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Abstract 
Aerosols have become a major subject of concern at global, regional and local 
scales. They influence Earth’s radiation budget by scattering and absorbing 
solar energy resulting in atmospheric cooling and warming respectively. How-
ever, immense efforts have been devoted to monitoring atmospheric aerosols 
using various techniques ranging from in-situ, ground and satellite-based remote 
sensing and modeling techniques. Thus, time series analysis and forecasting have 
gained momentum over recent decades. The current study performed a time 
series analysis using Box-Jenkins procedure-based ARIMA (Autoregressive In-
tegrated Moving Average) model for aerosol properties (Total Aerosol Opti-
cal Depth, TAOD; Absorption Aerosol Optical Depth, AAOD; Scattering 
Aerosol Optical Depth, SAOD and Direct Aerosol Radiative Forcing, DARF) 
over EA derived from satellite platforms. The formulation process in MATLAB 
followed by the current study has been outlined with a view to generating the 
best fitting seasonal ARIMA (p, q, d) × (P Q D) model. The finding for the 
forementioned characteristics reveals clear seasonal variation, hence, dif-
ferencing was done. The Autocorrelation Function (ACF) and Partial Autocor-
relation Function (PACF) of differenced series are estimated and the signif-
icant lags are used to find out the order of the model. The statistical para-
meters (RMSE, MAE, MAPE, MASE and normalized BIC) were estimated 
for testing the validity of ARIMA models so formulated. The current study 
found that ARIMA (1, 0, 0) × (2, 1, 2)12 model is adequate for forecasting 
and was therefore used to forecast aerosol characteristics for the year 2022- 
2025 over EA domain. ARIMA model ascertained can be applied to other 
fields of study such as climatology, and climate change among other areas 
to predict future values so that timely control measures can effectively be 
planned. 
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1. Introduction 

Aerosols have become a major subject of concern over recent decades in varied 
domains because of their significant influence on Earth’s radiation budget. They 
influence Earth’s radiation budget by scattering or absorbing incoming and out-
going radiation [1] [2] [3]. Scattering of incoming solar radiation results in the 
cooling of the Earth’s atmosphere, whereas absorption by aerosols yields a warm-
ing effect. On the other hand, aerosols also modify cloud properties, by enhancing 
cloud droplet concentration, decreasing the mean droplet size and hence increas-
ing cloud lifetime [3] [4] [5]. These aerosol effects depend on the amount, type 
and size of dominant aerosol over a given domain. 

Due to aerosol effects outlined, massive efforts have been dedicated to mon-
itoring atmospheric aerosols using various techniques ranging from in-situ and 
ground-based remote sensing (AERONET [6]; EARLINET [7]; CARSNET [8]) 
to satellite-based remote sensing (MODIS [9]; MERRA [10]). Recent efforts 
have also focused on statistical modeling and prediction [11] [12] and [13] which 
is intended to determine various atmospheric processes such as sources, transfor-
mation processes, transport, trends and sinks of aerosols and their precursors.  

In this regard, time series analysis and forecasting deal with understanding the 
past relationship among the variables by using various modeling techniques with 
the ultimate goal of obtaining accurate predictions of future values. The time series 
prediction and forecasting of atmospheric aerosols are hence theoretically and prac-
tically of great importance. The current study, therefore, used Box-Jenkins-based 
ARIMA (Autoregressive Integrated Moving Average) model to perform a time 
series analysis on aerosol properties over EA. The model was chosen because of 
covering a wide range of patterns, varying from stationary to non-stationary and 
seasonal time series. However, in formulating the best fitting ARIMA model, 
fundamental assumption that the prediction of the future values is dependent on 
historical sequences of the observed variables was made.  

The ARIMA model provides a framework for steering uncertainty into pre-
dictions and thus, has widely been used in different fields [14] and [15]. The use 
of stochastic methods has been drawn-out to various fields of climatology such 
as wind speed [16]; precipitation [17]; air and water temperature [17] and aero-
sols [13]. As such, several studies have been conducted in various fields on sta-
tistical analysis using ARIMA model. For instance, Soltani et al. [18] devel-
oped the time-series model to forecast climatic fluctuations. Autoregressive 
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(AR) models, Moving Average (MA) models or Autoregressive Moving Average 
(ARIMA) models were used in air-pollution modeling to predict and analyze the 
time series data [19] [20]. Soni et al. [21] performed a statistical analysis of 
MODIS AODs over the Gangetic-Himalayan region using ARIMA and indicated 
that AODs followed a Brownian time series motion. Further, the autocorrelation 
structure indicated a deterministic pattern in the time series over the region. Jere 
and Moyo [22] performed a residual analysis for autocorrelated econometric 
model using Box-Jenkins procedure in determining ARIMA model. The study 
identified that ARIMA (0, 1, 0) is most appropriate for analysis. Zhang [23] pre-
sented modelling of epidemiological data using Box-Jenkins procedure and fur-
ther applied it in the forecasting malaria data over Zambia. Results indicated 
that the suitable model is ARIMA (1, 0, 0) since ACF has an exponential decay 
and the PACF has a spike at lag 1 which is an indication of the said model. Khan 
and Gupta [24] determined a time series forecasting using a hybrid ARIMA and 
neural network model. Bhatnagar et al. [25] used ARIMA based prediction 
model for time series analysis of COVID-19 cases in India and proposed that 
ARIMA (1, 1, 0) was the best fitting model based on BIC and regression values 
(R2). 

1.1. Instrumentation and Data 

The ARIMA method is majorly known based on the Box-Jenkins method [26]. 
The Box-Jenkins method relates to the fitting of ARIMA model to a given data 
set. It is fabricated to replicate time series values through three steps: identifica-
tion, estimation, and diagnostic check [13] [21] [27]. Besides the three steps in 
model advancement, it can further be used to forecast future trends.  

AOD data used to characterize and assess fundamental models in the TAOD, 
AAOD, SAOD and DARF time series, traverses from 2001-2019 and were sourced 
from various satellite platforms such as moderate Moderate-resolution Imaging 
Spectroradiometer (MODIS, TAOD), Ozone Monitoring Instrument (OMI, AAOD) 
and Modern-Era Retrospective Analysis for Research and Applications (MERRA, 
SAOD and DARF)-2 model. However, these platforms and how to obtain data 
have been described in detail by [3]. 

1.2. Scope of the Study 

Statistical analysis in the present study was conducted over East Africa which lies 
between latitudes (12˚S, 5˚N) and between longitudes (28˚E, 42˚E). The figure 
showing the study domain for the present study has been outlined vividly by 
Khamala [3]. The region has a great diversity of landforms that includes glaciated 
mountain peaks with permanent snow cover, plateaus and coastal plain [3]. The 
domain is bounded by Ethiopia and Sudan to the north, Somalia and the Indian 
Ocean to the east, Rwanda, Burundi, and DRC to the west, and Mozambique 
and Zambia to the south. Further description of the study domain and the cli-
matology has been outlined by Khamala et al. [3]. 
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2. Methodology 
2.1. Arima Model Formulation  

The Box-Jenkins methodology for forecasting was first described by Box et al. 
[26]. Mounting a time series model using the Box-Jenkins modeling procedure 
allows us to determine an ARIMA (p, d, q) model that is simple in providing 
sufficiently accurate description of the behavior of the data. To formulate the 
best ARIMA model, at least 50 observations (n) of data are set in Box-Jenkins. 
However, this data is edited to remove the fill values or other distortions through 
the use of log or inverse to achieve stabilization. Figure 1 illustrates the forecasting 
flowchart formulated for forecasting aerosol parameters using commands in 
MATLAB following Box-Jenkins procedure.  

The process begins with downloading raw data for the studied system (input 
file). The pre-processed input file containing the fill values are processed and 
imported into MATLAB using the load command and import file command. 
After the model is trained and calibrated, data is visualized using interactive 
plots, including ACF and PACF following the process outlined in Figure 1. The 
number of ACF and PACF to be calculated is denoted as n/4 with n as the num-
ber of observations. The calculated ACF and PACF are used in identifying the or-
ders of p and q by matching the patterns with the theoretical patterns of known 
models.  
 

 
Figure 1. Formulated flowchart for trend simulation and forecast using Box-Jenkins pro-
cedure. 
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2.2. Time Series Prediction and Forecast 

A time series in AOD, AAOD, SAOD and DARF is viewed like a series of random 
variables comprising one or more of the subsequent elements: a trend compo-
nent (Tt), a seasonal component (St), and a random component (Rt). These 
comportments can be perceived by examining the Autocorrelation Function 
(ACF) plot and the Partial Autocorrelation Function (PACF) plot. When TAOD, 
AAOD, SAOD or DARF time series gives a fixed mean and variance, then it is a 
fixed time series. The erraticism of a fixed time series can thoroughly be explained 
by an Autoregressive Moving Average (ARMA) model. ARMA is a collective mode 
of the autoregressive model (AR) that has a p-order and the moving average 
(MA) model that has a q-order, defined as ARMA (p, q) i.e.: 

( ) ( )p t q tB y Bφ θ ε=                          (1) 

where, ty  signifies MODIS AOD at time point t; B the backshift operator on 
time series as 1t tBy y −= , 2

1 2t t t tB y BBy By y− −= = = ,  , k
t t kB y y −= ; ( )p Bφ  

denotes the AR operator as ( ) 2
1 21 p

p pB B B Bφ φ φ φ= − − − − ; while ( )q Bθ  
marks the MA operator as ( ) 2

1 21 q
q qB B B Bθ θ θ θ= + + + +  and ( )20,tε σ  is 

the random shocks. 
When gradual decay is noted in ACF map, the time series is non-stationary 

and differencing procedure (d) is required to change it to a stationary one. This 
time series is outlined as ARIMA (p, d, q) and defined by Equation (2). 

( )( )1 d
p t q tB B y Bφ θ ε− =                         (2) 

To justify the annual, seasonal and non-stationary comportments in TAOD, 
AAOD, SAOD and DARF time series, an extension of multiplicative seasonal 
ARIMA (SARIMA) model is introduced. It is denoted as ARIMA (p, d, q) × (P, 
D, Q)s and given by: 

( ) ( )( ) ( ) ( )1 1
Dss s s

P p t q Q tB B B B y B Bφ θ εΦ − − = Θ             (3) 

where, D signifies seasonal differencing; s seasonal period (e.g., 2, 3, 4, 12); 

( )s
p BΦ  seasonal AR operator as ( ) 2

1 21s s s ps
p pB B B BΦ = −Φ Φ Φ− − −  and 

s
Q BΘ  is the seasonal MA operator as 2

11s s s Qs
Q Q QB B B BΘ Θ Θ= +Θ+ + + . 

After differencing the time series, the ACF and PACF plots are used to settle pa-
rameters p, q, P, and Q. Then, a maximum likelihood estimate is used to fit the 
model. 

To check if the constructed model is suitable to describe variations in TAOD, 
AAOD, SAOD and DARF time series, fitting accuracy measures will used. If a 
model fits well, the residuals of the model would be random and the goodness of 
fitting should be lowermost. Accordingly, this study will use Bayesian Informa-
tion Criterion (BIC), Root Mean Square Error (RMSE), Mean Absolute Error 
(MAE), and Mean Absolute Percentage Error (MAPE). These principles were 
used to reveal a model’s abilities in explaining variances of TAOD, AAOD and 
SAOD time series. The best-designed ARIMA model is the one with least BIC, 
RMSE, MAE, MASE and MAPE [13]. The best-fitted model ascertained is ap-
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plied in forecasting TAOD, AAOD, SAOD and DARF values in sixty seasons 
(five years). RMSE, MAE, and MAPE are additionally used to measure the accu-
rateness of the model projections. Furthermore, to authenticate with MODIS 
AOD retrievals, the AERONET AOD measurements available at the given time 
period are also deemed for site validation.  

2.3. Model Parameters 

The formulated methodology consists of a three-step iterative procedure. The 
first step is the identification of a suitable box-Jenkins model where stationarity 
of the time series is established. To obtain a stationary time series, differencing 
process is utilized until the seasonality in data diminishes. The AR and MA terms 
of stationary time series data are then obtained by examining the patterns of ACF 
and PACF plots, which involves much trial and error. Once tentative models are 
identified, the next step is estimation of model parameters. This is followed by 
the diagnostic step to verify the adequacy of the identified models in order to se-
lect the best fit model. The model is affirmed adequate if residuals (errors be-
tween actual and model predicted values) are random. In this regard, the pre-
ferred model is the one that yields minimum Bayesian Information Criterion or 
BIC [28], which is denoted as 

( ) ( )BIC 2ln | lnf y k k nθ= − +                       (4) 

where, “y” is the observed data; “θ” embodies model parameters; “n” signifies 
sample size and “k” is the number of estimation parameters.  

Accordingly, root mean square error (RMSE; Equation (5)), mean absolute 
error (MAE; Equation (6)) and mean absolute percentage error (MAPE; Equa-
tion (7)) were used in determining the best model developed. These principles 
will used to reveal a model’s abilities in explaining variances of TAOD, AAOD 
and SAOD time series.  

( )2
1

1 ˆRMSE i
n

ii y y
n =

= −∑                          (5) 

1

1 ˆMAE i
n

ii y y
n =

= −∑                           (6) 

And 

1

ˆ1MAPE i i
i

i

n y y
n y=

−
= ∑                          (7) 

The best-formulated ARIMA model is the one with least BIC, RMSE, MAE, 
MASE and MAPE (Li et al., 2019). The best-fitted model ascertained is applied 
in forecasting TAOD, AAOD, SAOD and DARF values in sixty months/seasons 
(five years). RMSE, MAE, and MAPE are additionally used to measure the accu-
rateness of the model projections. To authenticate with MODIS AOD, SAOD, 
OMI and DARF retrievals, the AERONET AOD, extinction AOD, AAOD and 
DARF measurements available at the given time period are deemed for site vali-
dation.  
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3. Results and Discussion 
Time Series Prediction 

The long-term series in monthly TAOD550 nm (actual series-dotted black line and 
simulated series-dotted red line) average over EA from January 2001 to Decem-
ber 2019 is depicted in Figure 2. The seasonality in the time series can be used in 
the statistical model, in order to determine the future trends in TAOD. There is 
a common trend in TAOD, SAOD, AAOD and DARF observed in the seasons of 
each year. Based on the spatiotemporal trend in forementioned parameters, pre-
diction of future trend is achieved using ARIMA model. The results obtained by 
following the iterative procedure of ARIMA model estimation is given in the 
subsequent sections.  

 

 
Figure 2. Monthly time series for (a) MODIS TAOD, (b) OMI AAOD, (c) MERRA SAOD, and (d) de-
rived MERRA DARF during 2001 to 2019 over EA. 
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First, is the identification of stationary time series: Since the time series has 
varying mean, variance, and autocorrelation over time, it is considered non-stat- 
ionary. The variations are attributed to atmospheric variables that interfere with 
the identification of correlation behavior in time series [13]. Therefore, there was 
need to transform to a stationary series by taking 12-month differencing of data 
to remove seasonal effect. The patterns of the autocorrelation (ACF) and partial 
autocorrelation (PACF) plots were then studied for stationary state. In this re-
gard, autocorrelation includes the correlations between time series and its own 
lag. On the other hand, partial autocorrelation entails correlation coefficients be-
tween the time series and its own lag along with elimination of transmission be-
tween the individual values, for example between ty  and 2ty −  with the elimi-
nation of influence of the observation 1ty − . The sequence obtained after eva-
luating ACF and PACF is considered stationary if it rapidly converges to zero 
with the increasing value of lag.  

Figure 3 is ACF and PACF correlation graphs for monthly mean TAOD with 
different selections of seasonal and non-seasonal differencing. The two horizon-
tal lines in the plots denote a p-value of 0.05 (95% confidence intervals) of the 
estimated autocorrelation and partial autocorrelation coefficients. The x-axis in-
dicates time lag (k), signifying the number of times steps one value is separate 
from another; the y-axis represents value of the correlation that lies between +1 
and −1. 

Secondly, is the estimation of the order of ARIMA model: In this step, the or-
ders for ARIMA model were tentatively identified by examining the ACF and 
PACF graphs of stationary time series. Figure 3(a) indicates ACF and PACF 
plots without any differencing (d = 0, D = 0). The seasonal autocorrelation rela-
tion is significantly shown in this plot. As such, a big spike is noticed at lag 1 in 
ACF in Figures 3(a)-(d), which reveals a strong correlation of each value of 
time series with the preceding value. Another significant spike is noted at lag 12 
in Figures 3(a)-(d), indicating a strong seasonal correlation between each series 
value and the value occurring 12 points formerly. It is equally detected that the 
PACF has significant spike at lag 1 (Figures 3(a)-(d)) and dies off thereafter. At 
the seasonal level, PACF has large spike at lag 12 and cuts off thereafter. Thus, 
the orders of non-seasonal (p, d, q) and seasonal (P, D, Q) autoregressive and 
moving average parameters have been determined from the ACF and PACF plots 
of the stationary time series.  

Thirdly, the assessment of ARIMA model parameters: Table 1 shows the twelve 
possible combinations for model parameters. The identified models fitted to the 
data with parameter estimates have been summarizes based on Root Mean 
Squared Error (RMSE); Mean Absolute Percentage Error (MAPE); (MASE); Mean 
Absolute Error (MAE) and normalized Bayesian Information Criteria (BIC). 
The assessed autocorrelations and partial autocorrelations between the residuals 
at various lags using only two best combinations out of the twelve ARIMA mod-
els are depicted in Figure 4. 
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Figure 3. ACF and PACF plots: (a) without differencing, (b) with non-seasonal differencing only, (c) with seasonal differenc-
ing only, and (d) with both seasonal and non-seasonal differencing both. 

 
It is distinct that all the lags are within the 95% confidence level at a p-value of 

0.05. This infer those residuals are random (white noise), specifying that the 
models are a good fit. It is also observed that all 34 autocorrelation coefficients 
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Figure 4. Assessed residual ACF and PACF using different ARIMA models. 

 
Table 1. Possible ARIMA model combinations of parameters. 

Model RMSE MAPE MASE MAE Normalized BIC 

ARIMA (1, 0, 1) × (2, 0, 1)12 0.0647 17.050 0.9186 0.0286 −68.429 

ARIMA (1, 0, 0) × (2, 1, 1)12 0.0314 13.415 0.7373 0.0230 −114.175 

ARIMA (1, 0, 1) × (2, 1, 2)12 0.0314 13.423 0.7477 0.0230 −103.797 

ARIMA (1, 0, 1) × (2, 1, 2)12 0.0314 13.367 0.7366 0.0230 −99.135 

ARIMA (1, 0, 0) × (2, 1, 2)12 0.0313 13.379 0.7350 0.0228 −114.380 

ARIMA (1, 0, 2) × (2, 1, 2)12 0.0314 13.425 0.7393 0.0231 −92.7053 

ARIMA (1, 1, 1) × (2, 0, 1)12 0.0319 13.833 0.7555 0.0236 −107.305 

ARIMA (1, 0, 0) × (0, 1, 2)12 0.0315 13.435 0.7403 0.0231 −113.429 

ARIMA (2, 0, 2) × (2, 1, 2)12 0.0313 13.481 0.7421 0.0231 −87.3830 
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Continued 

ARIMA (2, 1, 1) × (2, 0, 1)12 0.0321 13.692 0.7489 0.0234 −93.115 

ARIMA (2, 1, 2) × (2, 0, 2)12 0.0320 13.848 0.7557 0.0236 −90.7291 

ARIMA (2, 0, 0) × (2, 1, 2)12 0.0315 13.465 0.7410 0.0231 −103.291 

RMSE—Root Mean Square Error; MAPE—Mean Absolute Percentage Error; MASE—Mean 
Absolute Scaled Error; MAE—Mean Absolute Error; and BIC—Bayesian Information 
Criterion. 
 

 
Figure 5. Forecast for the best models. 
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are statistically insignificant, an indication that residuals are not autocorrelated 
with each other. A model with the minimum value of normalized BIC, RMSE, 
MASE MAE and MAPE is realized to be ARIMA (1, 0, 0) × (2, 1, 2)12, hence 
considered as the best fit model which can be used to generate any required 
forecasts. 

Lastly, is the forecasting of TAOD, SAOD, AAOD and DARF: Once the model 
adequacy was established, the time series was forecasted during the definite pe-
riod, using the best fitting model but keeping a track on the forecasting errors 
and consequently re-evaluating the model. Therefore, the best model has been 
used for forecasting and hence evaluated for the magnitude of errors. The time 
series analysis of the forecasted TAOD, SAOD, AAOD and DARF using the best 
model are illustrated in Figure 5. 

The trends in the forecasted series conform to the finding by previous research-
ers such as [3] during the spatiotemporal analysis of TAOD, SAOD as well as 
AAOD. As such, the probable implication of developing forecasting model for 
predicting the expected trends in AOD and its component in advance is that 
timely control measures in AOD can effectively be planned. Also, ARIMA model 
ascertained in this study can be applied to other fields of study such as climatol-
ogy, climate change among other areas to predict the future values.  

4. Conclusion and Recommendation 

The study has presented the stochastic behaviour of TAOD, SAOD, AAOD and 
DARF over EA. Based on the forementioned parameters, a set of ARIMA models 
have been identified and evaluated to replicate and reproduce their time series. 
The time series in AOD and radiative characteristics portray clear seasonal vari-
ation with both showing a Brownian time series motion. Therefore, seasonal 
differencing is performed to make it stationary. The ACF and PACF of the trans-
formed series are estimated and the significant lags are used to find out the order 
of the model. The statistical parameters (RMSE, MAE, MAPE, MASE and nor-
malized BIC) are estimated for testing the validity of ARIMA models so formu-
lated. Based on the model parameters it is found that ARIMA (1, 0, 0) × (2, 1, 
2)12 model is the best fitting model hence adequate for forecasting aerosol para-
meters. Also, after finding the mean percentage error (MPE) between the actual 
and forecasted values of the models shows the least error is realized by ARIMA 
(1, 0, 0) × (2, 1, 2)12, indicating the suitability of this model as well for the fore-
casting purpose. Forecasts at a p-value of 0.05 have also been carried out based 
on the best fitting model till the year 2025 and are clear from the results that the 
past influences the future values of parameters. The best model ascertained is herein 
recommended to be applied to other fields of study such as climatology, and cli-
mate change among other areas, to predict future values.  
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