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Abstract 
We introduce the concept of equivalent electromagnetic (EEM) field, on the 
basis of which we describe the gravitational field (G-field). We determine this 
EEM field based on the principle of equivalence (PE), i.e. by direct applica-
tion of PE in the field equations and in the equations of motion, by introduc-
ing the EEM field potential. In this way, we introduce the mathematical for-
malism of the electromagnetic (EM) field into the G-field equations. This 
procedure of describing the G-field has a limitation and can be applied to 
static, stationary and quasi-stationary fields. Obtained equations and solu-
tions are compared with the General Theory of Relativity and the differences 
are analyzed. 
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1. Introduction 

Solving the gravitational field problem is approached in the simplest possible 
way. In this approach the gravitational field (G-field) is described indirectly 
through some other field, which we named the equivalent electromagnetic 
(EEM) field. This EEM field is found from the Principle of equivalence (PE), i.e. 
through the movement of elementary particles in a given medium of the field 
source. Name of the electromagnetic in EEM comes from the fact that PE can be 
observed up to the level of elementary particles in the environment dominated 
by EM force. 

An action is proposed to indirectly describe the G-field, thus the G-field equa-
tions can be obtained without actiоn to directly describe the G-field, which in 
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the General Theory of Relativity contains a scalar curve [1]. The resulting field 
equations differ from the equations of the General theory of relativity by the 
terms that represent the correction of the second and higher order. Thus, in a 
centrally symmetric field, by taking into account the energy of the gravitational 
field, we obtain an additional field as a correction of the second order in the field 
equations. The results that follow from here differ by small values from the case 
of treating the G-field as empty space. 

A particularly interesting solution is for the case of a centrally symmetric stat-
ic field in which clock synchronization can be established and observers can be 
introduced at some distance from the center of symmetry. The concept of mea-
suring length and time is based on the observation of a light signal by a given 
observer. Since each observer has its own standards of length and time; they are 
compared to each other and thus we can completely describe the field. 

2. Principle of Equivalence 

We observe the source of G-fields (continuous medium or set of bodies) and the 
element of continuous medium density ρ; it interacts with the G-field with other 
particles of matter in the massive body of the field source. However, this particle 
is not free but is in the environment of other matter with which it interacts; 
another interaction is established that is equivalent to the gravitational interac-
tion between the observed elements (equivalent in intensity and opposite in di-
rection). Therefore, this interaction has a repulsive character and is opposed to 
gravitational attraction, otherwise there would be a gravitational collapse of the 
body; which is analogous to repulse charges of the same sign that form the 
source of an EM field, only here does an external force hold the charges together. 
In this view, the active force is gravitational, and the EEM field force is taken as 
the generalized reaction force. 

In the language of theoretical mechanics, equations are found by the direct 
application of PE, which consists in the fact that the active (gravitational) force is 
equal to the reaction force (the equivalent EM force named here) with the oppo-
site direction. Introducing a modified Lagrangeian which, among other terms, 
also contains terms related to the generalized reaction force by appropriate se-
lection of generalized coordinates. By varying such a modified action, we obtain 
the field and motion equations, which contain these reaction forces and the cor-
responding field tensors. 

Since we have introduced the EEM field based on PE, we can use the mathe-
matical formalism of the EM field in describing the G-field.  

Now we can introduce the potentials of the EEM field, then the current densi-
ty vector of matter and other quantities that characterize that field.  

Let’s assume that the potentials EEM field are composed by coefficients of 
metrics and let them be1: 

 

 

1Here we have introduced designation 0
00

00

, gh g g
g

α
α= = −  for scalar and vector in the space with 

three-dimensional tensor γαβ.  
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0 ,A h A hgα α= = − , or 0

00

i
i

g
A

g
=                (1.1) 

This choice of the vector Ai ensures compliance with PE above defined and it 
is applicable in the case of the static and stationary fields, and there is a limita-
tion for variable field, so that valid in the case of quasi-stationary motion, this 
definition of PE cannot be applied in other cases of the variable field, nor the 
corresponding quantitie Ai, as can be seen from the equations that follow. 

This can also be seen from the definition of when a quantitie is a vector. So Аi 
is a vector in a stationary field, because we have: 

( )0 2 2d d d 1s h x hg x v cα
α= − −                 (1.2) 

where vα is the three-dimensional velocity vector in the space in which the me-
tric defined by the tensor γαβ: 

( )0

d
d d

c xv
h x g x

α
α

α
α

=
−

                     (1.3) 

It follows that the Ai behaves as a vector in relation to the transformation, 
which do not change the stationarity of the field: 

( )0 0,x x x x f xα α α→ → +                   (1.4) 

In such a transformation: 

0 0
', '
k

i ki

xh h g g
x

∂
→ =

∂
                   (1.5) 

Field Equations 

If we assign the potentials Ai, try to derive the equation for the equivalent elec-
tromagnetic (EEM) field; they get from the principle of least action, δS = 0, i.e. 
variations of the action of S. The total action for the interaction of matter with 
equivalent electromagnetic field has the equation form: 

( )E di i
E m I i iS S S S g A j g= + + = Λ − − ℑ ℑ + − Ω∫        (2.1-i) 

The density of Lagrangian EEM field (ΛE) are used in the form ΛE = 
−(16πγ)−1FikFik, with a minus sign, because the EEM force between the particles 
of matter that generates G-field is always repulsive, because the system sponta-
neously tends towards minimum gravitational energy, condensation and col-
lapse of the system occurred; 

Sm is the term of continuous distribution of matter and it is obtained from the 
action of isolated particle of mass m: dm s− ∫ , substituting m for 0 1 2 3d d dgu x x xρ , 
then the label was introduced i iu gρℑ = ; the interactional term SI is part of 
the action is conditioned by the presence of matter density ρ, i.e. interaction of 
matter and EEM field, because the matter establishes EEM interaction between 
its elementary particles which is equivalent to gravitational interaction between 
these elements, this interaction has repulsive character as the force between the 
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charge of the same sign, and because the sign of gravitational potential we put a 
minus sign in front Lagrangian this term. 

In order varying by gik which directly describe the G-field in the action S we 
introduce a term dgS R g= − Ω∫ , where the geometric a term R refers to the 
gravitational field and it consists of gik and its derivatives. 

( )E di i
g E m I i iS S S S S R g g A j g= + + + = − − + Λ − − ℑ ℑ + − Ω∫  (2.1-ii) 

By varying the total action S quantities that characterize the observed fields 
and their interactions, we have: 

( )

3

4 4

4

;

1 8 8
16 2

d 0
4

E ik
ik ik ik i k

ik i i i
k i i i

cS R g R T u u g g
c c

c F j A g u A j g

γ γδ ρ δ
γ

δ δ δ
γ

  = − − − − −  
 

 

π π
π

− − −
π

+ ℑ + − Ω = 
  

∫
      (2.2) 

For complete arbitrariness Ai coefficient we equal to zero before the δAi and 
find an expression for the field EEM2:  

; 4

4ik i
kF j

c
γπ

= ,                          (2.3) 

or components taking potential (1.1), Equation (2.3) is transformed into form: 

( ) ( ) ( ); ;;
0 04; ;

1 4
2

k
k

h hF h h h f f j
ch

α α αβ
αβα α

γπ
= − + = ;     (2.3-i) 

( );; ;
4

42k
kF h f h f j

c
ββ

α αβ αβ α
γ

= + =
π .           (2.3-ii) 

Coefficient of δgik provides: 

4 4

1 8 8
2

E
ik ik ik i kR g R T u u

c c
γ γ ρπ π

− = +                 (2.4) 

where 

 

 

2Current four-vector in constant field takes the form ( )21k kj v c uρ= − . For the point system of 

the body, density of matter we can write as ( )a
a

a

mρ δ
γ

= −∑ r r . Using the equation of continuity 

; 0l
lj = , provided ( );

0k

k
uρ = , we find the following equation:  

( )3/2 ;22 2 2 2

1 1 0
1 1

k
k

uu v v
x cv c v c

α
β

α β

ρρ ∂
= =

∂ − −
. (1) So, as expected in a stationary field strain rate 

tensor components are equal to zero, i.e. no shear or dilatation of a given environment. Condition 
(1) shall be in accordance with the equations of motion of the element of matter (2.9). In general, 

from Equation (2.9) we find: 
02 2

d 1 1
d 21

h u u
s xv c

αβ α βγ∂
= −

∂−
. (2) Here we see the concurrence of 

Equations (1) and (2) in the stationary field; while the time-varying fields appears the problem of de-
fining the velocity v, so Equation (2) resolves to a certain degree of accuracy, neglecting the terms of 

the Order 1/c5, where it gets approximate relation: d 0
d
v v vv v v
t t x

α α βα α α
β

∂ ∂ = + ≈ ∂ ∂ 
, (3) i.e. condition 

that mater velocity flow should meet v in Equation (2.3), where v is the ordinary three-dimensional 
velocity (vα = dxα/dt).  
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1 1
4 4

Ei il i lm
k kl k lmT F F F Fδ = − + 

 π
                  (2.5) 

term which with its energy contributes to G-field. 
However, in this case (2.4) there is a limit, as a result of the election Sg in 

(2.1-ii). In order that the Equation (2.4) which describes the gravitational field 
be in accordance with the equation that describes the EEM field (2.3), condition 
needs to be fulfilled gα = 0 in (2.4). This is fulfilled in the static field. 

For the remaining action in (2.2) we take into account the conservation of 
matter ( ), ;

0i i
i i

uρℑ = =  and the equation of continuity ; 0i
ij = . Suppose that 

each element of the matter moved to the small size bi, in this to determine the 
result of changes ℑi. From the literature, we find: 

( )
,

i k i i k

k
b bδℑ = ℑ −ℑ                       (2.6) 

In the same way we change the vector density and flow of matter ij g  and 
we get: 

( ) ( )
,

i k i i k

k
j g j gb j gbδ = −                  (2.7) 

When you make a replacement (2.6) and (2.7) in (2.2), we calculated:  

( ) ;d d 0i i k i k i
i i i k iku A j g u u b g F j b gδ δ ρ   ℑ + − Ω = − − − − Ω =  ∫ ∫  (2.8) 

Finally the coefficient of bi gives: 

;
k k

i k iku u F jρ = −                         (2.9) 

Skip to calculate the equation of conservation in the field that describes the 
action of S in (2.1-ii). Return to the integral of δgik and δgik present as a result of 
the transformation of coordinates. Based on the formula for the transformation 
tensor, the small changes of coordinates xi in coordinates x'i = xi + ξi, we find 
transformation of the components gik in the form: 

; ;' ;ik ik ik ik i k k ig g g gδ δ ξ ξ= + = + .              (2.10) 

In Equation (2.2) put δgik in (2.10); after appropriate transformations we find 
the following expression: 

3

4 4
;

1 8 8 d 0
16 2

k
i

k k E k i
i i i

k

c R R T u u g
c c
γ γδ ρ ξ

γ
  − − − − − Ω =  

  

π



π
π∫ .   (2.11) 

Due to the complete arbitrariness ξi we can write: 

( ); ;
0

d
k ki

i k ik

Du
T u u

s
ρ ρ+ + =                  (2.12) 

So we get the equation of motion element of continuous medium density ρ. 
After replacing (2.3) in (2.12) we find: 

( )
;

0
d

l ki
il ik

Du
F j u u

s
ρ ρ+ + = ,                (2.13) 

Multiplying by ui gives the equation of conservation of matter (ρui);i = 0, and 
(2.13) is reduced to (2.9). 
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Taking divergence Equation (2.3) and the conditions,2 we obtain an additional 
relation, which joins the Equation (3.5):  

0
0

1 0
2

F F
x x x x

γδ γδ
γδ γδαβ α
α β α

γ γγ γ∂ ∂∂ ∂
+ =

∂ ∂ ∂ ∂
             (2.14) 

We arrive at the solution of Equations (2.3) by applying an approximate cal-
culation. Developing in the order of the component gik and then solving Equa-
tions (2.3) approximatively to some degree of accuracy. 

The calculations of the gik coefficients, for weak fields, are done by approxi-
mations. We decompose the covariant components of the metric tensor into 
small first order corrections: 

( ) ( )0 1
ik ik ikg g h= + .                      (2.15) 

Of course, at zero approximation, the metric ( )0
ikg  is Euclidean and takes Ga-

lileo values. We consider the stationary case and Equation (2.3-i). In the second 
approximation, we omit the third term, as a small higher order size (∼v2/c2). Af-
ter easy calculations neglecting the terms of order 1/c6 we arrive at the results: 

002 2 4

2 2 1,h h o
c c c

β β
α αϕδ ϕ  = − = +  

 
;               (2.16) 

( ) ( )
2

2
00 4 4 2 2 2

51 2 3 4 1
2

v
h m

c c c c c
α α

α α
α

ϕγϕ ϕ ϕ δ
 

∆ + ∆ − ∇ = + + − 
π

 
∑ r r    (2.17) 

We find the final solution in the form: 
22

00 2 4 4

2 3 2 m v
h

c c c
α α

α α

ϕ ϕ γ
= + −

−∑ r r
.                 (2.18) 

We can look for the solution of Equation (2.3-ii) only in approximate form 
neglecting the terms of order 1/c5: 

( )0 3

4
a a a

a
h m v

cβ β
γ δ∆ = − −
π ∑ r r .               (2.19)  

From here we get 

0 3

m v
h

c
β βα

β
β β

γ
=

−
∑

r r
.                     (2.20) 

In the case of a quasi-stationary field, the time-dependent Equation (2.3-i) 
with the addition (2.23-i), and with appropriate supplementary condition, is as 
follow ∂gβ∕∂xβ = 0; can be solved in the approximation of the given densities to a 
certain degree of accuracy as in the case of a stationary field, and the solution is 
of the same form as (2.18) and is:  

22

00 2 4 4

2 3 2 a a

a a

m v
h

c c c
ϕ ϕ γ

= + −
−∑ r r

.                (2.21) 

Only now the movement of matter has a quasi-stationary character. Here the 
velocity v is defined as vα = dxα/dt.2 The following Equation (2.3-ii) with the ad-
dition of (2.23-ii) in a given approximation goes into a form in which only one 
term of order 1/c3 appears, that is 2 0h x xα∂ ∂ ∂ , a term. With the calibration 

https://doi.org/10.4236/oalib.1109530


V. Stepanovic 
 

 

DOI: 10.4236/oalib.1109530 7 Open Access Library Journal 
 

condition ∂gβ∕∂xβ = 0 and the corresponding substitutions we get: 

( )( )0 32
b

b b b b
b b

m
h v n

cα α α
γ

= +
−∑ v n

r r
              (2.22) 

where nb is the unit vector in the direction of the vector r − rb. 
Go back to the time-variable fields and display the Equation (2.3) in the gen-

eral form3:  
;

0 ; 0 0
lk

k l

g g hF g h
x x x

β α
β

α

∂  ∂ ∂
= + 

∂ ∂ ∂ 
,            (2.23-i) 

( ) ( )

( )

2 ;

; 0 0 0;

2

02 0 0 0 0 0

0 0 0;

1 1 1

1 1 1

1 1
2 2

lk
k l

h hF g h h
h hx x x xh h

gg gh g gh
hx x x x x x xh h

g ggh h
hx x x xh

β αβ
α α α

β β
αβ βα α

α

β
βγβγα α

β α

γ

γ

γ
γ

∂∂ ∂
= − −

∂ ∂ ∂ ∂
∂ ∂∂ ∂∂ ∂ ∂

+ + − +
∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂∂  
− + +  ∂ ∂ ∂ ∂  

   (2.23-ii) 

For comparison, we find the Rik tensor for the general case depending on x0: 

( )
;

;

00 0 0 0 0 0

0 0 0 0 0 0

2

1 1 1 1
2 2 4

g g gg h gR h h h h h
x x x x x x

h
x x x x x xh

β α βββ β β
α

βγ βγ βγβγ βγ βγ αδ αδγ γ γ γ
γ γ γ γ

∂ ∂ ∂  ∂ ∂ ∂
= + + + ∂ ∂ ∂ ∂ ∂ ∂ 

∂ ∂ ∂  ∂∂ ∂
− + − ∂ ∂ ∂ ∂ ∂ ∂ 

 (2.24-i) 

( ) ( )

( )

;
;

0 0 0 0 0;

0 0 0;

1 1 1 1 1
2 2 2

1 1 1
2 2 2

gh gR h h h
hx x x x xh

ggh h
x x x x xh

β ββαβ αβ α
α βα

β
β βγ βγβγ βγ
α α α

γ γ

γ γ
γ γ

∂ ∂  ∂∂ ∂
= + − − ∂ ∂ ∂ ∂ ∂ 

∂ ∂ ∂ ∂ ∂
+ − + ∂ ∂ ∂ ∂ ∂ 

 (2.24-ii) 

3. Static Field 
3.1. The Case of Central Symmetric Gravitational Field 

Our starting point is Equation (2.4), and consider six additional conditions for 
the central symmetric field: let all three components g0α be equal to zero and g12 
= g13 = g23 = 0. Now we define the coordinate system in this form: 

( )2 2 2 2 2 2 2 2
00 11d d d sin d ds g c t r rγ θ φ θ= − − +               (3.1) 

From (2.4) and (3.1) for fields outside the source (ρ = 0) solution is form 
11 1 2

00 21
c cg h
r r

γ≡ = = + + . The same solution with two constants we get from 

the conditions R = 0. 
Now the components of tensor EEM field (2.5) are: 

2 11 2 2
0 1 2 3

0 1 2 3 4
00

1 1
8 8

h mT T T T
r g r

γ γ
γ γ
 ∂

π π
= = − = − = =  ∂ 

.         (3.2) 

From here we find the metric space time of the static field:  

 

 

3In the following equations, only the terms containing the derivative of x0 are shown, to which the 
other terms in (2.3-i) and (2.3-ii) for the constant field should be added.  
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( )
2 2

2 2 2 2 2 2 2
2 2

2

dd 1 d sin d d
1

m rs c t r
c r m

c r

γ θ φ θ
γ

 = − − − + 
   − 

 

       (3.3) 

We transform metric (3.3) into new coordinates (r', θ', φ', t'): 

2', ' , ', 'mt t r r
c
γ θ θ φ φ= = + = = ,             (3.4-i) 

and we get: 

( )
22 2

2 2 2 2 2 2
2 2

2

d 'd 1 d ' ' d ' ' sin 'd '
'

1
'

c t ms r r r
c rm

c r

γ θ θ φ
γ

 = − + + + 
  + 

 

     (3.4-ii) 

3.2. The General Form of Metrics 

The above Equation (3.4-ii) is a special case of a general spherically symmetric 
metric form given in the form: 

( )2 2 2 2 2 2 2d d ' d ' sin 'd ' d 's e c t e r eν λ µ θ φ θ= − − + .            (3.5) 

By applying the same procedure; by solving the equation Rik = Тik, where Тik is 
given by Equation (2.2), we obtain the following solution: 

( )
2

2 2 2 2 2 2 2 2
2 2

2

1d d ' 1 d ' ' sin 'd ' d '
'

1
'

ms c t r r
c rm

c r

γ θ φ θ
γ

   = − + + +     + 
 

.  (3.6) 

We get to the same solution (3.6) by using the metrics (3.5) and by solving the 
equations for the EEM field (2.3). To this static equation, we should also add the 
relation (3.15) that follows from the equations of motion, on the basis of the 
equivalence principle, in order to complete the number of unknown quantities. 

Here the coordinate r' is calibrated (standardized) in the absolute reference 
system (the observer is located at infinite distance from the center of symmetry). 

Metrics (3.3) and (3.6) refer to observers who measure from an absolute ref-
erence system (R → ∞) using different length standards. 

Measurements can also be made by observers that are stationary at the dis-
tance R’ from the center, then we introduce a shift: rR = r'(1 + γm/c2R') and t = 
tR(1 + γm/c2R'), and we get the equation: 

( )

2 2

2 2
2 2 2 2 2 2 2 2

2 2

1 1
' 'd d d sin d d

1 1
' '

R R R

m m
c R c rs c t r r

m m
c r c R

γ γ

θ φ θ
γ γ

   + +   
 = − + +        + +   

   

   (3.7) 

( )

2 2 2
2

2 2

2
2 2 2 2 2

2 2

1d d

1

1 d sin d d

R

R R

R R
R R

s c t
m m

c r c R

m m r r
c r c R

γ γ

γ γ θ φ θ

=
 
+ − 

 

   − + − + +    

       (3.7-i) 

From here it follows that the observers at some distance R' can be attributed to 
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the corresponding standards of length and time and make calculations with 
them. 

According to the shape of the spherical part of metric (3.3), it can be con-
cluded that the coordinate r is determined by its proper systems, i.e. for each 
distance r, the observer at that distance defines its standard of length.  

In the metric form (2.6) the coordinate r’ is determined by the absolute ob-
server, i.e. the length standard was measured at a great distance from the field 
source; and using only this length standard, we measure the distance in the field.  

In metric (3.3), the length standards are obtained by measuring the length in 
their proper reference system, i.e. at points of the field at the same distance r, 
which are spherical shells ds2 = r2(sin2θdφ2 + dθ2), or ds = dl0 = rdφ. In the next 
step, we determine the length of the measuring rod at the point of the field, at 
the distance r'(measured in units of the absolute observer, using metric (3.6)), or 
at the distance r (measured in its own system using metric (3.3)). Under mea-
suring stick we denote a certain length of the stick made of solid materials, so 
that it cannot deform. For the same point in the field, only in two different coor-
dinate systems we have:  

0 '2 2d d d 'd 1 d ' 1 d
' ' r

m ms l r r l l
c r c r
γ γφ φ    = = = + = + =   

   
         (3.8) 

Because fixed RS at a distance r' (r' = const), the formula above changes in the 

form of: 0 '2' 1
' r

ml l l
c r
γ ∆ = ∆ + = ∆ 

 
. This formula compares the length of a given  

measuring stick in proper system of observers at the distance r (Δl0), i.e. at the 
distance r' (Δlr'), the length of that same stick Δl' in units of absolute observer in 
absolute RS. 

The connection between the coordinates r and r' in the two metrics (2.3) and 
(2.7) as we saw in (2.4-i) is r = r' + γm/c2, and the length between two points on 
a radius equal Δr = r2 − r1 = r2' − r1' = Δr', i.e. length between two points on the 
radius: r2 and r1, where r1 and r2 are given in units of observers at these distances, 
is equal to the length between the two points measured standard absolute ob-
server. 

These relations allow clock synchronization in the static field. For example, we 
notice two fixed internal and external observers at a distance R'А and R'Б (in 
measurement units absolute observer). Let proper length of measuring stick in B 
be ΔlB, as length of the same stick in A is ΔlА. Connection between these two 
lengths we find by (3.8) and thus we get: 

2

2

1
'

1
'

B B

A

A

m
l c R

ml
c R

γ

γ

+
∆

=
∆ +

.                     (3.8-i) 

3.3. Analysis of Space-Time Static Field 

Consider the movement of the light signal in the gravitational field, because the 
measuring process of time and length based on the observation of light in the 
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selected reference system. Let us remember that the SR of the Lorentz type is one 
in which the speed of light is equal to c, and for it the metric is the same as in the 
special theory of relativity, which is the Minkowski metric: 2 2 2 2

0 0d d ds c t l= − . 

3.3.1. Propertie of Metric 1 
Based on the metrics (3.3) it follows that the propagation of light (ds = 0) in the 
radial direction we have the following relationship: 

2
11

2

d' 1
d
r mc c h c
t c r

γγ  = = = − 
 

.                  (3.9) 

Here c' is the speed of light in point of distance r from the center of the 
sphere, measured by observers located at the large distance (i.e., ∞) of a given 
massive body4. It is easily observable that there is a boundary radius rg which 
stop photon, or any other particle in the field. In order to fulfill this, it is neces-
sary to compress the total body mass into the radius volume rg = γм/c2 which is 
known as black hole. Here rg is given in units of observer at this distance, which 
translated into units of absolute observer is rg' = 0.  

Let’s find the time needed to reach the gravitational radius. Everything is 
measured by the absolute observer:  

2 2

1 1

2

2

2 2

2 2 2
4

2

dd
1

2 ln
r r

r r

rc t
m

c r
m m m mc t r r

mc c c c r
c

γ

γ γ γ γ
γ

=
 − 
 

   ∆ = − ↑+ − ↑−         − 
 

        (3.9-i) 

Schwartzschild’s solution takes the form of: 
2 2

1 1
2 2: 2 ln 2

r r

r r

m mSh c t r r
c c
γ γ ∆ = ↑+ − ↑ 

 
             (3.9-ii) 

In the case of a metric form that also takes into account the gravitational field 
energy density, (for an outside observer) light tends towards boundary radius rg, 
which is never actually achieved, but infinitely slowly approaching. In a system 
moving together with a particle, near the gravitational radius, time practically 
ceases to flow, so one should expect a finite time of reaching rg. 

3.3.2. Application of PE in the Equations of Motion 
Now let a light signal moving in a centrally symmetric field be measured by an 
observer freely falling from an absolute reference system ( 1h = ). To describe 
the measurements, we use the equations for the motion of light (ds = 0) and par-
ticle: 

,
2 2 2

11 22

2 2

d ' d ' d ' ;

dd '
1

h t r l

t
h v c

θ φγ γ

τ

= +

=
−

                  (3.10) 

 

 

4That is, the speed of light c' was measured from an absolute reference system.  
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From here we find an element of proper time for observer who fall freely and 
measured light signal in the element of spacetime (r' + dr', θ' + dθ', φ' + dφ', t' + 
dt'), it is all expressed in the absolute coordinates of the observer: 

,
2 2 2 2

11 22d 1 d ' d 'v c r l θ φτ γ γ= − +             (3.10-i)  

From the upper equations and it follows5: 

,
2 2 2 2

11 22d 1 d ' d 'pAv c h r h l θ φτ γ γ= − +          (3.10-ii)  

When we follow that same light signal from the absolute observer system and 
imagine that there is no G-field, i.e. in the system AО (R → ∞) we have border-
line ( 1h = ) when the G-field disappears, we get: 

,
2 2 2 2d 1 d ' d 'pAv c r l θ φτ = − +                 (3.11) 

From Equations (3.10) and (3.11) on the basis of the principle of equivalence, 
when the particle motion through the G-field we annul the field; for isotropic 
metric (3.6) where the length and time measure etalons of absolute observer, we 
find: 

11 221 1h и hγ γ= =                     (3.12) 

11 22h γ γ= =                      (3.13) 

Otherwise said: Let the light signal which moves in the central symmetric field 
measure of observers who fall in the absolute reference system ( 1h = ); They 
are arranged from point to point along the movement of light and measure-
ments made in the local proper system. It has already been said that in the local 
proper system, the speed of light is c, so that the total motion time of the signal 
is obtained when the sum is contributed by all observers: Δτ, i.e. the length 
which is measured in doing so cΔτ should be equal to the length Δl' which 
measures the absolute observer in an absolute system ( 1h = ) for the same time 
Δτ, i.e. as that the signal moves in the field without gravity, this follows from the 
principle of equivalence. 

When we measure that same light signal from the reference system at a dis-
tance r, i.e. each distance r assigns the corresponding value length standard with 
which we measure, by using the metric (3.1), and measurement performed ab-
solute observer (R → ∞), we get: 

,
2 2 2 2

11d 1 d dr r r
pAv c h r h lθ φτ γ= − +               (3.14) 

Based on the principle of equivalence, from Equation (3.14) and (3.11), it fol-
lows: 

 

 

5We find this equality from the equation of motion of a particle in a static G-field:  
0 0

0 0 0
0

d d 1 d2 0 2 0
d d d
u u hu u u
s s sh

α
α+ Γ = ⇒ + =  (1); From here you get:  

0
0 2 2

2 2

d d 1 1 1
d d 1
x tu h v c
s s hh v c

= = = = ⇒ = −
−

 (2) 
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, ,

2 2
11 11

2 2 2 2

d d ' d d '

d ' d '

r r r r

r

h r r h r r

h r l r lθ φ θ φ

γ γ= ⇒ =

=
             (3.15) 

From ' 'd d 'l lθϕ θ ϕ=  follows: 'r rh
r

= . 

If we assume that the 11 1r rh γ = , we get the equality dr = dr', and from 
here it follows: 

22 22 11

' 1

1 1

' 1 1 ' 1

r

r c r

h c r

r r c r hγ γ γ

+ =

= −

= ⇒ = + = =

          (3.16) 

This is consistent with (3.3) and (3.6). 

3.3.3. Time and Length 
Since the space-time metric is an invariant quantitie, we come to the following 
relations: 

2 2 2 2
2

d dd ;
1 1 1

t
mh v c v c

c r

τ τ
γ

= =
 − − − 
 

          (3.17-i) 

2

0 0 02 2 2 2 2 211
2

0

11 1d d d d ;
1 1 1 1

'
d d

m
c rr r r r

mv c v c v c
c r

c r

γ

γγ

τ

−
= = =

 − − + − 
 

=

 (3.17-ii) 

The equation of time is obtained directly from the metric form, and the equa-
tion for measuring length, with variable radius r is found, of course, from obser-
vations of light and substituting (3.9) in the above Equation (3.17-i). 

Now let stationary observers (v = 0) be distributed along the entire radius 
from point to point. Each observer in their own space (point), measure their 
proper length and time. To measure the overall length of the radius in units of 
measurement given by observer, we follow the radial movement of the light sig-
nal to center field. By integration we find the length of the radius between two 
points: 

2 2 2

1 1
1

0 2 2

2

d ln
1

r r r

r r
r

r m mr r r
m c c

c r

γ γ
γ

 ∆ = = ↑+ − ↑ 
 −

∫               (3.18-i) 

or 
2 2 2

1 1
1

' ' '

0 2 2' '
'

1 d ' ' ln '
'

r r r

r r
r

m mr r r r
c r c
γ γ ∆ = + = ↑+ ↑ 

 ∫               (3.18-ii) 

Schwarzschild solution has the form: 
0 0 0

0 2 2 2

2

d 2 2 2: ln
21

r r r

r r
r

r m m mSh r r r r r
c c cm

c r

γ γ γ
γ

  ∆ = = − ↑+ + − ↑       −
∫  (3.19) 
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It is shown that there is a difference between the length of Δr0 (3.18-i) and 
Schwarzschild values Δr0 (3.19). It is the largest when the radius r takes gravita-
tional radius rg; length (3.19) has the final value, and quantities (3.18-i) and 
(3.18-ii) tend towards infinity. If Δr0 → ∞, means that between a given observer 
at a distance r and the gravitational radius rg could accommodate another ob-
server (point) and also in infinity, never reach the radius rg, but infinitely gravi-
tate to it. This result coincides with (3.9-i), if it was a finite number of observers 
deployed along the radius, time to reach rg would finite and in contradiction 
with Equation (3.9-i). 

3.3.4. Free Falling Particles 
Velocity of a particle freely falling along the radius, measured from the absolute 
reference system is in the form: 

( )11 2 2d ' d 1 1
d ' d pA
r r h h v c
t t

γ= = − − ,             (3.20-i) 

this is equivalent to: 

000
0 2 2 2 2 2

1 ,
1 1pA

gE
u

mc v c v c
= = =

− −
             (3.20-ii) 

where vpА initial velocity in the absolute system. Time measured from the abso-
lute system is found from the relation: 

2 2

2 2

dd

1 1 1

rt
m m

c r c r
γ γ

=
   − − −   
   

;                (3.20-ii) 

In their proper system of photon time as we know it stands dτ = 0. As time 
runs in the proper system of particle that freely fall, we find from the equation: 

( )
11

2 2 2 2

d 'd
1 1 1pA pA

h rc
v c h v c

γ
τ =

− − −
                (3.21) 

According to these equations for the metric (3.3), and (3.6), the particle falls 
from the absolute system with an initial velocity vpА. In this example, the particle 
begins to fall from the proper system of observer. If the observer is at a distance 
R; movement is described by metric that joins the reference system at a distance 
R: 

( ) ( )

( )

2

2 2 2 2 2 2 2 2
11

2

22
2 2 2 2 2 2

2

2 2

d d d d sin d

1 dd d sin d
1 1

R

R

R

hs c t r r
h

m
rc rc t r

m m
c R c r

γ θ θ φ

γ

θ θ φ
γ γ

 
 = − − +  
 

 − 
= − − + 

  −  −    

     (3.22-i) 
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( ) ( ) ( )( )

( )( )

2 2

112 2 2 2 2 2 2 2

11

2 2

2 2
2 2 2 2 2 2 2

2 2

d d ' d d sin d

1 1
' 'd ' d ' ' d sin d

1 1
' '

R R R

R R

R R R

hs c t r r
h

m m
c R c rc t r r

m m
c r c R

γ
θ θ φ

γ

γ γ

θ θ φ
γ γ

   
   = − + +      
   

   + +   
= − + +   

   + +   
   

 (3.22-ii) 

The time interval for this metric depends on the place of the observer (R): 

( )
( )

2

2 2 2
2 2

2

1d dd d 1 d
111

R R

R

m
m c Rt h t t

mc R h v cv c c rh

γ
γ τ τ

γ

−
 = = − = = 
  −−−

. (3.23) 

Again determine proper time of free falling body, but now from the perspec-
tive of the observer at a distance R. We follow a body that begins to fall from the 
absolute reference system, then its velocity which is measured by an observer at 
a distance R we denote by vpR and that is the initial velocity for that observer, 
(R). Now according to (3.22) we can write:  

( ) ( ) ( ) ( )

( ) ( )
( ) ( )

( ) ( )

11
2 2

11

1
21 2 211

2 211
112

11 2 2

d '
1 1 ;

d '

1
d '

d d ' d '
d ' 1 1

R
pR

R R RR

Rr
R R

R R
RR R pR

R

r h h v c
t h h

v c
thc c r r

hh r v c
h

γ
γ

γ
γγτ

γ

 
= − −  

 

 −      = − =      − −   
 

 (3.24) 

For observer at a distance R we have: 

( )
0
2 2 2 2 2

1

1 1
R

R pR Rr

h hE
mc v c v c

  = = 
  − −

,               (3.25) 

where vRr is the velocity of a body at a distance r to the observer (R). After re-
placement we have: 

( ) ( ) ( )

( ) ( )

1
22 211

11

2 2

1
d d '

1 1

pR
R R

R

pR
R

h v c
h

c r
h v c

h

γ
γ

τ

 − 
 =
 − − 
 

               (3.26) 

Since the proper time remains unchanged with respect to (3.21), as we follow 
the movement of the body coming from the absolute system, vpA = 0; (3.26) and 
(3.21) we find the equality: 

( )2 21 pR R
v c h− =                        (3.27) 

The whole situation is better seen if we look at relations that are related to the 
absolute observer (R → ∞): 

( )
0
2 2 2 2 2 2 2

1 1
1 ' 1 ' 1

R

R pA

hE h
mc v c v c v c

= = = =
− − −

,         (3.28) 
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where v'R denotes the velocity of particles at a distance R, which measures the 
absolute observer, and v' is the velocity at a distance r for the same observer. It 
follows the equality v'R = vpR and vRr = v' in (3.28), (3.27) and (3.25). 

3.3.5. Maximum Speed of Falling Particle 
We said that viewed from the outside observer, gravitational field in addition to 
accelerating particle (accelerated free fall) due to interaction with particle offers 
аnd resistance to their movement, which is expressed in strong fields. Before the 
start of deceleration particle have acceleration of free fall to the point where a 
maximum velocity; after that, as to dominate some resistant force field. Maxi-
mum velocity is found from the expression dv'/dr = 0. Looking at the radial ve-
locity from the absolute system we can calculate the distance r at which the ac-
celeration changes sign: 

max

2 2

2 2

2 2

d d '' 1 1 1 ; 0
d d

1 5.5
1 2 3v

r m m vv
t rc r c r

m mr
c c

γ γ

γ γ

   = = − − − =   
   

⇒ = ≈
−

           (3.29) 

The same way of solving gives the result for isotropic metric (3.6): 

max max2 2 2

1' 4.5
3 2 1v v

m m mr r
c c c
γ γ γ

= = − ≈
−

.          (3.29-i) 

3.3.6. Experiment with Interferometer Michelson Type 
Here we used Michelson type interferometer, only now one arm is facing the 
center of the sun, along the radial direction, the other arm of the same dimen-
sions is normal at first (both arm are mutually compared). The influence of the 
earth’s gravity to interference less than influences of sun around thirty times and 
can be neglected. Interference shift of spectral lines depends on the difference 
path two light signals. This time we will follow time the return signal in place of 
interference and thus to determine the path difference. 

Isotropic metric (3.7) gives the following result: 

2

1

2 2

'2 2

2
'

22

2 2 1 1

1 1
' '(I) d ' d ' , ' d ' ,

11 ''
' ', ' ' ', ' '

r

R R R
r

m m
c r c rt r t r

mm
c Rc R

r R r r l l r

γ γ

γγ

   + +   
   = ∆ =
  ++ 
 

= − = ∆ ∆

∫



     (3.29-ii) 

2 2
1

2

1 2   ln 1 , 1
 1

 

R R
m l mt l t l

m rc c R
c R

γ γ
γ

  ∆  ∆ = ∆ + + ∆ ≈ ∆ +    
    +

   (3.29-iii) 

2 2

2 2

2 2

22

1 1
d ' ' '(II) ' ' ' 1
d ' '11 ''

R
R

R

m m
l mc R c rt l l

mt c Rm
c Rc r

γ γ
γ

γγ

   + +        = ⇒ ∆ = ∆ = ∆ + 
   ++ 

 

(3.29-iv) 

The item (I) refers to the radial direction, while (II) describes the movement 
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in the normal direction. The difference of the two time Δt'рад. − Δt'нор. ≈ 0, indi-
cates that it is not possible to observe the shift in the line using the most ad-
vanced devices6. Note the necessity of measuring the length of the two arms of 
the interferometer Δl' in the same place in the system of reference. 

If for a solution to this problem we look for the second approximation, ac-
cording to the metric (3.7) we obtain the following solutions; radial direction 
applies ΔtR ≈ Δl'[1 + γм/c2R(1 + Δl'/R)]. While in the normal direction of cor-
rection due to the curvature of the sphere in relation to the arm of the interfe-
rometer which represents the measuring rod is Δlc ≈ Δl'(1 + Δl'2/24R2); then if we 
take correction due to change G-potential, along the movement of light found 
ΔtR ≈ Δls[1 + γм/c2R + 2γм/c2R(Δl'/R)2] ≈ Δl'(1 + γм/c2R + Δl'2/24R2). The dif-
ference of these two times is equal to c(ΔtRрад. − ΔtRнор.) ≈ Δl'(γм/c2RΔl'/R − 
Δl'2/24R2). How is valid that is γм/c2   Δl', we get the result c(ΔtRрад. − ΔtRнор.) 
≈ γм/c2(Δl'/R)2, that cannot be tested experimentally. 

3.4. Shifting Spectral Lines 

Let the light source be at a distance RS (sun surface) from the center of the sun, 
and the observer at a distance R. We find the energy balance for a photon by 
measuring its energy in both reference systems; using the isotropic metric (3.6) 
we obtain: 

2 21 1

SRR

S

hh
m m

c R c R

νν
γ γ

=
+ +

.                     (3.30) 

Here, the νR frequency of a photon is measured in the system at a distance R, 
and the νRs frequency of the same photon in the system at a distance RS. This 
would mean that atoms on the sun’s surface emit photons with energies corres-
ponding to the difference in energy levels, so that at a great distance from the 
sun, the energies of the same photons would be slightly smaller. It should be 
noted that the influence of the gravitational field on the displacement of energy 
levels in the atom itself is negligible. Energy splitting is of the order of meφa0/R, 
so the difference in energy levels remains unchanged. The lack of photon energy 
at a remote observer has just been replaced by an observer near the sun from the 
gravitational field on the principle of equivalence of gravitational and EM ener-
gy, i.e. by transferring the gravitational potential energy of a particle to its kinetic 
energy.  

By considering the motion of a particle in a field, we can arrive at the same 
result. If we linked the reference system to a free-falling particle, the observer 
would not register an increase in the particle energy (equivalence principle). In 

 

 

6If the first approximation obtained: c(Δt'rad. − Δt'nor.) ≈ Δl'γm/c2R; relation shift Δa and wide stripes a 
for a given light wavelength λ, would be equal to:  

7 11
2

2 ' 5 10 m, 1.5 10 m, ' ? 0.04 'a l m aR l l
a c R a

γ λ
λ

−∆ ∆ ∆
= → = × = × ∆ = ⇒ = ⋅∆ . The calculated dis-

placement can be noted in the experiment and conclude that interference exists, however this does 
not agree with the experimental results. 
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order to obtain a reference system that is stationary in the field, we must act with 
EM force and stop the accelerating particle, in which case the particle loses ki-
netic energy, which it obtains by constantly moving freely in the G-field, so that 
only the rest mass m0 remains. This energy loss is equivalent to the EM energy 
invested to stop the particle. In the same way, a photon receives energy from a 
G-field; thus, its energy increases with respect to stationary observers with an 
increase in the absolute value of the gravitational potential, or decreases with a 
decrease in it. We find this amount of energy from the equation: 

2 2
20

02 2

2

1

1 1
S

S
R

m
m c c R

E m c
mv c

c R

γ

γ

+
= =

− +
.                (3.31) 

Here, ERs is the energy of the particle measured at the surface of the sun (RS), 
and m0c2 is the energy of the particle at location R, from where the particle be-
gins to fall, so v denotes the velocity that the particle reaches at position RS; it 
may also fall from some other distance, so the rest mass need not be taken as 
reference energy. From the equivalence of mass and energy, as well as from the 
principle of equivalence, the equality of relations follows: 

2
0Rs Rs RE m c h hν ν= .                     (3.32) 

The confirmation that in the fixed reference systems the photon energy being 
monitored changes the measurements of the spectral shift towards blue on earth 
in a resonance absorption experiment where there is a difference of gravitational 
potential between the source and the absorber (atoms of the same element). 

From the previous we get the following relation: 

2 2

21

SR R S

R

m m
c R c R

m
c R

γ γ
ν ν

γν

−
−

=
+

.                    (3.33) 

If instead of frequency we look at the wavelength and assume that it changes 
at the same length, we come to the following expression: 

2 2

21

S

S

R R S

R

m m
c R c R

m
c R

γ γ
λ λ

γλ

−
−

=
+

.                   (3.34)  

3.5. The Movement of Light in a Centrally Symmetric Field 

We now observe the path of the ray of light through the gravitational field. The 

equation of motion is determined by the equation of eiconals: 0ik
i kg

x x
ψ ψ∂ ∂

=
∂ ∂

.  

We will use the isotropic metric (3.6), and by putting mf = 0 in the Hamil-
ton-Jacobi Equation (3.46), we obtain the expression for the ray trajectory: 

2 42 2
2 0

2 2 2
0

d 11 , , ,
d

A L m cLL A R
r rc r c

ωσ γσ
ϕ ω

    = + − = = =    
     

.    (3.35) 
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In the next step, we differentiate by φ the above equation, then perform the 
appropriate approximation by neglecting higher order terms by small size. Fi-
nally, we get an equation that is easy to solve: 

2

2 2 2

d 2 2 cos
d

A A k
R R

σ σ σ ϕ
ϕ

+ = ⇒ = + .              (3.36) 

For the boundary condition m = 0, A = 0 follows, so that the value k = 1/R is 
obtained from the above equation. 

In r = ∞ (σ = 0) we look for the trajectory of the curve at small angles of turn 
δφ. We set the coordinate φ in the form φ = ±π/2 + 1/2δφ and finally we find the 
solution: 

2

4 4A m
R c R

γδϕ = = .                      (3.37) 

3.6. The Movement of Light in an Isotropic and Inhomogeneous  
Medium 

Suppose that a centrally symmetric gravitational field is precisely an isotropic 
and inhomogeneous enviroment. To determine the movement of light in the 
G-field, we use the eiconal equation: 

0ik
i kg

x x
ψ ψ∂ ∂

=
∂ ∂

.                      (3.38) 

Putting the isotropic metric (3.6) in (3.38) gives the following equation: 

[ ]
2

2 00
11

1grad g
c t

ψψ γ ∂ =  ∂ 
.                 (3.39) 

An equation is obtained that has the same form as the geometric optics equa-
tion7: 

( ) ( )
2

2 2
2grad N

c
ωψ =  r r ,                  (3.40) 

where N(r) is the refractive index of a given medium at a given point. The re-
fractive index for the central symmetric G-field is found by:  

( ) ( )22 00 11' 1N r c c m c r gγ γ= = + = . 
For Equation (3.40) to be valid, i.e. for a weakly inhomogeneous and translu-

cent medium through which wavelengths pass λ the condition must be fulfilled: 

( )
( )2 2 21 1

gradN m
c RN
γλ λ⇒ 

r

r
.              (3.41) 

The visible light wavelength is about 10−8 … 10−9 m, so the upper inequality is 
certainly filled. 

After some transformations, we get the following formula that describes the 
ray path in a given medium (see Figure 1): 

( ) ( )1 1 gradN
N

= ⋅
ℜ

r
r
ν ,                   (3.42) 

 

 

7Look at the book, B. S. Milić, Elektrodinamika (Fizički fakultet u Beogradu).  
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Figure 1. Bending of a light ray. 

 
where (n, ν, β)) is a natural trihedron, and ℜ is the radius of curvature of the 
ray. 

When the refractive index N(r) for the G-field is entered into Equation (2.35) 
we get: 

2 2 2 2

1 2 2r
m m R

rc r c r
γ γ

≈ − ⋅ =
ℜ

e ν                    (3.43) 

wherein: 

2 2
cos

2r
R

R y
α ⋅ = + = − 

 

π

+
e ν                 (3.43-i) 

We take the fact that the coordinate x changes very little along the ray path x 
≈ R, i.e. the change in ray deflection angle δφ is very small. The formula for ra-
dius of curvature of the ray is obtained from differential geometry. If the curve is 
given in the parametric form x = x(t), y = y(t), where the parameter is time, then 
with the appropriate approximations for weak fields the radius of the curve ℜ is 
calculated by the formula: 

( ) 3 22 2 3 2

1 ' '' '' ' '' ' ''
'' '

x y x y x y x
y cx y

− − −
= ≈ ≈

ℜ +
.                (3.44) 

From here we see that the acceleration x'' is negative, i.e. we set the problem 
by taking the path of ray from y = 0 to y → −∞ because of the symmetry of the 
system: 

( ) 2 2 22 3 22

d 2 d 2,
d x
y mR y mR yc v
t c c R R yR y

γ γ
≈ − = =

++
∫ ;   (3.45-i) 

2
2 2

2 22 2 0
0

2 d 42 d 2
R x

R

m y y mx R y
c R c RR y

γ γ−∆ −∞ −∞ 
− = ⋅ = + ↑ 

 +
∫ ∫ ;    (3.45-ii) 

2

4lim
y

x mtg
y c R

γδϕ ϕ
∆ →−∞

∆
≈ = =

∆
.               (3.45-iii) 
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3.7. Movement of Perihelion of Mercury 

To determine the body trajectory, we use the Hamilton-Jacoby method [2]: 

( )2 2
00; .ik

ri k

S Sg m c S E t M S r
x x

ϕ∂ ∂
− = = − + +

∂ ∂
          (3.46) 

Instead of the Schwarzschild metric, we use the isotropic metric (3.6), which 
describes the field in a simpler way. From the equations of motion we find the 
constants in (3.46): 

2
2

2 2
0

22 2

d 1
d

'd 1 1 1 1 ;
d

AL r
s r

E mt A A v A
s r r cmc c

φ

γ

 = + 
 

    = + = + − =    
     

     (3.46-i) 

The above equations give the following differential equation: 
2 4 22 2

2 20
2 2

d 1 1
d

E A L AL m c
r rc r

σ
φ

     = + − − +     
    

.          (3.47) 

Applying appropriate approximations and differentiating the whole equation 
by φ, we release the constants E0 and arrive at the equation 

2 2 22 2 2 2 2 2
0 0

2 2 2 2 2 2 2

6 2d 1
d

A E AEm c A m c A
L c L L c L

σ σ
φ

 
+ − + = − 

 
.      (3.48) 

The solution to this differential equation is an ellipse rotating in the plane: 

2 2 2 2 2
0

1 2 2 2 2

6
cos 1

E A m c Ak k
c L L

σ φ
 
 = + − +
  

.           (3.48-i) 

From here we see that for one revolution of the planet the change in the angle 
of the perihelion is: 

( )2 2

5 '
1

m
c a e

γδφ =
−

π .                   (3.49) 

This value (about 37" per century for the planet Mercury) is slightly lower 
than the one that follows from the Schwarzschild metric and is available for 
measurement. The influence of other planets and the sun on the perihelion rota-
tion must be calculated precisely (not an easy task), since it dominates with re-
spect to (3.49). The measurement data collected should also be well analyzed. 
The permanent motion of Mercury in the weak G-field of the sun gives an effect 
that is measurable according to (3.49) and different from the solution that fol-
lows from the Schwarzschild metric. We obtained this result over metric coeffi-
cients using the second order of approximation. In the second order of approx-
imation, a difference is observed from the solution of the general theory of rela-
tivity. In support of this, we can refer to the following papers [3] [4]. 

3.8. Electromagnetic Field and Gravity 

Consider the case where in addition to the G-field there is an EM field, present 
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in a wide area of space. Since we tie mass to charges, the interaction between EM 
and G-fields is taken into account in the G-field equations, so the total action for 
this case of the field takes the form: 

( )
( )( )0 0

d

d

E EM I
g E EM I

em ik ik
ik ik em

S S S S R g

R F F F F gγε γε

+ + + = + Λ + Λ + Λ − Ω

 = − ± ± − Ω 

∫

∫
        (3.50) 

wherein the term describing the interaction between the EEM field and a given 
EM field has the form 2I

i
ik

emkF FΛ = ± , where the above sign refers to a positive 
charge. From the principle of least action we obtain the equations of the field 
varying gik: 

( ) ( ) d 0E EM I ik
g E EM I ik ik ik ikS S S S G T T T g gδ δ+ + + = − + + + − Ω =∫  (3.51) 

From here, after the corresponding transformations, the expression follows: 

( ) ( )
;

d 0k E k EM k I k i
g E EM I i i i i k

S S S S G T T T gδ ξ+ + + = − + + + − Ω =∫ , (3.52) 

so because of the arbitrariness ξi we can take 

; ; ; 0E k EM k I k
i k i k i kT T T+ + = ,                  (3.53) 

or when calculated (3.53) it becomes: 

( )( )0 ; 0 ; 0em lk lk
il il k em kF F F Fγε γε+ + = .            (3.54) 

A system of 4 equations with 12 unknown scalar quantities is obtained: 6 in-
dependent gik, E1, E2, E3 end B1, B2, B3; added to (Equation (3.54)) 4 more 
non-source equations that follow from (Fik,l + Fli,k + Fkl,i)EM = 0, then the equa-
tions of motion of the EM field source in the self-generated field should be tak-
en, i.e. the field equations and the equations of motion of the field sources are 
solved in concert. However, in the approximation of the given densities (jα ≈ 
ρvα), we preset the vector jα in advance and in such an approximation one should 
try to solve the set system of equations. 

We now vary the potentials Ai i (Ai)em in action (3.50); as a result we get the 
equations of the field in the form8: 

; 0 ; 02

4 4ik ik i i
k em k emF F j j

cc
γε γεπ

=
π

+ −             (3.55) 

As it can be seen from Equation (3.55), the equations for the EM field in the 
presence of the G-field are not a generalization of Maxwell’s equations, but con-
tain an additional term as a consequence of considering the interactions between 
these fields. 

Let’s try using the static field example to find how the two fields interact. 
Consider a spherical body of uniform matter density and assume that the charge 
is uniformly distributed over the volume of the body. Determine the strength of 

 

 

8In the presence of matter and charges in (3.50), terms appear describing the interaction of these 
fields with the medium present. Suppose in this case the interaction terms take the form:  

( )( )0 o dem i i
I i i emS A A j j gγε γε= + − − Ω∫ . When varying the action, the condition should be ful-

filled [jk − (jk)em];k = 0.  
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the EM field inside and outside the sphere. Since the field of the sphere in the 
system in which it is rest is centrally symmetric and for ease of calculation we 
will take the metric of the form: 

( )2 2 2 2 2 2 2 2d d d d sin ds c e t e r rν λ θ θ ϕ= − − + ⋅ .          (3.56) 

Then we use Equations (3.51), which in the static field pass Gik = (Tik)E + 
(Tik)EM + (Tik)I, and in the area outside the sphere, from (3.56) we obtain the sys-
tem of equations: 

2
2

0 1 2 2

1 1 ' 1'
2

E e e e
rr r

ν λ λ λγε ν− − −   − = − − +   
   

        (3.57-i) 

2
2

0 1 2 2

1 1 ' 1'
2

E e e e
rr r

ν λ λ νγε ν− − −   − = − + +   
   

      (3.357-ii) 

2 2
2

0 1
1 1 ' ' ' ' '' ''
2 2 2 2

E e e e
r

ν λ λ ν ν λ ν λγε ν ν− − −  − − = + + −  
   

.  (3.57-iii) 

These equations are in agreement with Equation (3.55), from which in this 
case we find: 

( )( ) 2 2 2
0 1 1;1
E h e c rν λγε − −− = .               (3.58) 

Solving these equations leads to the following result: 
2

2 1
2 2 3

2 1 1
0 12 22

2 1
2

21 ;

1

c c
c c cr re e E
r r rc c

r r

λ ν γε−
− −

= = + + = +

+ +

,      (3.59) 

where the constants c1 and c2 are determined from the conditions of potential 
continuity at the boundary of the given medium charge density ρe and mass 
density ρ.8 Suppose the densities ρ0e and ρ0 are constant in terms of Equation 
(4.4), i.e. ρ = ρ0e−λ/2; and from (3.55) we obtain: 

( )( ) ( )2 2
0 1 0 0;1

4
3 eE h e rν λγε ρ ρ− − − −
π

− = .          (3.60) 

We then use Equation (3.54), which now goes into 

( ) ( )0 1 0 0 0 0;1 e eE hγε ρ ρ ρ γε= − .             (3.61) 

From (3.60) and (3.61) we find the solution: 

( )22 2
0 0 0 0 0

14 2
.3 ee r constλ ρ ρ γε ρ ρ−  = − − − + +  

π .      (3.62) 

In the presence of matter, Equation (3.57-i) goes to 
2

/2 2
0 1 02 2 2

1 8 1 ' 1'
2

E e e e e
rc r r

ν λ λ λγ λγε ν ρ− − − −   − + = − − +   
   

π     (3.63) 

The agreement of solutions (3.62) and (3.63) leads to the following equation 

0 0 02eρ ρ γε= , so we find a solution in the case of a central field in space inside 
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and outside the spherical body9. Outside the sphere, Equation (3.59) goes into 

2 2
1 02 2

0

11 ; ; 2
4

M Qe e E Q M
c r r

λ ν γ γε
ε

− = = − = =
π

.      (3.64) 

Some other metric choices in a centrally symmetric field, for example: 

( )( )2 2 2 2 2 2 2 2d d d d sin ds c e t e r rν λ θ θ ϕ= − + + ⋅ ,         (3.65) 

according to (3.51), gives rise to free-field equations: 
2

/2 0 2
0 1 04

1 8 2 ' 1' '' '
2 4

E e e T e
rc

ν λ λγ λγε ν λ λ− − −   − = = − − −   
 

π

 
   (3.66-i) 

( ) ( )

2
2 1

0 1 14

2 2

1 8'
2

1 1 1' ' ' ' '
4 4

E e e T
c

e
r

ν λ

λ

γγε ν

λ ν λ ν ν

− −

−

 − = 
 

 = − + + + − 
 

π

           (3.66-ii) 

( ) ( )

2
2 2 3

0 1 2 34 4

2

1 8 8'
2

1 1 1'' '' ' ' '
2 2 4

E e e T T
c c

e
r

ν λ

λ

γ γγε ν

λ ν λ ν ν

− −

−

 − − = = 
 

 = − + + + + 


π



π

        (3.66-iii) 

Now according to (3.65) Equation (3.55) takes the form: 

( )( ) 2 2 2
0 1 1;1
E h e c rν λγε − +− = .                (3.67) 

From (3.67) and (3.55) the solution is: 
2

2 2 1
0 1 2

1 12 2

21 ;
c re e E

c cc cr r

λ ν γε− = = =
 + + 
 

,           (3.68) 

We then search for a solution within a body characterized by constant densi-
ties ρ0 and ρe0, to coincide with (3.68) at the boundary of matter. Thus according 
to (3.66-ii) and (3.66-iii) we have eν = e−λ, so from (3.55) and (3.61) we find: 

( )2
2 0 0 02 2

0

4
3 2

ere e constν λ
ρ ρ γε

ρ
−

−
+

π
= = − .         (3.69) 

Since Equations (3.51), (3.61) and (3.66) are mutually consistent, they are 
coupled by the expression 0 0 02eρ ρ γε= . From here we get a solution in the 
area outside the sphere: 

2
2 2

1 02 22
0

11 ; 1 ; 2
4

M Q Me e E Q M
r c rc r

λ ν γ γ γε
ε

−  = = + = + =
 π   ,  (3.70) 

where the coordinate r is determined in units of the absolute observer. 
Now consider the case of a charged particle in the outer G-field, for example, 

 

 

9From the equation 0 0 02eρ ρ γε=  we find that the elementary charge the restriction applies  
8

0 ~ 10 kgm e γε −= , i.e. we obtain the smallest mass for which the above equations are applicable 

in which we used the gravitational constant γ.  
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a charge q in the G-field of the sun at a distance R from the center. According to 
(3.55) and (365) we find the equation: 

2
0

; 1 2 2
0

10 1
4

k s
em k

mqF E
r c R

γ
ε

 ≈ ⇒ = + 
 π

,           (3.71) 

where r is the distance from the particle, where r/R → 0. 

3.9. Particle Motion Equations in the Gravitational Field 

The geodesic line equation is derived from the principle of least action d 0sδ =∫ ; 
the same is obtained when we move along the unit vector of its tangent in paral-
lel ui = dxi/ds: 

D d 0
d d

i i
i k l
kl

u u u u
s s
= + Γ = .                   (3.72) 

It should be emphasized that Equation (3.72) describes the motion of a free 
particle, which is that particle that moves only under the action of gravity. These 
equations are contained in the G-field maintenance Equations (2.9), since for the 
free particle we obtain (3.72). 

In case that particle is affected by external forces of EM nature, Equation 
(3.72) goes into the form: 

d ,
d

i
i k l ik
kl k

u em m u u F u
s c
+ Γ =                 (3.73-i) 

2 2

d '
d 1

i
i k l ik
kl k

u mm m u u F u
s v c
+ Γ = −

−
           (3.73-ii) 

The term on the right expresses a “4-force” that acts on a body of mass m. In 
Equation (3.73-ii), this EM force is directed opposite to the G-force. Thus, in a 
static field, the body can remain at rest under the action of EM force, which is 
equivalent to gravitational force. From Equation (3.73-ii) for v = 0 we obtain the 
scalar potential of the static field: 

1 0 0 10
00 0 10 0

hu u F u F A h
r

∂
Γ = − ⇒ = ⇒ =

∂
        (3.74) 

In a stationary field the particle can be located at a point which is stationary 
with respect to the center of symmetry of the field, because the field is invariant 
in time; to keep the particle stationary, i.e. for v = 0 it should be subjected to the 
same force as in the case of a static field, regardless of the existence of gα. If we 
put the potentials (1.1) in the EM field tensor in (3.73-ii), then an external force 
acting on the body is represented, which is the force of the equivalent EM field, 
so the following expression is found: 

( )2 2 2

d 0
d 1

v vu
s c v c

α β γα
βγλ

+ =
−

;                   (3.75) 

showing that in this case the resultant force acting on the body is equal to zero, 

https://doi.org/10.4236/oalib.1109530


V. Stepanovic 
 

 

DOI: 10.4236/oalib.1109530 25 Open Access Library Journal 
 

i.e. the force acting on the particle in a constant G-field is equal to the equivalent 
EM force with opposite sign10. For example, when Equation (3.75) is applied to a 
body in a static field moving along the radial direction, its velocity is shown to 
have a constant value. 

From the this, we can conclude that the expression for an equivalent EM force 
in a constant G-field has the form: 

( );2
2

2 21
k

k

hmcf mc F u h rot
chv c

α
α

α α
 

  = = − + ×   −   

v g .    (3.76) 

We use the radial motion of a particle in a static field as an example: 
1

1 2 1 2 0 11 2 2 2 1 1 1
10 11

11
1 1 1111
11

d1 ;
d

, 1 ;
2

k
k

uf mc F u mc F u mc v c u u
s

v h
r

γ λ

γγλ γ

 
= = − = − + 

 
∂ = = − ∂ 

 (3.77) 

( ) ( )
11 11

1 2 2 11 11
10 2

11 11
1 2 2

10

1 1 ' 1 1' ' ;
2 22

h h hf mc F mc h
h h hh

hf mc F mc
h r h

γ γγ γ

γ γ

 − −
= − = − − 

 

∂
= − = −

∂

 (3.78) 

4. Field in the Matter. Tensor Tik for the Macroscopic Body 

We study the central symmetric field in matter; the energy–momentum tensor a 
perfect fluid has the following form: 

( )i i i
k k kT p u u pε δ= + − .                   (4.1-i) 

From here for v = 0 we have: 
0 1 2 3

0 1 2 3,T T T T pε= = = = −                  (4.1-ii) 

A fluid particle at a distance r feels the pressure of the fluid above it as a result 
of the action of gravitational force on all particles of matter. Suppose that the 
element of volume dV is stationary, then the gravitational force of attraction is 
balanced by the pressure gradient, as can be seen from the divergence equation 
of the tensor Tik: 

( ); 0
d

k i
i k i

Du pT p
s x

ε ∂
= ⇒ + =

∂
.                (4.2-i) 

In the static field for v = 0 we get: 

 

 

10The expression for force in a constant gravitational field is determined by the formula:  

( )
2 2

3

2 2 2 2

2 2

D d1 1
d d

1 1

pv v mv mv vf c c
c s c s v v

c c

α α β γ
α α

βγλ= − = − +

− −

. After a short calculation we find in the 

vector three-dimensional form the equation: 
2

2

2

ln
1

mc grad h h rot
cv

c

  = − + ×    −

vf g . 
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( ) ( )
( )0000

00 00

1 1 , 1
2

R
ggp p const p

r r g g
ε ε ε

 ∂∂  − = + = ⇒ = −
 ∂ ∂
 

. (4.2-ii) 

Substituting (4.3) into (4.2-ii), we find the pressure in the spherical body: 
2 2

2 2

1 1

3 1 1

qr qa
p

qa qr
ε

− − −
=

− − −
.                  (4.2-iii) 

In r = 0 we get: 
2

22

1 1 9 2 1 9, ,
8 3 53 1 1

g
qa m pp p R R r

cqa

γε
ε

− −    = → ∞ ⇒ ≥ ≤ ⇒ ≥   
   − −

.(4.2-iv) 

Applying Einstein’s equations and taking the tensor (4.1), for ρ = const and v 
= 0, we obtain the following relations: 

2 2 2 2
2 3

3 1 21 , 1 1 ,
2 2

me ar e aR ar a
c R

λ ν γ− = − = − − − = .       (4.3) 

Field energy is excluded in this consideration, so the mass of the substance is 
the only quantitie for the field calculation. Suppose that the interior mass of a 
sphere is: 

( )
3

3

rm r M
R

= .                        (4.4) 

Using the analogy with classical gravity, suppose that the coefficient of the 
metric is eμ = r2, and that the field intensitie on the surface of a sphere of mass 
m(r) according to the Schwarzschild metric is: 

( )

( )
2 2

2

2
1

m r
h c r

r m r
c r

γ

γ
∂

=
∂

−

.                    (4.5) 

Substituting (4.4) into (4.5) gives us the known expression: 

2
2 2 3

3 11 2 1 2
2 2

M Mh r
c R c R
γ γ

= − − −              (4.5-i) 

However, the choice of (4.4) does not mean that the density is a constant, 
since the element of volume dV = 4πr2eλ/2dr, it turns out that the density is equal 
to ρ(r) = dm(r)/dV = ρ0e−λ/2. We see that this is an element of proper volume, i.e. 
we observe from the system of reference that it is related to a given element of 
the volume of the body, and therefore, if the element of volume is stationary, it 
means that the belonging reference system also remains stationary in relation to 
the absolute system.  

The second approach to this problem comes from the assumption that we can 
add a term that describes the energy of the field. Through the action of the gra-
vitational field on particles and substance we find an equivalent EM field. If a 
given element of matter is stationary, it means that the force by which the gravi-
tational field acts on this particle is balanced by the force of an equivalent EM 
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field that originates from the interaction of the given element with the sur-
rounding matter. For example, suppose that a particle falls freely in matter, and 
this is done by conducting a narrow tunnel along the radial direction of the mas-
sive body. The energy of the EM field required to stop this particle is equivalent 
to the energy that the test body receives in the gravitational field. From here is 
the corresponding tensor of equivalent EM field (Tik)E. 

Suppose the tensor is Tik for matter of the form: Tik = ρuiuk, so in the static 
field the only component other than zero is 0

0T ρ= . If we describe the energy of 
the G-field by a tensor of equivalent EM field (Tik)E, the divergence condition of 
the tensor goes into the form: 

( ) ( )
;

0k k
i im E k

T T + =  .                       (4.6) 

In the static field, this expression takes the form:  

2

'' ' ' ' ' 4
2 4 2

e
c

λ ν ν λ ν µ γ ρ−  − + =
π

 
 

; it agrees with equation 0 0
; 2

4k
kF j

c
γ

=
π . In 

general, the divergence of the tensor (4.6) becomes: 

2

d

i
i k
k

Duc F j
s

ρ = .                        (4.7) 

The equation of motion of a particle of matter, or element of volume dV and 
density ρ, is obtained. In the general field j-na (4.7) is valid only if the motion of a 
particle of matter has a quasi-stationary character2. In the free field, the right term 
of the above expression is zero. However, it would cause the massive body to col-
lapse and shrink it to a point. The element of the continuous medium density ρ 
is not free, but is in the environment of the other matter with which it interacts. 

No pressure appears in these equations; we use it to describe the motion of a 
given dV element in a continuous medium. In the static field, the pressure is ob-
tained from Equations (4.2-ii) with the knowledge of the energy density ε of a 
given massive body and the coefficient g00. 

The equations of a centrally symmetric field in matter can be represented in 
the following form; but let’s first choose an elementary interval in the form: 

( )2 2 2 2 2 2 2d d d d sin ds c e t e r eν λ µ θ θ ϕ= − − + .            (4.8) 

The calculations give the following result11:  

0 2
04

8 3 ' ''' '
4 2

T e e
c

λ µγ µ λµ µ− − = − + − + 
 

π ,            (4.9-i) 

( )( )21 2
14

8 1 ' ' '
4

T e e
c

λ µγ µ ν ν− −− = − −
π

+ ,            (4.9-ii) 

( ) ( )( )( )2 2
24

8 1 2 '' '' ' ' ' ' '
4

T e
c

λγ ν µ ν µ ν µ λ−− = + + + + −
π       (4.9-iii) 

We set the tensor components of Tik in the form i i
k kT u uρ= , but now assume 

that the density is: 

 

 

11Videti, L. D. Landau, Teorija polja.  
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( ) 2 2
0r e e rλ µρ ρ − −= .                     (4.10) 

These equations agree with the divergence condition (4.6), so we have four 
equations with three unknowns at our disposal. 

Using (4.9), (4.10) and (4.4), as well as choosing eμ = r2, we obtain a solution 
in the form: 

3/2
2 2 2 2

2 2 32 31 , 1 1M M Me r e r
c R c Rc R

λ νγ γ γ−  = − = − − 
 

.       (4.11) 

In the next step, we look for the relationship between the coefficients eμ i eλ. 
From (4.9-i) and (4.9-ii) it follows: 

( )2 2 2 2 2' ' ' 4 '' '
2 4

Ae e e e eµ λ µ µ λ µ λλ µ µ ρ µ µ− −π
π

+ − = + ,     (4.12-i) 

( ) ( ) ( ) ( )2 2 2
2

2' 'd 2 d ' 'de e r e const m r e
c

λ µ µ µ λγ µ µ µ− −− + + − = +∫ ∫ , (4.12-ii) 

( ) ( ) ( )2 2 2
2

2' 2 , 4 de e e m r const m r e e r
c

λ µ µ µ λγ ρ−− + − = π= ∫ . (4.12-iii) 

The above equation allows us to obtain the desired metric form by a suitable 
choice of the coefficient eμ. 

Let us look at the reference systems in which the particle is stationary, in 
which the mass of the particle remains unchanged, this implies for the local 
proper frame, but it should also apply to a coordinate system whose center does 
not coincide with the coordinates of the particle. If a particle moves in a refer-
ence system, the variable mass m' is represented as the zero physical-coordinate 
of the momentum vector pμ = mcuμ; in the static field, gα = 0, so we find: 

00
0 2 2

'
1

mm mu g
v c

= =
−

,                 (4.13) 

where za v = 0 we have m' = m. 
The fixed observers distributed along the radius of the massive body repre- 

sented by the field source at a distance r measure the mass m(r). The function 
m(r) can be set in advance, so as the unit of proper volume depends on the place 
in the field, so does the density ρ = dm/dV change, that is, we can write that the 
mass m(r) has the form: 

( ) 24 dm r e e rµ λρπ= ∫ .                 (4.13-i) 

By choosing a metric form where eμ = r'2eλ (ie referring to an absolute observer 
measuring its own standard of length), and specifying a mass in the form m(r') = 
Mr'3/R’3, since it is a different coordinate system. Equation (4.12-iii) gives the 
following equation: 

(( )

2 2
2

2
2

2 2 3

2
2 2 2 2 2 2

2 2 3

dd
3 11 '
2 2' '

3 11 ' d ' ' d sin d
2 2' '

c ts
M M r

c R c R

M M r r r
c R c R

γ γ

γ γ θ θ ϕ

=
 + − 
 

 − + − + + 
 

    (4.14) 
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From here it can be seen that the speed of light and particles depends on the 
field potential. As the kinetic energy of a particle grows in the field, so the field 
provides greater resistance to its motion due to the interaction of the field and 
the particle, so it should be expected that in strong fields the particle can be 
slowed down by an external observer. 

5. Conclusions 

This approach to describing the G-field should make sense, since the physical 
assumptions are clear and the mathematical apparatus used is rounded. The de-
rived field equations are in agreement with the particle motion equations and 
complement each other. For example, in a centrally symmetric field from the 
equation of motion of a particle, we find metric coefficients based on the Prin-
ciple of Equivalence, which are added to the field equations to have a sufficient 
number of equations to solve the metric form. 

The obtained equations and solutions were compared with the General Theory 
of Relativity and the differences were analyzed. The solutions of the equations 
where this difference is significantly observed are: (2.4), (3.3), (3.6), (3.18), 
(3.49), (3.64), (3.70), (4.11) and (4.14). 

Thus, the example of the equation R = 0, where R is a scalar curve, is interest-
ing, as a special case of the equation that follows from the General Theory of Re-
lativity. As we have seen in the static field, this equation is also valid for the case 
when the EEM field is introduced. As from the condition R = 0 we obtain a solu-
tion of the metric coefficients with two constants, which by symmetry corres-
ponds more to the equations for the EEM field, than the Schwarzschild solution 
with one constant in the metric coefficients.  
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