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Abstract 
Diabetes is a chronic disease in which the body is unable to convert the excess 
sugar into a useable form. It is chronic disease that is fast becoming a menace 
in the Kenyan communities. In this study, the response of the complicated 
diabetic cases is examined under a constrained hospitalisation setting. The 
mathematical model is formulated by incorporating the carrying capacity and 
the per capita hospitalization rate. The models are numerically solved in 
MATLAB using the explicit Runge-Kutta (4, 5) technique, and the results are 
shown as graphs. The findings suggest that improving the quality of life in the 
susceptible class will result in an increase in the susceptible class and a de-
crease in diabetes cases. Increasing the proportion of diabetics who seek treat-
ment each month leads to an increase in the number of people admitted to 
the hospital. Increasing carrying capacity reduces the number of hospitalized 
people. 
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1. Background Information 

In 2014, a record of 422 million people was found to be diabetic globally. This 
equates to a startling 6% of the global population. However, the low-income 
countries had a prevalence of 7.4%, which was higher than the prevalence of 
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7.0% in high-income countries [1] [2]. Diabetes prevalence has risen faster in 
low- and middle-income countries, and it is now highest in middle-income 
countries (9.3 percent) [3]. Kenya, like other developing countries, is contending 
with an increasing diabetes epidemic. The country’s diabetes prevalence is esti-
mated to be approximately 3.3%. Unless this trend changes, this figure is expected 
to rise to 4.5 percent by 2025. Kenya recorded nearly 8700 diabetes-related mortal-
ity in 2015, almost all of whom were under the age of 60 [4]. Since the devolu-
tion of powers in the Kenyan 2010 Constitution, each of the 47 counties cur-
rently supervises its own health systems, including those that offer care for 
non-communicable diseases (NCDs). There are six levels of health services. Lev-
el 1 units provide community-based care. Level 2 facilities provide basic prenatal 
care, vaccines, and other essential healthcare services, Level 3 institution is a 
larger medical center that provides a broader variety of services, including the 
ability to dispense some medications and provide some basic inpatient treat-
ment. Level 4 services are equivalent to subcounty hospitals, whilst Level 5 ser-
vices are equivalent to the county referral hospital. The national referral hospit-
als in Nairobi are Level 6 services. Despite the Kenyan Constitution’s declaration 
that everyone has the right to health care, the country has made very little progress 
towards universal health coverage (UHC) [5]. Furthermore, Otieno et al. [6] re-
ported that 68 percent of Kenyans’ basic health needs are not met. Diabetes and 
other non-communicable diseases (NCDs) are becoming more commonly rec-
ognized as health hazards. According to the 2015-2020 National Strategy for the 
Prevention and Control of NCDs, diabetes is one of the four most common 
chronic illnesses in Kenya. The National Hospital Insurance Fund (NHIF) has 
also recently created a specific chronic sickness care package. Despite these na-
tional efforts, sub-county and county-level diabetes care infrastructures remain 
unreliable, and there is a scarcity of diabetes data. 

Boutayeb et al. [7] studied the dynamics of diabetes in both the diabetic indi-
viduals with complications and those without complicated diabetic cases and 
developed a mathematical model. Li et al. [8] presented a modification to the 
system of equations by including time-delay to model the glucose-insulin regu-
lating mechanism. The findings corroborated previous physiological observa-
tions. Zhang et al. [9] investigated the impact of diabetes incidence rate and sa-
turation treatment on the diabetic population trend using the SEIR mathemati-
cal model. It was concluded that raising the treatment rate can control the di-
abetic population’s growth. Karachaliou et al. [10] emphasized the difficulties in 
preventing non-communicable illnesses in low-income settings. They developed 
a mathematical model for diabetes prevention and highlighted that good di-
abetes prevention and treatment for diabetes patients can help lessen the burden 
of such diseases in low-income regions. Regassa and Tola [11] investigated the 
impact of the frequency of admittance and readmission of diabetic patients into 
Ethiopian hospitals. The parametric survival analysis was utilized to forecast the 
hospital admission rate, which was 9.85 per 1000 people per year, as well as the 
readmission rate. Aye et al. [12] proposed a mathematical model for the dynam-
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ics of diabetes and solved model using the homotopy analysis method. Ali et al. 
[13] proposed a model for measuring the glucose concentration in the blood-
stream. The Bayesian framework with Markov chain Monte Carlo was used to 
study diabetes in Kigali, Rwanda. Nasir and David [14] harmonised mathemati-
cal models for the study of diabetes. The models include those without compli-
cations and those with different rate of complications. With the harmonisation 
of the models, a comprehensive qualitative analysis was carried out for the dif-
ferent models. Areas of further research proposed in the study include the study 
on the effects of constrained resources on the diabetic populations. 

In this study, a mathematical model is proposed for the study of the dynamics 
of diabetic population in Kenya. The model considers the effect of congestion on 
the available health resources (such as available bed spaces, health workers, etc.) 
on the growth of the diabetic population in Kenya. The specific goals of this 
study are to: 

1) Formulate a model for diabetes dynamics and its complications under dif-
ferent hospitalisation cases.  

2) Investigate the impact of increasing recovery rates among the hospitalised 
individuals impact the trends in diabetes.  

3) Ascertain how the quality of lifestyle affects the management of diabetes.  
4) Investigate how the trends of diabetes are impacted by limited resources.  

2. Methodology 
2.1. Formulation of the Mathematical Model 

The flowchart for the mathematical model that considers the significance of 
constrained healthcare resources on the dynamics of diabetes is shown in Figure 
1. The entire population is divided into four compartments; ( )S t  is the first 
compartment called Susceptible compartment, ( )D t  is the Diabetic compart-
ment, ( )C t  is the Complicated compartment, and ( )H t  is the Hospital 
compartment. The susceptible compartment includes non-diabetic individuals 
who are at risk of becoming diabetic, the diabetic compartment includes indi-
viduals who are already diabetic, the complicated compartment includes diabetic 
individuals who have developed complications as a result of their diabetes, and 
 

 
Figure 1. Flowchart for the model considering intervention. 
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the hospital compartment includes complicated cases that have been hospita-
lized. In this study, it is assumed that healthy people can only have healthy 
children, diabetic adults can have either diabetic or healthy children, and com-
plicated cases can be treated to cure the complications but not the diabetes. 

Hill [15] proposed that the number of incident that occur due to lifestyle fac-
tors is  

( )1 SD
N
ε β−

 

where ε  ( )0 1ε< <  is the rate of lifestyle incidence ( 0,1ε =  represents the 
lowest and the highest lifestyle standards respectively), β  is proportion of in-
teraction leading to incidence, α  is the birth rate, ρ  is the proportion of di-
abetic births, ω  is the rate of developing complications due to diabetes, δ  is 
the proportion of death from complication, σ  is the recovery rate from com-
plications, η  is mortality rate among the hospitalised individuals, and µ  is 
taken as the natural mortality rate. In a constrained setting, the saturation 
treatment function proposed by [9] [16] is of the form  

( )
1

Cf C
KC

φ
=

+
 

where φ  is the per capita hospitalisation rate at any time and K is the satura-
tion parameter that influences delay before treatment due to insufficient re-
sources). The governing differential equations is therefore given as  

( ) ( )d 1 1 ,
d
S SDD S
t N

α ρ ε β µ= Λ + − − − −              (1) 

( )d 1 ,
d
D SDD H D D
t N

αρ ε β σ ω µ= + − + − −             (2) 

d ,
d 1
C CD C C
t KC

φω δ µ= − − −
+

                  (3) 

d .
d 1
H C H H H
t KC

φ σ η µ= − − −
+

                  (4) 

2.2. Qualitative Analysis 
2.2.1. Equilibrium Points and Reproduction Number 
The diabetes-free equilibrium (DFE) 0E  is  

0 ,0,0,0 .E
µ

 Λ
=  
 

 

and the endemic equilibrium point (EEP) 1E  is  

( )* * * *
1 , , , .E C D H S=  

where  
*

*
* ,

1
CD

KC
φ δ µ

ω
 = + + + 

 

( )( )
*

*
*

,
1

CH
KC

φ
σ η µ

=
+ + +
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( ) * *
* .

D H
S

α ω µ σ
µ

Λ + − − +
=  

The reproduction number 0R  is calculated using the next generation matrix 
method [17] [18] [19]. Given that F and V are the new infections and negated 
outward transitions from these compartments respectively, then  

( )1
,

0 1

SD D H D D
F VN CD C C

KC

αρ σ ω µε β
φω δ µ

− − + +   −   = =   − + + +   
+   

 

and thus  

( ) ( )
( )

0 0

1
1

0 .

0 0

E E

N
F V

βε
µ

ω µ αρ
−

Λ − 
 ∇ ∇ =

+ − 
 
 

 

The characteristic equation is obtained thus  

( ) ( )1 1
0 0 0,

0

N N
β βε ε
µ µλ λ λ

ω µ αρ ω µ αρ
λ

Λ Λ − − 
−  = ⇒ − =

+ − + − 
 −  

 

and the eigenvalues are  

( )
1 2

1
0, ,N

βε
µλ λ

ω µ αρ

Λ
−

= =
+ −

 

Finally, the reproduction number is  

{ }
( )

0 1 2

1
max , , with 0.NR

βε
µλ λ ω µ αρ

ω µ αρ

Λ
−

= = + − >
+ −

 

Theorem 2.1 (Routh Hurwitz Criterion) A polynomial  
1 2 2

0 1 2 2 1 0n n n
n n na a a a a aλ λ λ λ λ− −
− −+ + + + + + =  

of positive coefficients 0ia >  if the minors of the principal diagonal of the ma-
trix  

1 0

3 2 1 0

5 4 3 2 1 0

0 0 0 0 0
0 0 0

0

0 0 0 0 0 0 n

a a
a a a a
a a a a a a

a

 
 
 
 
 
 
 
 







       



 

are all positive.  

2.2.2. Local Stability of the Equilibrium Points 
According to the formulations of Oke and Bada [20], the Jacobian matrix for the 
system (1 - 4) is  
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( ) ( ) ( )

( ) ( )

( )

( )

2

2

1 1
1 0 0

1 1
0

.
0 0

1

0 0
1

D S
N N

D S
N N

J

KC

KC

ε β ε β
µ α ρ

ε β ε β
αρ ω µ σ

φω δ µ

φ σ η µ

− − 
− − − − 
 
 − −

+ − − 
 =  

− − − 
+ 

 
 − − −
 + 

 

The Jacobian at 0E  is obtained as  

( ) ( )

( )
0

1
1 0 0

1
0 0

0 0
0 0

N

J
N

ε β
µ α ρ

µ
ε β

αρ µ ω σ
µ
ω φ δ µ

φ σ η µ

− Λ 
− − − 
 
 − Λ

=  + − −
 
 − − −  − − − 

 

and the Jacobian at 1E  is obtained as  

( ) ( ) ( )

( ) ( )

( )

( )

* *

* *

1
2*

2*

1 1
1 0 0

1 1
0

.
0 0

1

0 0
1

D S
N N

D S
N N

J

KC

KC

ε β ε β
µ α ρ

ε β ε β
αρ µ ω σ

φω δ µ

φ σ η µ

 − −
− − − − 
 
 − −
 + − −
 

=  
− − − 

 +
 
 − − −  + 

 

The following theorems verify the local asymptotic stability of the equilibrium 
points.  

Theorem 2.2. The DFE of system (1 - 4) is locally asymptotically stable if 

0 1R < .  
Proof. The characteristic equation of the Jacobian at the DFE is given as 

0
0EJ Iλ− =  and thus  

( ) ( )

( )

1
1 0 0

1
0,0 0

0 0
0 0

N

N

ε β
µ λ α ρ

µ
ε β

αρ µ ω λ σ
µ
ω φ δ µ λ

φ σ η µ λ

− Λ
− − − −

− Λ
=+ − − −

− − − −
− − − −

 

Evaluating along the first column gives  

( )

( )1
0

0 0.
0

N
ε β

αρ µ ω λ σ
µ

µ λ ω φ δ µ λ
φ σ η µ λ

− Λ
+ − − −

− − − − − − =
− − − −
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which evaluates to  

( ) ( )( )( )( )1 2 3 0,A A Aµ λ λ λ λ ωσφ+ − + + + =  

where  

( ) ( )1 2 3

1
, , .A A A

N
ε β

ω µ αρ φ δ µ σ η µ
µ

− Λ
= − + − = + + = + +  

The eigenvalue 1λ µ= −  is negative and the other three eigenvalues can be 
found by solving the cubic polynomial  

3 2
2 1 0 0,λ ξ λ ξ λ ξ+ + + =  

with  

( )2 2 3 1 1 2 3 1 2 1 3 0 1 2 3, , .A A A A A A A A A A A Aξ ξ ξ σωφ= + − = − − = − +     (5) 

Routh Hurwitz criteria states that the three eigenvalues are negative if 

2 1 00, 0, 0ξ ξ ξ> > > . Hence, the conditions are: 
condition 1: 2 3 1 0,A A A+ − >  
condition 2: 2 3 1 2 1 3 0,A A A A A A− − >  
condition 3: ( )1 2 3 0.A A A σωφ− + >  
It is easy to see from the first condition that 2 3 1A A A+ >  and from the second 

condition,  

( ) 2
2 3 1 2 3 1 0.A A A A A A> + > >  

The last condition simply becomes,  

( )1 2 3 1 2 3 1 2 30 0 0 since 0A A A A A A A A Aσωφ σωφ+ < ⇒ < − < ⇒ < >  

therefore,  

( ) ( )
( )

0

11
0 1 0 1.N R

N

βεε β µω µ αρ
µ ω µ αρ

Λ
−

− Λ
− + − < ⇒ − < ⇒ <

+ −
 

The DFE is asymptotically stable if 0 1R < .  
Theorem 2.3. The EEP of system (1 - 4) is locally asymptotically stable if 

0 1R < .  
Proof. The Jacobian at the EEP 1E  is  

( )* *
1 1

* *
1 1

1
2

2

1 0 0
0

0 0
0 0

B D B S
B D B S

J
B

B

µ α ρ
αρ µ ω σ

ω δ µ
σ η µ

 − − − −
 

+ − − =  − − −
  − − − 

 

where  

( )
( )1 2 2*

1
, .

1
B B

N KC

ε β φ−
= =

+
 

The characteristic equation of 1J  is  
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( )* *
1 1

* *
1 1

2

2

1 0 0
0

0,
0 0
0 0

B D B S
B D B S

B
B

µ λ α ρ
αρ µ ω λ σ

ω δ µ λ
σ η µ λ

− − − − −
+ − − −

=
− − − −

− − − −

 

which becomes  
4 3 2

3 2 1 0 0,λ ξ λ ξ λ ξ λ ξ+ + + + =  

where  

( )*
0 2 4 2 1 1 1 4 2 3 2

2 1 3 2 4 3 1 3

, ,

, ,

A A B B D A A A A B

A A A A A A

ξ σω µ ξ σω

ξ ξ

= − + = + −

= + + = +
         (6) 

and  
* *

1 1 1 ,A B D B Sµ αρ µ ω= + − − + +  

( )( ) ( )* * *
2 1 1 1 ,A B D B S B Dµ µ ω µ αρ α= − + + + + +  

3 2 ,A B δ µ σ η µ= + + + + +  

( )( )4 2 .A B δ µ σ η µ= + + + +  

By Routh-Hurwitz criteria, all eigenvalues are negative if  

( )3 2 1 13 2 1
3 3 0 0

3 3

0, 0, 0, 0.
ξ ξ ξ ξξ ξ ξ

ξ ξ ξ ξ
ξ ξ

−−
> > − > >        (7) 

By substituting (6) into (7), we have the four conditions as  
condition 1: 1 3 0A A+ >  

condition 2: 
( )( ) ( )1 3 1 3 2 4 1 4 2 3 2

1 3

0
A A A A A A A A A A B

A A
σω+ + + − + −

>
+

 

condition 3: 

( )( ) ( )

( ) ( )( )

1 3 1 3 2 4 1 4 2 3 2

1 3

*
1 3 2 4 2 1 0

A A A A A A A A A A B
A A

A A A A B B D

σω

σω µ

+ + + − + −

+

− + − + >

 

condition 4: ( )*
2 4 2 1 0A A B B Dσω µ− + >  

For condition (1) to hold, then  
* *

1 1 2 0B D B S Bµ αρ µ ω δ µ σ η µ+ − − + + + + + + + + >  
*

1 0B Sαρ⇒ − − >  

Suppose condition (1) holds, then condition (2) can be rearranged as follows:  

( )( ) ( )1 3 1 3 2 4 1 4 2 3 2 0.A A A A A A A A A A Bσω+ + + − + − >          (8) 

Also, rearranging condition (3) gives  

( )( ) ( )
( ) ( )21 3 1 3 2 4 1 4 2 3 2

1 3*
2 4 2 1

0,
A A A A A A A A A A B

A A
A A B B D

σω

σω µ

+ + + − + −
> + >

− +
 

provided  

( )*
2 4 2 1 0.A A B B Dσω µ− + >  

Hence, the four conditions are satisfied as long as condition (4) is satisfied, i.e.  
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( )*
2 4 2 1 0A A B B Dσω µ− + >                    (9) 

which implies that  

( )*
2 4 2 1 2 40 0 since 0A A B B D A Aσω µ> + > ⇒ > >  

( )( ) ( )* * *
1 1 1 0B D B S B Dµ µ ω µ αρ α− + + + + + >  

*
* 1

1 00 1 0 1
B SB S Rω µ αρ

ω µ αρ
⇒ + − − < ⇒ − < ⇒ <

+ −
 

Therefore, the EEP is asymptotically stable if 0 1R < .  

2.3. Positivity and Boundedness of Solution 

Putting N S D C H= + + + , then  

d
d
N C H N D D N
t

δ η µ α α µ= Λ − − − + ≤ Λ + −  

which on solving gives  

( ) ( ) ( )0 0
exp exp exp d

t
N N t t Dµ α µ µτ τ

µ µ
 Λ Λ

≤ − − − + − 
 

∫  

As t →∞ , then N
µ
Λ

≤ . Hence, the solution space R  is bounded, so that  

( ), , , .S D C H N S D C H
µ

 Λ
= = + + + ≤ 
 

R  

Now, from Equations (1)-(4),  

( ) ( ) ( )0
d 1 1 exp ,
d
S SDD S S S S t
t N

α ρ ε β µ µ µ= Λ + − − − − ≥ − ⇒ ≥ −  

( ) ( )

( )( )0

d 1
d

exp ,

D SDD H D D D
t N
D D t

αρ ε β σ ω µ µ ω

µ ω

= + − + − − ≥ − +

⇒ ≥ − +
 

( )

( )( )0

d
d 1

exp ,

C CD C C C
t KC
C C t

φω δ µ φ δ µ

φ δ µ

= − − − ≥ − + +
+

⇒ ≥ − + +
 

( )

( )( )0

d
d 1

exp .

H C H H H H
t KC
H H t

φ σ η µ σ δ µ

σ δ µ

= − − − ≥ − + +
+

⇒ ≥ − + +
 

Thus, as long as the initial conditions are positive, then the , , ,S D C H  are 
positive in R . 

2.4. Numerical Procedure 

Equations (1)-(4) are solved using the Runge-Kutta scheme of the fourth order. 
The fourth order Runge-Kutta scheme for the autonomous differential equations  

( ) ( ) 0, 0X F X X X= =  

where  
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( ) ( ) ( ) ( )T T T
1 2 1 2 1 2, , , , , , , , , , , .n n nX x x x X x x x F X f f f= = =

  
    

is given as  
( )1

2 1

3 2

4 3

,

1 ,
2
1 ,
2
1 ,
2

n

n

n

n

K hF X

K hF X K

K hF X K

K hF X K

=

 = + 
 
 = + 
 
 = + 
 

 

and  

( )1 1 2 3 4
1 2 2 .
6n nX X K K K K+ = + + + +  

The choice of the fourth order Runge-Kutta Scheme is due to its stability and 
large region of convergence (see [21] [22] for other methods). Absolute error to-
lerance is set to 10−8 and the numerical solutions obtained are plotted as graphs 
to evaluate the trends as the parameter values are varied. Default values obtained 
from [13] [23] are chosen for the parameters as  

3.3; 0.1; 0.2; 0.41; 1 65; 0.2;α ρ ε µ βΛ = = = = = =  

0.1; 0.1; 0.15; 0.3; 0.08; 100.Kσ ω φ δ η= = = = = =  

3. Analysis and Discussion of Results 

Figures 2(a)-(c) shows the effect of lifestyle quality on the susceptible class, di-
abetic class and complicated class. By increasing the lifestyle quality among the 
susceptible class, the number of individuals who get out of the susceptible class 
reduce significantly. Hence, the susceptible class increases as shown in Figure 
2(a), and both the diabetic class and complicated class reduce (Figure 2(b) and 
Figure 2(c)). 

The per capita hospitalisation rate φ  denotes the fraction of diabetics who 
seek treatment. Increasing φ  results in a rise in the number of people classified 
as Hospitalised. The per capita hospitalisation rate φ  represents the proportion 
of the diabetic class that go for treatment per month. Increasing the per capita 
hospitalisation rate φ  translates to an increase in the number of individuals who 
get into the Hospitalised class. Figure 3(a) demonstrates that as φ  rises, so does 
the population in the hospitalised class. The carrying capacity K denotes the 
maximum available resources in the health facility. It might reflect the maximum 
number of available bed spaces or the maximum number of diabetes patients 
who can seek care and treatment from medical practitioners. As carrying capac-
ity grows, more people from the complicated class have access to care and 
treatment. This allows the number of hospitalized persons to decrease as most 
complicated cases receive care and treatment and return to the diabetic class, 
minimizing hospital congestion. Figure 3(b) illustrates that as carrying capacity 
increases, the hospitalised class decreases. As a result, an increase in hospital 
carrying capacity can control the number of hospitalized persons. 
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(a) variation of the Susceptible class with lifestyle impact  

 
(b) variation of the Diabetic class with lifestyle impact 

 
(c) variation of the Complicated cases with lifestyle impact 

Figure 2. Variation of the the classes with lifestyle impact. 

https://doi.org/10.4236/oalib.1109371


R. N. Andima et al. 
 

 

DOI: 10.4236/oalib.1109371 12 Open Access Library Journal 
 

 
(a) variation of the Hospitalised class with per capita hospitalisation rate 

 
(b) variation of the Hospitalised cases with hospital carrying capacity 

Figure 3. Variation of hospitalised class with the per capita hospitalisation and 
carrying capacity. 

4. Conclusions 

The response of diabetic population under constrained health resources is mod-
elled. The models are solved numerically in MATLAB using the explicit Runge- 
Kutta (4, 5) method and the outcomes reported graphically. In the case of con-
stant hospitalisation rate, the following outcomes were obtained: 
• Increasing the lifestyle quality leads to an increase in the susceptible class but 

a decrease in the diabetic and complicated classes.  
• Increasing the per capita hospitalisation rate leads to a rise in the Hospita-

lised class.  
• As carrying capacity increases, the hospitalized class decreases.  

From this outcome, it becomes clear that increasing the carrying capacity of 
the health facilities can control the number of diabetic individuals. 
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