( ) ( )d d d 0
d d d
y yp x q x y
x x x
 → + + = 
 

 

( ) ( )d d 0
d d
y p x q x y
x x
 → + + = 
 

 

If we let  

( )d 0
d

p x
x
+ =  

Then we get  

( ) ( )d 0
d
y D x q x y
x

+ =  

( )
( )

d
d

q x yy
x D x

−
→ =                           (34) 

But  

( ) ( )d
d

p x D x
x
+ =  

Multiplying it by y gives  

( ) ( )d
d
y p x y D x y
x
+ =  

( ) ( )( )d
d
y D x p x y
x

→ = −                       (35) 
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By comparing Equations (34) and (35), we can see that  

( ) ( )( ) ( )
( )

q x
D x p x y y

D x
−

− =  

( ) ( ) ( )
( )

q x
D x p x

D x
−

→ − =  

( ) ( ) ( ) ( )2
0D x p x D x q x→ − + =                  (36) 

From Equation (36), we get  

( )
( )( ) ( )( ) ( )2

4

2

p x x
x

q
D

p x− − ± − −
=  

( )
( ) ( )( ) ( )2

4

2

p x p q
D

x x
x

± −
=∴  

( )
( ) ( )( ) ( )2

4

2

p x p q
D

x x
x

+ −
=→  

And  

( )
( ) ( )( ) ( )2

2

4

2

p x p x q x
D x

− −
=  

If follows that from Equation (34) 

( )
( )

( )

( ) ( )( ) ( ){ }
( )

( ) ( )( ) ( ){ }
( ) ( ) ( )( ) ( ){ }

( ) ( )( ) ( ){ } ( ) ( )( ) ( ){ }

2

2

2

2 2

1 4
2

2

4

2 4

4 4

q x q x
D x p x p x q x

q x

p x p x q x

q x p x p x q x

p x p x q x p x p x q x

=
+ −

=
+ −

− −
=

+ − − −

 

( ) ( ) ( )( ) ( ){ }
( )( ) ( )( ) ( ){ }
( ) ( ) ( )( ) ( ){ }

( )( ) ( )( ) ( )

( ) ( ) ( )( ) ( ){ }
( )

2

2
2 2

2

2 2

2

2 4

4

2 4

4

2 4

4

q x p x p x q x

p x p x q x

q x p x p x q x

p x p x q x

q x p x p x q x

q x

− −
=

− −

− −
=

− +

− −
=

 

( )
( ) ( ) ( ){ }

1

1 4
2

q x
p x p q x

D x
∴ = − −                         (37) 
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By similar procedure, we can equally have  

( )
( ) ( ) ( )( ) ( ){ }2

2

1 4
2

q x
p x p x q x

D x
= + −               (38) 

Now from Equation (34) 

( )
( )

d
d

q xy y
x D x

−
=  

( )
( )

d d
q xy x

y D x
−

→ =  

Integrating both sides gives us  

( )
( )

ln d
q x

y x
D x

→ = −∫  

( )
( )

d
e

q x
x

D xy
−∫

∴ =                           (39) 

Where  

( )
( ) ( ) ( )( ) ( ){ }21 4

2
q x

p x p x q x
D x

= ± −  

By substitution therefore,  

( ) ( )( ) ( )21 4 d
2e

p x p x q x x
y

 
− ± − 

 
∫

=  

( ) ( )( ) ( )21 4 d
2e

p x p x q x x
y

 
− ± − 

 
∫

∴ =  

Let  

( ) ( ) ( )( ) ( )2
4T x p x p x q x= ± −  

Then  

( )1 d
2e

T x x
y

− ∫
=                         (40) 

Equation (40) may be an appropriate solution to the general Equation (33) it 
can be seen then that Equation (40) makes it possible for the solution to the 
general equation of the homogenous linear differential equation of order 2 to 
come in terms of an integral function.  

Another way we can obtain a solution for Equation (33) is by factoring out y 
from (33) 

( ) ( )
2

2

d d 0
dd

y yp x q x y
xx

+ + =  

( ) ( )
2

2

d d 0
dd

p x q x y
xx

 
→ + + = 

 
 

( ) ( )
2

2

d d 0
dd

p x q x
xx

→ + + =  
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Let  

( )
2

2
d
d

D x D
x

= =  

Then by substitution,  

( ) ( )2 0D p x D q x+ + =                        (41) 

( ) ( )( ) ( )2
4

2

p x p q
D

x x− ± −
=∴  

( ) ( )( ) ( ){ }21 4
2

p x qD p x x− ± −=                 (42) 

But  
d
d

D
x

→ =  

d
d
y Dy
x

→ =  

d dy D x
y

→ =  

ln dy D x→ = ∫  
de D xy ∫∴ =                            (43) 

Substituting (42) in (43) gives  

( ) ( )( ) ( )21 4 d
2e

p x p x q x x
y

 
− ± − 

 
∫

=  

( ) ( )( ) ( )21 4 d
2e

p x p x q x x
y

 
− ± − 

 
∫

∴ =  

Let  

( ) ( ) ( )( ) ( )2
4T x p x p x q x= ± −  

Then by substitution 

( )1 d
2e

T x x
y

− ∫
=                                (40) 

The Equation (40) works well if p and q are constants. It also works well if p 
and q are not constants in the Euler’s equation as well as the Equation (8). It can 
seen that for other homogenous equations with variable co-efficient, the worka-
bilility of the Equation (40) depends on whether or not the function ( )p x  and  

the discriminant function ( )( ) ( )2
4p x q x−  are both integrable since ( )p x  

may always be integrable, it is safe to say that if the discriminant function 

( ) ( )( ) ( )2
4L x p x q x= −  is integrable, then the solution in Equation (40) is an  

elementary function. If not then Equation (40) is not an elementary function. 
The case where the function 

( ) ( )( ) ( )2
4L x p x q x= −  is not easily integrable leads us to think of possible 

power series solution. For simplicity, let ( )p x p=  and ( )q x q= , then  
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( ) 2

1
2

2
2

1
1 22
2

2

1
2

2

2 3

2 2 2

4

41

41

41

1 1 1 1 11 1 2
1 4 4 42 2 2 2 21
2 2! 3!

L x p q

qp
p

qp
p

qp
p

q q qp
p p p

= −

   = −  
   

 
− 

 

 
− 

 
     − − −          − − −     + + + +      

    

=

=

=
 

  



 

2 3 3

2 4 6

4 2 3 3

2 3 4 3 6

2 3

2 4 6

2 3

3 5

2

2 4

1 1 1 1 3
2 16 42 2 2 2 21

2! 3!

2 1 2 1 3 41
3 22 2

2 2 41

2 2 4

2 21

q q qp
p p p

q q qp
p p p

q q qp
p p p

q q qp
p p p

q q qp
p p p

 − − −     
        −     = − + + +    

    
  
 

= − − × − × × − 
× 

 
= − − − − 

 

= − − − −

 
= − + + +














 

But the series in the bracket converges to 1 if 2 1q
p

<  

( ) ( ) ( )
( )

( ){ } ( )
( )

2

22

2

q xqL x p p x
p p x

p x q x
p x

∴ ≅ − = −

−
=

 

Recall that  

( ) ( ) ( )( ) ( )2
4T x p x p x q x= ± −  

where  

( ) ( )( ) ( )2
4L x p x q x= −  

( ) ( ) ( ) ( )
( )

( )
( )( ) ( )

( )

( )( ) ( )( ) ( ){ }
( )

2

2 2

2

2

2

q x
T x p x p x

p x

p x q x
p x

p x

p x p x q x

p x

 
→ = ± −  

 

−
= ±

± −
=
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( )
( )( ) ( )( ) ( )

( )

2 2
2

d d
p x p x q x

T x x x
p x

 ± − → =  
  

∫ ∫  

( )( ) ( )( ) ( )
( )

2 2
21 d

2
p x p x q x

x
p x

 ± − →  
  
∫  

Let  

( ) ( )1 d
2

F x T x x−= ∫  

Then  

( )
( )( ) ( )( ) ( )

( )

2 2
21 d

2

p x p x q x
F x x

p x

  ± −−    
 
 
 

= ∫            (44) 

This implies that 
( )eF xy =                           (45) 

From (45) 

( ) ( )eF xy F x′ =  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

d de e
d d

e e

F x F x

F x F x

y F x F x
x x

F x F x F x

′ ′′′ = +

′′= ′ +′
 

( )( ) ( ) ( ) ( ) ( )( ) ( )
( ) ( ) ( ) ( )

2
e e 2

e e

F x F x

F x F x

y F x F x F x F x

F x F x

′′′ ′ ′′ ′ ′+

+ ′

=

′′ +
 

( ) ( )eF xy x =  

( ) ( ) ( )
0 0 eF xy x F x′ ′=  

( ) ( )( ) ( ) ( ) ( )0 02
0 0 0e eF x F xy x F x F x′′ ′′= +′  

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 03
0 0 0 0 0e 3 e eF x F x F xy x F x F x F x F x′′′ ′′ ′′′+′= +′  

Thus, the Taylor series expansion of y at an ordinary point is given by 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( )

( )
( )

( )

20 0
0 0 0

30
0 0

00

1! 2!

3! !

!

n
n

n
n

n

y x y x
y x y x x x x x

y x yx x x x
n

y x x
n

∞

=

′′
= + − + −

′′′
+ − + + −

−

′

= ∑

  

( ) ( )00
n

nny x C x x∞

=
= −∑                     (46) 

Equation (46) is therefore the general solution to equation (33) 

4. Results and Discussion  

The first objective of the study was to determine analytically the Equation (4) as 
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the solution to the Equation (5) which is a homogenous linear differential equa-
tion with constant coefficients p and q. This was done through two different me-
thods both of which yielded the same result ery = . Method 1 actually does 
something fascinating in a way it enables us to have a deeper view of the concept 
of characteristic equation. It enable us to understand that the r in the characteristic 

Equation (16) is actually operator D where d
d

D p
x

= + . Method 2 does the 

same thing too but in this case the operator d
d

D
x

= . 

The second objective of the study was to demonstrate that Equation (7) can be 
proven deductively to be the solution to Equation (6). By this, we mean that 

ry x=  is the solution to the Euler equation 2 0x y pxy qy′′ + + =′ . This was 
equally achieved through two different methods and the procedure is similar to 
the procedure in the first case. 

In a very interesting way again, the third objective of this study was achieved 
by proving deductively that Equation (8) has a solution of the form in equation 
(28). By this we mean that 

2
emxy =  is the solution to the equation 

2 0y pxy qx y′ +′′ + = . Notice that if this Equation (8) i.e. 
2

emxy =  is substituted 
into Equation (28) above, the resulting characteristic equation has two parts. 
One part is constant while the other part isobtained by the characteristic equa-
tion. 24 2 0m pm q+ + =  the constant part is obtained by the equation 2 0m =  
thus making the complementary solution ( )y x  to be of the form 
( ) 2 2

1 2
0 1 2e em x m xy x C C C= + + . This makes the solution to appear like there are 

three independent solutions, whereas this is not the case. So what then does the 
constant stand for? It does in fact seem like there is more to be understood. To 
understand this, let us take advantage of the fact that the solutions are indepen-
dent. Then we have to take 

2
1

1 1e
m xy C=  

so that 

( )2
1

2
1

2
1 1 1

1 1

de
d

2 e

m x

m x

y C m x
x

C m x

′ =

=
 

And  

( ) ( )2
1

2 2
1 1

2
1 1 1 1 1

2 2
1 1 1 1

d d2 e 2
d d

4 e 2 e

m x

m x m x

y C m x m x C mx
x x

C m x C m

′′ = +

= +
 

Substituting the above into the left hand side of the original equation 
2

1 1 1 0y pxy qx y′′ ′+ + =  
2 2 2 2

1 1 1 12 2 2
1 1 1 1 1 1 1 14 e 2 e 2 e e 0m x m x m x m xC m x C m px C m qx C m⋅→ + + ⋅ + =  

( ) 2 2
1 12 2

1 1 1 1 14 2 1 e 2 e 0m x m xm pm C x C m→ + + + =  

We understand from here that the expression in the bracket 
2

12
1 e 0m xC x ≠ . 
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However, 1 12 0C m ≠  and 
2

1e 0m x ≠ , 
2

1
1 12 e 0m xC m→ ≠  If this must be taken 

care of, then we must add an opposite function to make the equation balance. 
This opposite must as well be non-differentiable, which means that it is constant 
in a way. This non-differentiable function appears as part of the constant in the 
solution. There since 

2 2
1 1

1 1 1 12 e 2 e 0m x m xC m C m− =  if follows that 
2

1
1 12 em xC m−  is 

a non-differentiable independent function, this actually represent the 
non-differentiable part of the same function (8) which serves as the solution to 
Equation (8) i.e. Equation (28). This is largely accurate because such functions in 
the form ( ) 2

1em xf n =  usually have both differentiable and non-differentiable 
regions. The diagram below illustrates this.  

From the graphs in Figure 1 and Figure 2 above we can see that ( )y x  has 
two parts, one part being differentiable while the other is non-differentiable i.e. 

( ) ( ) ( )diff non-diffy x y x y x= +  

where  

( ) 2 2
1 2

1 2diff e em x m xy x C C= +  

And  

( ) 2 2
1 2

1 1 2 2non-diff 2 e 2 em x m xy x C m C m= − −  

 

 
Figure 1. Graph of 22= e xy  
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Figure 2. Graph of 22e xy −=  

 
Thus for every function of the form 

2
emxy C= , the non-differentiable region 

is 
2

2 emxy Cm= . From the foregoing the solution to Equation (8) must therefore 
be of the form 

( ) { } { }2 2 2 2
1 2 1 2

1 2 1 1 2 2e e 2 e 2 em x m x m x m xy x C C C m C m= + − +  

Note that from the graph in Figure 1, ( )y x  is differentiable within the re-
gion a x a− ≤ ≤ , while it is non-differentiable outside this region since ( )y x  is 
either 0 constantly or it has constant values at x a= −  and x a= . At these 
points, the function either has a derivative of 0 or its derivative is indeterminate, 
hence, it is non-differentiable.  

The fourth objective of this paper was to demonstrate that Equation (10) is 
not just an ansatz to Equation (9) i.e. ( )00

n
nny C x n∞

=
= −∑  is not just a guessed 

solution, the general second order linear homogenous differential equation 

( ) ( ) 0y p x y q x y′′′ + + =  

From this we learn that the function in Equation (40) is actually a good solu-

tion to the Equation (9) i.e. ( )1 d
2e

T x x
y

− ∫
=  

where ( ) ( ) ( )( ) ( )2
4T x p x p x q x= ± −  is a solution to (9) if and only if the 
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discriminant function ( ) ( )( ) ( )2
4L x p x q x= −  is integrable. In such a case 

the Equation (9) will have a solution in terms of elementary functions. However, 
if ( )L x  is not integrable, then ( )L x  must be converted to a binomial power  

series which converges to ( ) 2qL x p
p

−
=  as thus leading to the function 

( ) ( )( ) ( )( ) ( )
( )

2 2
21 d

2
p x p x q x

F x x
p x

 − −−  =  
  
∫  

So that ( )eF xy =  in this case the Taylor series expansion for this function 
becomes  

( ) ( )( )2
0 0

0 !

n

n

Y x x x
y

n
∞

=

−
=∑  

Which reduces to ( )00
n

nny C x x∞

=
= −∑  

where 
( ) ( )

!

n

n
Y x

c
n

=  

5. Conclusions 

From the results obtained so far, we now draw the following conclusions:  
1) The Euler’s exponential function eaxy =  is indeed a deductive solution to 

the linear homogenous differential equation 0y py qy+ ′′′ + = .  
where p and q = 0 

2) The Euler’s equation 2 0x y xpy qy′′ + + =′  has the function ry x=  as its 
analytic solution and not as an ansatz.  

3) The equation 2 0y npy x qy′′ + ′ + =  has the function 
2

emxy =  as its solu-
tion such that the function has a differentiable and non-differentiable part.  

4) The function ( )0
n

nny C x a∞

=
= −∑  is indeed the solution to the general 

differential equation with variable coefficients ( ) ( ) 0y p x y q x y′′′ + + = . This is 
not a guessed solution but an analytically derived solution to the equation above. 
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