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Abstract 
In recent years, there are many surrogates for tensor tubal rank. In this paper, 
we propose a hybrid norm consisting of the weighted nuclear norm and the 
weighted Frobenius norm (WTNFN) of a tensor. The WTNFN is a surrogate 
for tensor tubal rank, and studies the weighted tensor nuclear and Frobenius 
norm minimization (WTNFNM) problem. The aim is to enhance the stability 
of the solution and improve the shortcomings of the traditional method of 
minimizing approximate rank functions based on the tensor nuclear norm 
(TNN) in the field of low-rank tensor recovery. Based on this definition, we 
build a novel model for typical tensor recovery problems i.e. the weighted 
tensor nuclear and Frobenius tensor completion (WTNFNTC). The experi-
mental results on synthetic data and real data show that the stability and re-
covery effects of the model are improved compared with related algorithms. 
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1. Introduction 

With the development of modern computer information technology, various 
data have emerged in many application fields such as mobile Internet, statistics, 
and psychometrics. These data are not only huge in scale, but also have the re-
markable characteristics of extremely high dimensionality and complex struc-
ture. As a natural representation of multi-dimensional data, tensors are the ge-
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neralization of 1-order vectors and 2-order matrices in higher-order forms [1]. 
In recent years, the research interest in tensors has expanded to many fields: 

e.g., computer vision [2], machine learning [3], pattern recognition [4], signal 
processing and image processing [5] [6]. For example, in a video recommenda-
tion system, user rating data can be expressed as a 3-order tensor of “user × vid-
eo × time” [7]; a color image is a 3-way object with column, row and color mod-
es. Compared with vectors and matrices, in these applications, tensors can better 
retain the intrinsic structure information of high-dimensional spatial data. But 
the tensor of interest is frequently low-rank, or approximately so [8], and hence 
has a much lower-dimensional structure. This motivates the low-rank tensor 
approximation and recovery problem. The core of the low-rank tensor recovery 
model is the tensor rank minimization.  

In matrix processing, the rank minimization is NP-hard and is difficult to 
solve, the problem is generally relaxed by substitutively minimizing the nuclear 
norm of the estimated matrix, which is a convex relaxation of minimizing the 
matrix rank [9]. However, as a high-level extension of vectors and matrices, 
whether there is also a method similar to the matrix LMRA for low-rank tensor 
approximation and how to extend the low-rank definition from a matrix to a 
tensor is still a question worth studying. Because the notions of the tensor nuc-
lear norm, and even tensor rank, are still ambiguous or nonuniform. 

The most two popular tensor rank definitions are the  
CANDECOMP/PARAFAC(CP)-rank, which is related to the CANDECOMP/ 
PARAFAC decomposition [10], and Tucker-rank, which is corresponding to the 
Tucker decomposition [11] [12]. The CP rank is defined as the smallest number 
of rank one tensor decomposition, where the computation is generally NP-hard 
[13] and its convex relaxation is intractable. For the Tucker rank minimization, 
Liu et al. [14] first proposed the sum of nuclear norms (SNN) of unfolding ma-
trices of a tensor to approximate the sum of Tucker rank of a tensor for tensor 
completion. Unfortunately, albeit the tucker rank and its convex relaxation are 
tractable and widely used, its direct unfolding and folding operation tend to 
damage intrinsic structure information of the tensor and SNN is not the convex 
envelope of the tucker rank according to [15]. 

Recently, Kilmer et al. [16] focused on a new tensor decomposition paradigm, 
namely tensor singular value decomposition (T-SVD), which is similar to the 
singular value decomposition of matrix. By using T-SVD, Kilmer et al. [16] de-
fined the concept of tensor tubal rank, which is based on tensor-product (t-product) 
and its algebraic framework. T-SVD allows the matrix analysis to be extended to 
the tensor, while avoiding the inherent information loss in matricization or flat-
tening of the tensor. The tensor tubal rank can well characterize the intrinsic 
structure of a tensor, and thus, solving low-tubal-rank related problems starts to 
attract more and more reasonable research interest these years. 

This work focuses on the low-tubal-rank tensor recovery problem under the 
T-SVD framework. For the underlying tensor with low-tubal-rank assumption, 
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it can be recovered by solving the following optimization: 

( ) ( )min tf rankτ+ ⋅


                      (1) 

where 0τ >  is a regularization parameter, ( )trank ⋅  denotes the tensor tubal 
rank. 

It has been proved that solving (1) is NP-hard. The commonly used convex 
relaxation for the rank function is the tensor nuclear norm. In the recent work 
[17], Lu et al. first defined the tensor average rank and deduced that a tensor al-
ways has low average rank if it has low tubal rank and then proposed a novel 
tensor nuclear norm that is proven to be the convex envelope of the tensor av-
erage rank within the unit ball of the tensor spectral norm, which performed 
much better than other types of tensor nuclear norm in many tasks. This me-
thodology is called as tensor nuclear norm minimization (TNNM). The nuclear 
norm of a tensor 1 2 3n n n× ×∈ , denoted by 


 . The TNNM [17] approach 

has been attracting significant attention due to its rapid development in both 
theory and implementation. A general TNNM problem can be formulated as 

( )min f τ+ ⋅


                        (2) 

However, even though tensor nuclear norm relaxation is becoming a popular 
scheme for the low-tubal-tensor recovery problem, it is also associated with 
shortcoming. The tensor nuclear norm suffers from the major limitation that all 
singular values are simultaneously minimized, which implies that large singular 
values are penalized more heavily than small ones. Under this circumstance, 
method based on nuclear norms usually fails to find a good solution. Even 
worse, the resulting global optimal solution may deviate significantly from the 
ground truth. In order to break through the limitations of the tensor nuclear 
norm relaxation method, there is currently work to solve the low-tubal-rank re-
covery problem by employing a weighted tensor nuclear norm and nonconvex 
relaxation strategy. The essence of relaxation is to overcome the unbalanced pu-
nishment of different singular values. Essentially, they will keep the larger sin-
gular values larger and shrink the smaller singular values. Hence, the method has 
already been well studied and applied in many low-tubal-rank tensor recovery 
problems, and in real applications, weighted tensor nuclear norm relaxation me-
thods usually perform better than tensor nuclear norm relaxation. In addition, 
for low-rank representation, the Frobenius norm has been shown to perform 
similarly to the nuclear norm [18] [19]. 

This paper mainly studies the tensor completion problem. Different from the 
existing nonconvex tensor completion models, this paper also considers the sta-
bility and low rank of the solution of the tensor recovery model, and proposes a 
relatively stable low-rank nonconvex approximation of tensors. Specifically, our 
contributions can be summarized in the following three points. 
• First, Similar to the tensor nuclear norm definition form, we show that the 

square of the tensor Frobenius norm can be defined as the sum of its singular 
value squares. Based on the above definition, assign different weights to sin-
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gular values of a tensor. We propose a surrogate of the tensor tubal rank, i.e., 
the WTNFN. 

• Second, to optimize the WTNFN-based minimization Problem, we extend 
the weighted tensor nuclear and Frobenius norm singular value thresholding 
(WTNFNSVT) operator which is given with careful derivations. For the ten-
sor in the complex field, and demonstrate that it is the exact solution to the 
WTNFN-based minimization problem. The bounded convergence is also 
demonstrated with strict proof. 

• Third, we adapt the proposed weighted tensor nuclear and Frobenius norm 
model to different computer vision tasks. In tensor completion the model 
outperforms TNN methods in both PSNR index and visual perception. The 
proposed WTNFN-TC models also achieve better performance than tradi-
tional algorithms, especially, the low-rank learning methods designed for 
these tasks. The global optimal solution obtained above is relatively stable 
compared to existing weighted nuclear norm models. 

The rest of this paper proceeds as follows: Section II briefly introduces some 
notations, preliminaries, and some preliminary works; Section III analyzes the op-
timization of the WTNFNM models, including the basic WTNFN operator in de-
tail, and the convergences of the proposed methods are specifically analyzed with 
strict formulation; Section IV applies the WTNFNM model to tensor completion 
and compares the proposed algorithm with numerical experiments demonstrate 
the effectiveness of the proposed methods compared with other state-of-the-art 
methods; finally the conclusions and future work are given in Section V. 

2. Notations and Preliminaries 
2.1. Notations 

We denote tensors by boldface Euler script letters, e.g.,  . Matrices are de-
noted by boldface capital letters, e.g., A , vectors are denoted by boldface lo-
wercase letters, e.g., a , and scalars are denoted by lowercase letters, e.g., a. Real 
and complex numbers are in   and   fields respectively. For a 3-way tensor 

1 2 3n n n× ×∈ , we denote ( ),:,:i , ( ):, ,:i , and ( ):,:, i  as the i-th hori-
zontal, lateral and frontal slice. Generally, the frontal slice ( ):,:, i  can also be 
denoted as ( )iA . We denote its ( ), ,i j k -th entry as ( ), ,i j k  or ijk . The tube 
is denoted ( ), ,:i j . The inner product between A  and B  in 1 2n n×∈A  , is 
defined as ( ), Tr ∗=A B A B , where ( )Tr ⋅  stands for the trace, and TA  is the 
conjugate transpose of A , and the inner product of any two tensors   and 
  in 1 2 3n n n× × , ( ) ( )3

1, ,n i i
i== ∑ A B  . 

For any 1 2 3n n n× ×∈ , the complex conjugate of   is denoted as 
( )conj   which takes the complex conjugate of each entry of  . b    is the 

nearest integer greater than or equal to b. Now we consider applying the Dis-
crete Fourier Transformation (DFT) on tensors.   is the result of the Discrete 
Fourier Transformation of   along the third dimension, that is, 

[ ]( ), ,3fft=                         (3) 
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We denote 1 3 2 3n n n n×∈A   as a block diagonal matrix with its i-th block on the 
diagonal as the i-th frontal slice ( )iA  of  ,. i.e., 

( )

( )

( )

( )3

1

2

bdiag

n

 
 
 

= =  
 
 
 

A

AA

A

�
               (4) 

Next, we define the block circulant matrix ( )bcirc   reshapes tensor 
1 2 3n n n× ×∈  into a block circulant matrix with size 1 3 2 3n n n n× , i.e., 

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

3

3 3

1 2

2 1 3

1 1

bcirc

n

n n −

 
 
 

=  
 
 
 

A A A

A A A

A A A

�

�
� � � �

�

                (5) 

2.2. T-Product and T-SVD 

For tensor 1 2 3n n n× ×∈ , ( )unfold   unfolds tensor   as follows: 

( )

( )

( )

( )

( )( )
3

1

2

unfold , fold unfold

n

 
 
 

= = 
 
 
 

A

A

A

�
               (6) 

According to [17], t-product is equivalent to the familiar matrix multiplica-
tion in the Fourier domain.i.e., = ∗    is equivalent to = ⋅   . Then 
the tensor product of two third-order tensors can be defined as follows: 

Definition 1 (T-product [16]) Let 1 2 3n n n× ×∈  and 1 3n m n× ×∈ . Then 
the t-product = ∗    is defined to be a tensor of size 1 3n m n× ×  

( ) ( )( )fold bcirc unfold= ∗ = ⋅                   (7) 

Definition 2 (Conjugate Transpose [16]) The conjugate transpose of a ten-
sor of 1 2 3n n n× ×∈  size 1 2 3n n n× ×  is a 2 1 3n n n× ×  tensor T  obtained by 
conjugate transposing each of the frontal slice and then reversing the order of 
transposed frontal slices 2 through 3n . If tensor is 1 2 3n n n× ×∈ , Conjugate 
transpose is also recorded as T . 

Definition 3 (Identity Tensor [16]) The identity tensor 3n n n× ×∈  is the 
tensor whose first frontal slice is an n n×  identity matrix, and whose other fron-
tal slices are all zeros. 

Definition 4 (Orthogonal Tensor [16]) A tensor 3n n n× ×∈  is orthogonal 
if it satisfies 

T T∗ = ∗ =                           (8) 

Definition 5 (F-diagonal Tensor [16]) A tensor is called F-diagonal if each 
of its frontal slices is a diagonal matrix. 

As stated above, tensor-SVD can be defined. 

https://doi.org/10.4236/oalib.1109425


X. Y. Wang, W. Jiang 
 

 

DOI: 10.4236/oalib.1109425 6 Open Access Library Journal 
 

Theorem 1 (T-SVD [17]) Let 1 2 3n n n× ×∈ . Then it can be factorized as 
T= ∗ ∗                            (9) 

where 1 1 3n n n× ×∈� , 2 2 3n n n× ×∈�  are orthogona tensors, and 1 2 3n n n× ×∈�  
is an F-diagonal tensor. 

It is worth noting that T-SVD can be efficiently computed based on the matrix 
SVD in the Fourier domain. The details of T-SVD are described in Algorithm 1. 

 

 
 

Definition 6 (Tensor Tubal Rank [20] [21]) For 1 2 3n n n× ×∈ , the tensor tubal 
rank, denoted as ( )trank  , is defined as the number of nonzero singular tubes 
of  , where   is from the T-SVD of T= ∗ ∗    . The tensor tubal rank 
is equivalent to the number of nonzero singular values of  . That is 

( ) ( ){ } ( ){ }# , , ,: 0 # , , ,1 0 .trank i i i i i i= ≠ = ≠            (10) 

where ( ) ( )3
1

3

1, ,1 , ,n
ji i i i j

n =
= ∑  , it uses the property induced by inverse DFT. 

Denote ( ) 3n nσ ×∈  with ( ) ( ), ,ij i i jσ =  , therefore, the Tensor unclear 
norm and Frobenius norm tensor are defined as follows. 

Definition 7 (Tensor Nuclear Norm (TNN) [22]) For tensor 1 2 3n n n× ×∈ , 
based on the result about the tensor nuclear norm derived from the T-product. 
we have the tensor nuclear norm (TNN) is defined to be 

( )
3

1 13

1 nm

ij
i jn

σ
= =

= ∑∑
                      (11) 

Theorem 2 (Tensor Frobenius Norm (TFN)) Given a tensor 1 2 3n n n× ×∈ , 
if T= ∗ ∗     the following hold: 

( )
3

2

1 13

1 nm

ijF
i jn

σ
= =

= ∑∑                    (12) 

3. Proposed Algorithm Scheme 

Based on the definition of tensor nuclear norm and tensor Frobenius norm in 
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Definition 8 and Theorem 2, we present a new nonconvex regularizer which is 
defined as the sum of the weighted tensor nuclear norm and the square of the 
weighted tensor Frobenius norm (WTNFN) of 1 2 3n n n× ×∈  

( ) ( )

2

WTNFN , ,

3 3
2

1 1 1 13 3

1
F

n nm m

ij ij ij ij
i j i j

w w
n n

γ

γσ σ
= = = =

= +

= +∑∑ ∑∑

W W
  

 
         (13) 

where ( )
3

ij n n
w

×
=W  is the weight matrix, ( )1 2min ,n n n= , γ  is a positive 

parameter. 

3.1. Problem Formulation 

Consider the general weighted tensor nuclear and Frobenius norm framework 
for tensor tubal rank minimization problems 

( ) WTNFNmin f τ+ ⋅


                      (14) 

where 1 2 3n n n× ×∈ , 0τ >  is a positive parameter. And the loss function 
( )f   satisfy the following assumptions: 

• 1 2 3: n n nf × × +→   is continuously differentiable with Lipschitz continuous 
gradient, i.e., for any 1 2 3, n n n× ×∈   

( ) ( ) ( )F
f f L f∇ −∇ ≤ −                   (15) 

where ( ) 0L f >  is the Lipschitz constant. 
• f is coercive, i.e., ( )f →∞  when →∞ . 

To enhance low rank, we need to design a scheme to keep the weights of large 
singular values sufficiently small and the weights of small singular values suffi-
ciently large, which will lead to a nearly unbiased low rank approximation. In-
tuitively, one can set each weight, which the entries of matrix ijw +∈  to be 
inversely proportional to the corresponding singular value ( )ijσ  , which will 
penalize large singular values less and overcome the unfair penalization of dif-
ferent singular values. 

3.2. Methodology 

We solve problem (14) by generating an iterative sequence ( )k , where ( )1k+  
is the minimizer of a weighted tensor nuclear and Frobenius norm regularized 
problem that comes from the linearized approximation of the objective function 
( )f   at ( )k . To realize this, for the loss function ( )f  , we approximate it 

as a quadratic function 

( ) ( )( ) ( )( ) ( )
( )

( ) 2
,

2

k
k k k k

F
f f f µ

= + ∇ − + −            (16) 

Since optimizing ( )f   directly is hard, we minimize its approximation 
(16) instead. Hence, we solve the following relaxed problem to update ( )1k+  

( ) ( )( ) ( )( ) ( )

( )
( ) ( )

1

2

WTNFN

arg min ,

2

k k k k

k
k k

F

f f

µ τ

+ = + ∇ −

+ − + ⋅


    

  
         (17) 
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By ignoring constant terms and combining others, (17) can be expressed 
equivalently as 

( )
( )

( )
( )

( )( ) ( )
2

1

WTNFN

1
2

k
k k k k

k
F

fµ τ
τ µ

+  
= − − ∇ + ⋅  

 
          (18) 

Thus, consider ( ) ( )
( )

( )( )1k k k
k

f
µ

= − ∇    the above formula is equivalent  

to the following, which is a nonconvex proximal operator problem. Next, we will 
prove (18) has a closed-form solution by exploiting the special structure of it. 

3.3. WTNFNSVT Operator 

The weighted tensor nuclear and Frobenius norm singular value thresholding 
(WTNFNSVT) operator is defined as follows to compute the proximal minimiz-
er of the tensor weighted nuclear and Frobenius norm minimization. 

Theorem 3 (WTNFNSVT Operator) Let T= ∗ ∗     be the T-SVD of 
1 2 3n n n× ×∈ . For any 0τ > , 0γ > , the solution of the problem 

2

WTNFNmin F τ− + ⋅

                     (19) 

is given by ,γW , which is defined the WTNFNSVT operator as 
T

, ,γ γ= ∗ ∗W W                         (20) 

where ( ) [ ]1
, 1 , ,3

2
ifftγ

τγτ −

+

   = + −       
W    , 1 2 3n n n× ×∈  is  

F-diagonal whose diagonal entries of the j-th frontal slice are equal to the j-th 
column of weight matrix W . The entries of weight matrix W  satisfies 

1 20 j j njw w w≤ ≤ ≤ ≤� , [ ]1 2min ,n n n= , 31, 2, ,j n= � . 

Theorem 2 shows that the WTNFNSVT operator ,γW  gives a close-from of 
the proximal minimizer of the WTNFN minimization with monotone nonnega-
tive weights, which is a natural extension of the weighted matrix SVT. The feasi-
bility of this extension is guaranteed by the T-SVD framework. Using Algorithm 
1, we show how to compute ,γW  efficiently in Algorithm 2. 
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Obviously, when 0γ =  the weighted tensor nuclear norm minimization 
(WTNNM) was a special case of this problem at that time. And secondly, when 
all weights were set the same, tensor nuclear norm minimization (TNNM) was a 
special case of this problem. Therefore, the solution of this model covers the so-
lutions of traditional TNNM and WTNNM. 

3.4. The Setting of Weighting Matrix 

In previous sections, we proposed to utilize the WTNFNM model and its solving 
method. By introducing the weight vector, the WTNFNM model improves the 
flexibility of the original TNNM model. However, the weight vector itself also 
brings more parameters in the model. Appropriate setting of the weights plays a 
crucial role in the success of the proposed WTNFNM model. 

Inspired by the weighted unclear norm proposed by Gu et al. [23], a similar 
weighting method can be used in the weighted tensor unclear norm and Frobe-
nius norm, that is 

( )( )
1k

ij k
ij

Cw
σ ε

+ =
+

                     (21) 

where ( )( )k
ijσ   is the singular value of the tensor   in the k-th iteration, 

1k
ijw +  is the corresponding weight of ( )( )k

ijσ  . Because (21) is monotonically 
decreasing with the singular values, the non-descending order of weights with 
respect to singular values will be kept throughout the reweighting process. Ac-
cording to the Remark 1 in [23], we can get Corollary 1 as follow: 

Corollary 1. Let T= ∗ ∗     be the T-SVD of tensor 1 2 3n n n× ×∈ , 
( ) ( ): , ,ij i i jσ =   denotes singular value of the tensor  . If the regulariza-

tion parameter C is positive and the positive value ε  is small enough. By using  

the reweighting formula 
( )( )

1k
ij k

ij

Cw
σ ε

+ =
+

, and initial estimate ( )0 =  . 

The reweighted problem 

( )2

, ,min w w Fτ γ− + ⋅ +


                   (22) 

has a closed-form solution 
Tˆ

w= ∗ ∗                           (23) 

where w  is a F-diagonal tensor, ( ) ( ): , ,ij w i i jσ =  . Consider  
( )( )( )1
i

jc τ σ ε γ= − −Y C  and  

( )( )( ) ( )( )( )2
2

2 4 2i i
j jc τ σ ε γ τεσ= − − − −Y C C Y . We get 

( )
2

1 2
2

0 if 0
ˆ

if 0
2

ij

c

c c
c

σ
>

=  +
>



                   (24) 

The proof of Corollary 1 can be found in supplementary material. Corollary 1 
shows that although a reweighting strategy (21) is used, we do not need to itera-

https://doi.org/10.4236/oalib.1109425


X. Y. Wang, W. Jiang 
 

 

DOI: 10.4236/oalib.1109425 10 Open Access Library Journal 
 

tively perform the thresholding and weight calculation operations. In each itera-
tion of both the WTNFNM models to solve the typical tensor recovery problems, 
and the tensor completion algorithms, such a reweighting strategy is performed 
on the WTNFNSVT subproblem (step 2 in Algorithms 2) to adjust weights 
based on current ( )k . In implementation, we initialize ( )0  as the observation 
tensor  . The above weight setting strategy greatly facilitates the WTNFNM 
calculations. Note that there remain two parameters C and γ  in the WTNFNM 
implementation. In all of our experiments, we set it by experience for certain 
tasks. Please see the following sections for details. 

3.5. Convergence Analysis 

In this section, we give the convergence analysis for (18). Suppose that the se-
quence ( )k  is generated by Algorithm 2. For the simplicity of notation, we 
denote k

ijσ  as the singular value of   in the k-th iteration, and k
ijw  is the 

corresponding weight of k
ijσ . 

Theorem 4. In problem (14), assume that ( )f   satisfy the assumptions 

and f∇  is Lipschitz continuous. Consider ( ) ( ) WTNFNF f τ= + ⋅   , and 

the parameter ( ) ( )
1

k L f
µ

τα
≥

−
 for any 0k ≥ , 0 1α< < . Then the sequence 

( ){ }k  and ( )( ){ }kF   generated by WTNFNM satisfies the following prop-

erties: 
1) ( )( )kF   is monotonically decreasing. Indeed, 

( )( ) ( )( )
( ) ( ) ( ) ( ) 21 1

1 2

k
k k k k

F

L f
F F

µ
τ

+ +−
− ≤ −

−
             (25) 

2) The sequence ( ){ }k  is always bounded. Moreover,  

( ) ( )( )1lim 0k k

k

+

→+∞
− =  . 

3) Any accumulation point ̂  of the sequence ( ){ }k  is a critical point of 
( )F  . 
Proof. (1) First, with the definition of ( )1k+ , i.e., 

( )
( )

( ) ( )( )
2

1
WTNFN

1arg min
2

k
k k k

F

fµ
τ µ

+  
= − − ∇ + 

 



         (26) 

We have 

( ) ( ) ( )( )
( )

( ) ( )( )
( ) ( )( ) ( )( ) ( )

( )
( )

2
3

1 2

1 13

3
2

1 13

2

1 1arg min
2

1arg min ,

2

n km
k k k k k

ij ij ij ij
i j F

nm
k k k k

ij ij ij ij
i j

k
k

F

w w f
n

w w f
n

µσ σ
τ µ

σ σ

µ
τ

+

= =

= =

 
= + + − − ∇ 

 

= + + ∇ −

+ −

∑∑

∑∑

X 




 

  

 
 

Then 
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( ) ( ) ( ) ( )( )
( )( ) ( ) ( )

( )
( ) ( )

( ) ( ) ( ) ( )( )
( )( ) ( ) ( )

( )
( ) ( )

3 21 1

1 13

21 1

3 2

1 13

2

1

,
2

1

,
2

nm
k k k k

ij ij ij ij
i j

k
k k k k k

F

nm
k k k k

ij ij ij ij
i j

k
k k k k k

F

w w
n

f

w w
n

f

σ σ

µ
τ

σ σ

µ
τ

+ +

= =

+ +

= =

 + 
 

+ ∇ − + −

 ≤ + 
 

+ ∇ − + −

∑∑

∑∑

    

    
 

which can be rewritten as 
( )( ) ( ) ( )

( ) ( ) ( )( ) ( )( ) ( )( )
( )

( ) ( )

1

3 2 2 21 1 1

1 13

,

1
2

k k k

n km
k k k k k k k

ij ij ij ij ij Fi j

f

w
n

µσ σ σ σ
τ

+

+ + +

= =

∇ −

  ≤ − + − − −    
∑∑

  

 
(27) 

Second, note that f is Lipschitz gradient continuous. According to [[24] Lem-
ma 2.11], we have 

( )( ) ( )( ) ( )( ) ( ) ( ) ( ) ( ) ( ) 21 1 1,
2

k k k k k k k

F

L f
f f f+ + +− ≤ ∇ − + −         (28) 

Finally, we combine (27) and (28), it obtains that 
( )( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( )( )
( )( ) ( )( )

( ) ( ) ( )( ) ( )( ) ( )( )
( )( ) ( ) ( ) ( ) ( ) ( )

1

3 2 21 1 1

1 13

1

3 2 21 1

1 13

21 1

1

1

,
2

k k

nm
k k k k k k

ij ij ij ij ij ij
i j

k k

nm
k k k k k

ij ij ij ij ij
i j

k k k k k

F

F F

w w
n

f f

w
n

L f
f

σ σ σ σ

σ σ σ σ

τ

+

+ + +

= =

+

+ +

= =

+ +

−

    = − + −        

+ −

 ≤ − + − 
 

+ ∇ − + −

∑∑

∑∑

 

 

    
 

which leads 

( )( )
( ) ( ) ( ) ( ) ( )( )21 1

2

k
k k k k

F

L f
F F

µ
τ

+ +−
+ − ≤             (29) 

Since for any integer k, if ( ) ( )
1

k L f
µ

ατ
≥

−
 we have 

( ) ( ) ( )

2 2

k
kL fµ α µ

τ
−

≥  al-

ways held. Then the monotone search criterion (25) is always satisfied, which 

makes the ( )( )kF   is monotonically decreasing. 

2) It’s easy to obtain that ( )( )kF   is bounded. Then, we know that ( ){ }k  
is bounded as well from the assumption. Besides, summing up the inequality 
(27) for all 0k ≥ , it leads that 

( )( )
( ) ( ) ( ) ( )

( )
( ) ( )

20 1

0

21

0

2
2 2

k
k k

Fk

k k

Fk

L f
F

L f

µ
τ

ατ
α

+∞
+

=

+∞
+

=

−
≥ −

−
≥ −

∑

∑

  

 
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Hence, we get 

( ) ( )
( ) ( )21

0 2

k
k k

Fk

L fµ
τ

+∞
+

=

−
− ≤ < +∞∑                 (30) 

From (30), it yields that 
( ) ( )( )1lim 0k k

k

+

→+∞
− =                      (31) 

3) Because of the boundedness of the sequence ( ){ }k , there exists a subse-
quence ( ){ }tk  such that it converges to an accumulation point ̂ , i.e.,  

( ) ˆlim tk
t→+∞ =  . Based on that convergence result (31), we have  

( ) ˆlim tk
t→+∞ =  , which implies that ( )( ) ( )ˆlim tk

t ij ijσ σ→+∞ =   for all i and 
j. Note that the subsequence ( ){ }tk  is bounded obviously, according to the 
[[25] Proposition 2.1.5], there exists ( ) ( )( )2ˆ ˆˆ ij ij ij ijw w σ σ∈ +   such that 

( ) ˆlim tk
t ij ijw w→+∞ =  for all i and j. Denote 

( ) ( ) ( )( )
3

2

1 13

1,
nm

ij ij ij
i j

T w
n

σ σ
= =

= +∑∑W                (32) 

Since ( )tk  is optimal to problem (30), there exists ( ) ( ) ( )( ),t t tk k kT∈ W   
such that 

( ) ( ) ( )( ),t t tk k kT∈ W                      (33) 

such that 
( ) ( )( ) ( ) ( ) ( )( )1 1t t t t tk k k k kf µ+ ++∇ + − =                (34) 

Let t → +∞  in the above equation, then we obtain that there exists  

( )ˆ ˆ ˆ,T∈∂ W   

( ) ( )ˆ ˆ ˆf F= +∇ ∈∂                       (35) 

Thus ̂  is a critical point of problem (14). This completes the proof. 

4. Experiments 

In this section, we conducted a series of experiments on both synthetic and 
real-world data to demonstrate the superiority of the proposed model. we em-
pirically demonstrated that the WTNFN regularization algorithm leads to more 
stable solutions than WTNN (with 0γ = ). Moreover, it could achieve better 
performance when compared to the previous algorithm. 

We solved the low rank tubal tensor completion problem by the following 
program using the Discrete Fourier Transform based tensor nuclear norm based 
on the proposed weighted tensor nuclear and Frobenius norm 

( ) ( ) 2

WTNFN

1min ,
2 F

τ Ω Ω+ − 


                (36) 

where , ,Ω   were respectively the observed data and the underlying recov-
er result, a binary support indicator tensor. Zeros in Ω  indicate the missing 
entries in the observed tensor, and 1 1 3 1 1 3: n n n n n n× × × ×

Ω →   was a linear opera-
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tor that keeps the entries in unchanged and sets those outside zeros. It was easy 
to know that the gradient of the squared loss function was a Lipschitz conti-
nuous function with a Lipschitz constant ( ) 1L f = . The quality of the restored 
image was evaluated in terms of the peak-signal-to-noise ratio (PSNR) defined 
by 

2

10 2

1 2 3

PSNR 10log
1 ˆ

Fn n n

∞

 
 
 =
 − 
 



 
               (37) 

4.1. Stability of the WTNFN Regularization Model 

In this section, we show that WTNFN model leads to more stable solutions and 
provides improved experimental results than WTNN for color images. In our 
experiments, the testing images shown in Figure 1 were the “Im1” and “Im5” 
with size 300 × 300 × 3. For each image, pixels were sampled randomly with 
sampling rates of 30%, 50%, and 70%. These two images were used to illustrate 
the effectiveness of the Frobenius norm in the WTNFN. 

We first applied the WTNFN with different γ  values to “Im1” and “Im5”. A 
suitable value of should γ  result to a stabilized solution and meanwhile result 
to a solution of high PSNR value. We denote WTNN the WTNN regularization 
model with 0γ = , WTNFN1 with γ  is about 10−6, WTNFN2 with a lager γ  
about 10−5. Figure 1 shows the PSNR values of sampling rates of 30%, 50%, and 
70%, respectively, for recovering images “Im1” and “Im5” 10 times. Comparing 
the WTNFN with different values of γ , we can find that the PSNR values of 
WTNFN1 and WTNFN2 are more stable than that of WTNN, which indicates 
that the Frobenius norm in the WTNFN penalty can induce stable solutions. In 
addition, we found that WTNFN11 and WTNFN2 behave very similarly for the 
values of PSNR for the same image at the same sample rate. So we should choose 
moderate value of γ  to balance the stability and the quality of the restored im-
age. The results in Figure 1 show that setting 610γ −=  to make sure that always 
achieves good results. 

4.2. Synthetic Experiments 

We conducted an experiment to demonstrate the practical applicability of the 
WTNFN heuristic for recovering low-rank tensors. We generated a tensor by 

= ∗   , where the entries of n r n× ×∈  and r n n× ×∈  were inde-
pendently sampled from standard Gaussian distribution. The tubal rank of ten-
sor   was defined as r. We solve (36) and obtain the solution ̂ . Then we 
reported to the tubal rank tr  of ̂  and Relative Error was defined as 

ˆ
Relative Error : F

F

−
=
 


                   (38) 

We simply considered tensors of size n n n× × , with [ ]50,100,200n = . To  
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Figure 1. Performance of the WTNFN on images “Im1” and “Im5” for different randomly sampled sets. (a) Results for 
sampling rate 30% “Im1”. (b) Results for sampling rate 30% “Im5”. (c) Results for sampling rate 50% “Im1”. (d) Results for 
sampling rate 50% “Im5”. (e) Results for sampling rate 70% “Im1”. (f) Results for sampling rate 70% “Im5”. 

 

create the known entries, we sampled 3m pn=  items uniformly from  , where 
p was the sampling rate. A reference quantity that is defined as ( )2rd r n r n= −  
in the literature [26]. We set the parameter 0.01τ = , 610γ −=  for model (36) 
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in experiment. Table 1 respectively gives the recovery results for the linear 
transform DFT. It can be seen that the WTNFN program (36) gives the correct 
rank estimation of   in all cases and the relative errors are small. Therefore, 
these results do a good job of validating the correct recovery guarantees of our 
algorithm. 

Next, we studied the recovery phenomenon with different tubal ranks of   
and different sampling rates of p. We generated a 50 × 50 × 50 tensor   simi-
larly to the previous experiment. The range of variations for tubal ranks r and 
sampling rates p were [ ]1, , 20r = �  and [ ]0.01, ,0.99p = � . The tubal rank 
was gradually increased in steps of 1. The sampling rate was gradually increased 
in steps of 0.01. We conducted an experiment for each ( ),p r  pair. The algo-
rithms stopped when the Relative Error was less than 10−5. Figure 2 reports the 
percentage of success for each pair of WTNFN and TNN for the linear transform 
DFT, in which the yellow region reflects the full successful recovery, and the blue 
region reflects the full failed recovery. The bigger the yellow area, the stronger 
ability to recover. It can be seen that the WTNFN method has a much larger 
yellow area than the TNN method. The recovery phenomena can be explained 
by the fact that WTNFN has a stronger ability to recovery than TNN. In a word, 
the WTNFN minimization model is more robust and efficient than the classic 
TNN minimization model. 

4.3. Real World Experiments 

Due to coding and transmission difficulties, photos may be partially damaged or 
obscured by text or branding. Matrix completion methods, of course, can be 
used to recover the missing information in these images. We considered the  

 
Table 1. Exact tensor completion on random data. 

n r 
r

m
d

 p rt 
ˆ

F

F

− 


 

50 

50 

50 

50 

3 

5 

8 

10 

4 

3 

2 

2 

0.47 

0.57 

0.59 

0.72 

3 

5 

8 

10 

6.64e−07 

8.50e−07 

5.54e−07 

2.69e−07 

100 

100 

100 

100 

5 

10 

15 

20 

4 

3 

2 

2 

0.39 

0.57 

0.56 

0.72 

5 

10 

15 

20 

1.55e−06 

8.28e−07 

1.01e−06 

5.99e−07 

200 

200 

200 

200 

5 

10 

20 

30 

4 

3 

2 

2 

0.20 

0.29 

0.38 

0.56 

5 

10 

20 

30 

4.2e−06 

3.26e−06 

2.94e−06 

1.92e−06 
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Figure 2. Comparison of the recovery capacity varying tubal rank r and sampling rate p of the WTNFN (a) and TNN (b). The 
x-axis represents the sampling rate p, ranging from 0.01 to 0.99, the y-axis represents the tubal rank r, ranging from 1 to 20. 

 
WFNFN to color image recovery with partially missing pixels, as color images 
with three channels (Red, Green, Blue) can be modeled as third-order low-tubal 
rank tensors. The Peak Signal-to-Noise Ratio (PSNR) is a widely used measure 
for assessing image quality. To compare the performance of different approach-
es, we utilize the PSNR value of the recovered image. Larger values of PSNR in-
dicate better image restoration performance. 

We considered four methods for image recovery and compare their perfor-
mance: 1) TNN-DFT [26]: tensor nuclear norm based discrete Fourier transform 
tensor completion model; 2) TNNR [27]: tensor truncated nuclear norm regula-
rization; 3) Lp [22]: tensor completion by nonconvex Lp function regularization; 
4) TCTF [28]: tensor completion by tensor factorization. 

a) Random Mask: We first conducted experiments to deal with a relatively 
easy tensor completion problem. We randomly selected 5 images with a size of 
300 × 300 × 3 from the LJU dataset, and randomly sampled 50% of pixels for 
each image. 

Five recovered image examples with sampling rate of 50% by different me-
thods are shown in “Fig.”. In the magnified views of the comparable sections in 
color boxes, it reveals that our recovered images have a clearer shape, fuller col-
or, and brightness than the other four state-of-the-art tensor completion me-
thods. Furthermore, we display the PSNR values achieved by various approaches 
on five images in Figure 3 when the sampling rate is 50%. It can demonstrate 
that the WTNFN-based algorithms can achieve much higher PSNR values com-
pared with the other four state-of-the-art tensor completion methods quantita-
tively for the majority of the images. 

b) Text Mask: Text removal is difficult because the pixels covered by the text 
are not spread evenly throughout the image, and the text may obscure essential 
textural information. We start by looking at the text's location and treating the  
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Figure 3. Five images of natural scenes. 
 

Table 2. PSNR values of the various methods on text mask for image recovery. 

ID Images TNN-DFT TNNR LP TCTF WTNFN 

1 Im1 37.87 30.17 31.15 28.88 38.99 

2 Im2 36.24 28.56 24.00 21.14 37.68 

3 Im3 39.91 25.41 30.43 24.96 40.73 

4 Im4 34.07 29.32 25.37 20.19 35.97 

5 Im5 38.34 25.17 26.81 23.28 39.82 

 

 
Figure 4. Comparison of the PSNR values obtained by TNNDTF, TNNR, LP, TCTF and 
WTNFN on the tested images in Figure 5 

 
items that correspond to it as missing values. As a result, the text removal prob-
lem can be thought of as a tensor completion problem in general. In this expe-
riment, we apply our method to estimate the images from text mask. 

As previously noted, we compared our results to the TNN-DFT, TNNR, Lp, 
and TCTF methods. PSNR measurements are used to assess performance. The re-
covered images from the five tensor completion algorithms are shown in Figure 6. 
On all five image sequences, We rounded the experimental results to two decimal 
places. Table 2 provides the PSNR values of the compared approaches. We  
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Figure 5. Performance comparison for image recovery on some sample images. (a) original image; (b) observed image; (c) recov-
ered images by TNN-DFT, (d) recovered images by TNNR, (e) recovered images by Lp, (f) recovered images by TCTF, (g) recov-
ered images by WTNFN. 
 

can see that the WTNFN has absolute superiority, as evidenced by its far higher 
PSNR values.  

5. Conclusions 

In this work, we have presented a novel method called the weighted nuclear and 
Frobenius norm regularization for low-tubal rank tensor recovery. We proposed 
the solving approach for the weighted nuclear and Frobenius norm proximal 
(WTNFNSVT) operator. The WTNFN model was subsequently extended to ten-
sor completion tasks, and efficient algorithms were developed to solve these us-
ing the derived WTNFNSVT operator. Influenced by the weighted nuclear for 
automatic weight setting. We also developed a rational scheme for automatic 
weight setting, which yields closed from solutions of the WTNFN operator. This 
approach can shorten the calculation time. 

On both synthetic and actual visual datasets, we ran many experiments. In 
comparison to state-of-the-art tensor completion approaches based on the tenor 
nuclear norm or tensor factorization, the experimental findings indicate the 
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Figure 6. Comparison of tensor completion algorithms for text removal problem. (a) original image; (b) observed image; (c) re-
covered images by TNN-DFT (d) recovered images by TNNR, (e) recovered images by Lp, (f) recovered images by TCTF, (g) re-
covered images by WTNFN. 
 

advantages of the WTNFN-based algorithms. 
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Appendix A. Proof of Theorem 2 

Lemma 1. Given a third-order tensor 1 2 3n n n× ×∈  if 1 2 3n n n× ×∈  is ortho-
gonal, i.e., T T∗ = ∗ =     , that is 

F F F∗ = ∗ =                       (39) 

The theorem 2 can be proved by lemma 1. 
Proof By lemma 1 and T= ∗ ∗     can get 

( )
3

2

1 13

1 nn

ijF F
i jn

σ
= =

= = ∑∑                  (40) 

End of proof. 

Appendix B. Proof of Theorem 3 

Proof of Theorem 3 requires the following Lemma 2. 
Lemma 2 (Proximal Operator for WNFN) For a matrix ( )m n m n×∈ >X  , 

denote by T=Y U VΣ  the singular value decomposition of matrix Y , and 

1 20 nw w w≤ ≤ ≤ ≤� , the following minimization problem 

( )2 2

, ,min F w w Fτ γ− + ⋅ +
X

X Y X X


               (41) 

The solution is 2
, ,w w F

prox
+⋅ ⋅

, 

( )2
, ,

T

w w F
wprox

+⋅ ⋅
=US V


Σ                   (42) 

where ( ) ( ) 1 2max 1 ,0w i ii iw wγτ
τ

−  = + Σ −  
  

S Σ  

B1. Proof of Lemma 1 

Proof In order to prove Lemma 2, we first show the following theorem for the 
proximal operator of weighted nuclear and Frobenius norm for real-valued ma-
trices. Then, we extend the result to prove Lemma 2 for complex-valued matrices. 

For any ( ), m n m n×∈ >X Y  , denote by TUDV  and U VΣ  the singular 
value decomposition of matrix X  and Y , where  

( )1 2, , ,
0

m nndiag σ σ σ × 
= ∈ 
 

�
Σ , and ( )1 2, , ,

0
ndiag d d d 

=  
 

D
�  are the di-

agonal singular value matrices. Based on the property of Frobenius norm, the 
following derivations hold: 

( )
( ) ( ) ( )

( )

2 2

, ,

T T T 2

2 T 2 2

Tr 2Tr Tr

2Tr

F w w F

n n

i i i i
i i

n n n n

i i i i i i
i i i i

w d w d

d w d w d

τ γ

τ γ

σ τ γ

∗
− + ⋅ +

 = − + + ⋅ + 
 

 = − + + ⋅ + 
 

∑ ∑

∑ ∑ ∑ ∑

X Y X X

Y Y Y X X X

Y X
 

Based on the von Neumann trace inequality, we know that ( )TTr X Y  
achieves its upper bound n

i ii dσ∑  if =U U , =V V . Then we have 
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( )2 2

, ,min F w w Fτ γ
∗

− + ⋅ +
X

X Y X X
 

2 2 2

1 2

min 2

s.t. 0

n n n n n

i i i i i i i i
i i i i i

n

d d w d w d

d d d

σ σ τ γ ⇔ − + + ⋅ + 
 

≥ ≥ ≥ ≥

∑ ∑ ∑ ∑ ∑
D

�  

( ) ( )2 2

1 2

min

s.t. 0

n

i i i i i i
i

n

d w d w d

d d d

σ τ γ⇔ − + ⋅ +

≥ ≥ ≥ ≥

∑
D

�  
From the above derivation, we can see that the optimal solution of the 

WNFNP problem is T=X UDV , where D  is the optimum of the con-
strained quadratic optimization problem. 

The following proof holds the Lemma 2 on the complex number field. 
Let 1 2

n mi ×= + ∈Y Y Y   be an arbitrary complex-valued matrix and its SVD 
be ( ) ( )Ti i= + Σ +Y U P V Q , where 1

n m×∈Y  , 2
n m×∈Y  , n n×∈U  ,  

n m×∈P  , 0 0n n×Σ∈ , m m×∈V  , m m×∈Q  , and { }0 ,n n m= . Then, it is easy 
to verify that the SVD of the matrix 

1 2 2 2

2 1

m m× 
= ∈ − 

Y Y
A

Y Y
                     (43) 

can be expressed as 
TΣ −     

=      − Σ     

U P V Q
A

P U Q V
                (44) 

Let 1 2
n mi ×= + ∈X L L  , 1 2 2 2

2 1

n m× 
= ∈ − 

L L
B

L L
 , 0

T 2T T, nw w w + = ∈ � � , 

and the functions 

( ) ( )2 2
1 F Fh w wτ γ= − + ⋅ +X X Y X X


            (45) 

( ) 2 2
2

1
2 2 2F F

w wh τ γ = − + ⋅ + 
 

B A B A A
� �


           (46) 

From the decomposition formula of the above matrix, ( ) ( )1 2h h=X B , Ac-
cording to Lemma 1, one minimizer to the following minimization problem 

2 21min
2 2 2F F

w wτ γ − + ⋅ + 
 B

A B A A
� �


             (47) 

The optimal solution is T
,w γ=B US V�

 . Since ( ) ( )1 2h h=X B , the function 

( )2h B  the same minimum value as ( )2h X   with T
,w γ=X US V . 

End of proof. 

B2. Proof of Theorem 3 

Proof Theorem 3 describes one minimizer to the following minimization prob-
lem 

( )
( ) ( ) ( )3 22

WTNFN WTNFN13

1min min
i

n
i i i

F Fin
τ τ

=

 − + ⋅ ⇔ − + ⋅ 
 ∑

X
X Y X


   (48) 
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From Lemma 2, the optimal solution of the above formula can be expressed as 
( ) ( ) ( ) ( )( ) ( )T

,
i i i i i

w γ=X U S S V                    (49) 

where ( ) ( )( ) ( ) ( )( ){ }1
, , ,max 1 ,0i i i

w i j i jw wγ γ
−

= + −S S S , denotes by  
( ) ( ) ( ) ( )Ti i i i=Y U S V  the singular value decomposition of matrix ( )iY . So denotes 

U , ,w γS , V  as three tensors. Their frontal slices are ( )iU , ( )
,
i

w γS , ( )iV . Per-
forming the inverse fast Fourier transform to get [ ]( ), ,3ifft= U ,  

[ ]( ), , , ,3w wifftγ γ= S , [ ]( ), ,3ifft= V , the optimal solution as follow 

T
,w γ=                           (50) 

End of proof. 

B3. Proof of Corollary 1 

Proof From Lemma 1, we can see that the weighted near-end operator problem: 

( )
( ) ( ) ( )3 22

WTNFN WTNFN13

1min min
i

n
i i i

F Fin
τ τ

=

 − + ⋅ = − + ⋅ 
 ∑

X
X Y X


    (51) 

The closed form solution is 

( ) ( ) ( ) ( )( ) ( )T
,

i i i i i
w γ=X U S S V                    (52) 

where 

( )
( )( ) { }

( )( )( )1 21 min ,
,

diag , ,

0

i i
i n n

w γ

σ σ 
 =
 
 

X X
S

� 

           (53) 

According to the updated rules of the algorithm, in each iteration, the weight 
( ){ },
k

i jw  are in a non-descending order, and the singular values ( )( )i
jσ X  can be 

updated independently in a non-increasing order as 

( )( ) ( )( ) ( )( ) ( )

( )( )( ) ( )( ) ( )( )( )

11 1
, ,

11 1

1 1

2max 1 ,0

2max 1 , ,0

i k i k
j k i j j i j

i i i
j k j j k

w wσ γ σ
τ

γ σ ε σ σ ε
τ

−− −

−− −

− −

  = + −  
  

    = + + − − +         

X Y

C X Y C X
(54) 

Based on the prior condition that the weights are initialized as  
( )

( )( )
0
,i j i

j

w
σ ε

=
+

C
Y

, then we have 

( )( ) ( )( ) ( )( ) ( )

( )( )( ) ( )( ) ( )( )( )
( )( )

10 0
1 , ,

11 1

2max 1 ,0

2max 1 , ,0

i i
j i j j i j

i i i
j j j

i
j

w wσ γ σ
τ

γ σ ε σ σ ε
τ

σ

−

−− −

  = + −  
  

    = + + − − +         

≤

X Y

C Y Y C Y

Y

 (55) 

Since 0, 0γ > >C . Then in the next iteration, we have 
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( )( ) ( )( ) ( )( ) ( )

( )( )( ) ( )( ) ( )( )( )
( )( )( ) ( )( ) ( )( )( )

( )( )

11 1
2 , ,

11 1

2 2

11 1

1

2max 1 ,0

2max 1 , ,0

2max 1 , ,0

i i
j i j j i j

i i i
j j j

i i i
j j j

i
j

w wσ γ σ
τ

γ σ ε σ σ ε
τ

γ σ ε σ σ ε
τ

σ

−

−− −

−− −

  = + −  
  

    = + + − +         
    ≤ + + − − +         

=

X Y

C X Y C X

C Y Y C Y

X

(56) 

Then, the weights in the first and second iteration satisfy: 

( ) ( )( )( ) ( )( )( ) ( )1 1
2 1
, 2 1 ,

i i
i j j j i jw wσ ε σ ε

− −

= + ≥ + =C X C X         (57) 

Hence, in the I iteration, suppose that, holds for all the singular values, then 
the inequality 

( )( )
( )( )( ) ( )( ) ( )( )( )
( )( )( ) ( )( ) ( )( )( )

( )( )

1

11 1

11 1

1 1

2max 1 , ,0

2max 1 , ,0

i
j I

i i i
j I j j I

i i i
j I j j I

i
j I

σ

γ σ ε σ σ ε
τ

γ σ ε σ σ ε
τ

σ

+

−− −

−− −

− −

    = + + − +         
    ≤ + + − +         

=

X

C X Y C X

C X Y C X

X

(58) 

In summary, { }1 21, 2, ,min ,j n n∀ = � , 31, 2,3, ,i n= � , ( )( ) ( )( )1
i i

j k j kσ σ −≤X X  

and ( ) ( )1
, ,
k k

i j i jw w −≥ . Because the singular value ( )( ){ }i
j kσ X  is bounded below by 

0, then the sequence is convergent. And sequence ( )( ){ }i
j kσ X  converges to a 

non-negative number ( )( )i
j kσ X  . 

( )( ) ( )( )
( )( ) ( )( ) ( )

( )( )( ) ( )( ) ( )( )( )

1

, ,

11 1

lim

2max 1 lim lim ,0

21

i i
j j kk

k i k
i j j i jk k

i i i
j j j

w w

σ σ

γ σ
τ

γ σ ε σ σ ε
τ

→∞

−

→∞ →∞

−− −

=

  = + −  
  

  = + + − +      

X X

Y

C X Y C X



 

    (59) 

Then we have 

( )( )
2

1 2
2

0 if 0

if 0
2

i
j

c

c c
c

σ
>

=  +
>



X                   (60) 

where ( )( )( ) ( )( )( )2
2

2 4 2i i
j jc τ σ ε γ τεσ= − − − −Y C C Y  and  

( )( )( )1
i

jc τ σ ε γ= − −Y C . 

End of proof. 
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