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Abstract

In this paper, we study to solve the additive (/,, /3, ) -functional inequality with

n-variables and their Hyers-Ulam stability. First are investigated in complex
Banach spaces with a fixed point method and last are investigated in complex
Banach spaces with a direct method. These are the main results of this paper.
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1. Introduction
Let X and Y be normed spaces on the same field K, and f:X—>Y. We
use the notation |||| for all the norms on both X and Y. In this paper, we

investigate additive (/,,/,)-functional inequality when X is a real or com-
plex normed space and Y a complex Banach space. We solve and prove the

Hyers-Ulam stability of following additive (f3,, 3, ) -functional inequality.
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In which fS,,B, are fixed nonzero complex numbers with g(/f, /3, )-func-
tional inequality. Note that in the preliminaries we just recap some of the most
essential properties for the above problem and for the specific problem, please see
the document. The Hyers-Ulam stability was first investigated for functional equa-
tion of Ulam in [1] concerning the stability of group homomorphisms.

The functional equation
flx+y)=f(x)+f(»)

is called the Cauchy equation. In particular, every solution of the Cauchy equa-
tion is said to be an additive mapping.

The Hyers [2] gave first affirmative partial answer to the equation of Ulam in
Banach spaces. After that, Hyers’ Theorem was generalized by Aoki [3] additive
mappings and by Rassias [4] for linear mappings considering an unbounded
Cauchy diffrence. Ageneralization of the Rassias theorem was obtained by Gévruta
[5] by replacing the unbounded Cauchy difference with a general control func-
tion in the spirit of Rassias’ approach.

The stability of quadratic functional equation was proved by Skof [6] for map-
pings f:X —> Y, where X is a normed space and Y is a Banach space. Park
[7] [8] defined additive y-functional inequalities and proved the Hyers-Ulam sta-
bility of the additive p-functional inequalities in Banach spaces and nonArchime-
dean Banach spaces. The stability problems of various functional equations have
been extensively investigated by a number of authors on the world even term [4]
[5] [6] [8]-[20]. We recall a fundamental result in fixed point theory. The authors
studied the Hyers-Ulam stability for the following functional inequalities
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<

(8)

s, (21‘ [

In this paper, we solve and proved the Hyers-Ulam stability for (/,,, ) -func-

- r(0-10))

in complex Banach spaces

tional inequalities (1), ie the ( ﬂl,ﬂz) -functional inequalities with n-variables.
Under suitable assumptions on spaces X and Y, we will prove that the map-
pings satisfy the (/,,/,)-functional inequalities (1). Thus, the results in this
paper are generalization of those in [21] [22] [23] [24] for (ﬂ],ﬂ2) -functional
inequalities with n-variables.

The goal of the paper is to develop functional inequalities with higher number
of variables to solve problems of general nonlinear functional equations in order
to develop the field of nonlinear analysis.

The paper is organized as follows: In section preliminaries we remind some
basic notations in [21] [22] [25] such as complete generalized metric space and
Solutions of the inequalities.

Section 3: In this section, I use the method of the fixed to prove the Hyers-
Ulam stability of the addive (/,,f3,) -functional inequalities (1) when X is a
real or complete normed space and Y complex Banach space.

Section 4: In this section, I use the method of directly determining the solu-
tion for (1) when X is a real or complete normed space and Y complex Ba-

nach space.

2. Preliminaries

2.1. Complete Generalized Metric Space and Solutions
of the Inequalities

Theorem 1. Let (X,d) be a complete generalized metric space and let
J:X =X be a strictly contractive mapping with Lipschitz constant L <1.

Then for each given element x € X, either
d(Jn’JnH): 0
for all nonegative integers 11 or there exists a positive integer n, such that
1) d(J",J”+1)<oo , VYn=ny;

2) The sequence {J "x} converges to a fixed point y" of J;
3) y" isthe unique fixed point of /in the set Y = {y eX| 0Z(J",J”+l ) < oo} ;

* 1
4) d(y,y )Smd(y,Jy) VyeY.
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2.2. Solutions of the Inequalities
The functional equation

fx+y)=r(x)+f(»)

is called the cauchuy equation. In particular, every solution of the cauchuy equa-

tion is said to be an additive mapping.

3. Establish the Solution of the Additive (j,,,)-Function
Inequalities Using a Fixed Point Method
Now, we first study the solutions of (1). Note that for these inequalities, when

X is areal or complex normed space and Y complex Banach space.
Lemma 2. A mapping f:X —> Y satisfies f(O) =0 and

"f(xl +x2+.‘.+xn)—f(x1)—f(x2+...+xn)

S"ﬂl(f(xl‘H‘2+"'+xn)_f(xl_xl_"'_xn)_zf(x‘))uy ©)
+ ﬁz(zf[wyf(xl)—f(xz+---+xn)j

forall x, €X,j=1>n,then f:X—>Y isadditive.
Proof Assume that [ :X —> Y satisfies (9)
Replacing (xl,- --,xn) by (x, X, 0,---,0) in (9), we get
|7 (2x)=27 ()], <|All7 (26)-21 (=],

and so f(2x) = 2f(x) for all xeX.
Thus

! (fj =L r() (10)

forall x e X . It follows from (9) and (10) that
"f(xl+x2+---+xn)—f(xl)—f(x2+---+xn) N
S”ﬂl (f(x1 +x, +---+xn)—f(xl—xz—---—xn)—Zf(xl))"

Y

+ ﬁz[zf()q+xz;”‘+xn)_f(x1)_f(x2 +"'+xn)] (11)
Y
:"ﬁl(f(xl+x2+...+xn)—f(xl Xy = xn)—Zf(xl))"Y
+||/32(f(xl+x2+---+xn)—f(xl) fx+ +xn))|Y
forall x;€X,j=1->n andso
(1—|ﬂ2|)||f(x1+x2+---+xn)—f(xl)—f(x2+ -i—xn)Y 1)
£||ﬂ1 (f(xl+x2+“.+xn)_f(xl_x2_.“_xn)_2f(xl))||
Next we letting u=x, +x,+---+x,v=x—x, —-—x, in (12), we get
DOI: 10.4236/0alib.1109183 4 Open Access Library Journal


https://doi.org/10.4236/oalib.1109183

L. V. An

(=12 )-r( 22 )45
U+v 13
<lallr @) 0)-2r(45)
forall u,ve X
and so
1
5(1—|,6’2|)||f(u+v)+f(u—v)—2f(u)||y "
<|BI| (u4v)= 1 ()= 1 (),
forall u,ve X .Itfollows from (12) and (14) that
%(1—|ﬁ2|)2 "f(x1 +x, +---+xn)—f(xl)—f(x2 +---+xn) N (15)

S|,Bl|2||f(xl+x2 +-~+)cn)—f()cl)—f(x2+~-+xn)||Y
Since 2|4 ]+|3|<1

and so
f(xl+x2+---+xn):f(x1)+f(x2+---+xn).

Thus £is additive.
Theorem 3. Let ¢:X" — [0,00) be a function such that there existsan L <1
with

x] x2 xn <L
—, =, — | <= X, X ’...,xn 16
(p(z 2 2) 2¢(‘ ? ) (19

forall x,y,zeX.Let f:X—>Y beamappingsatisfy f(0)=0 and
"f(x,+x2+---+xn)—f(x1)—f(x2+---+xn)Y
S"ﬁl(f(xl+x2+~~+xn)—f()cl—xz—--'—x,,)—2f()cl))"Y

(17)
+ ﬂz(zf(wj_f(xl)_f(xz +...+xn)j
Y
+o(x,x,,0,%,)
forall x, eX,j=1->n.
Then there exists a unique mapping  :X — Y such that
L
f(x)-w(x)| £—o(x,x,-,x (18)
forall xeX
Proof. Replacing (x],x2,---,x") by (x,x,O,---,O) in (37), we get
(1-18])7 (2x) -2/ (x)], <@ (x.x,0,-,0) (19)
forall xeX.
Consider the set
S={h:X>Y,h(0)=0}
DOI: 10.4236/0alib.1109183 5 Open Access Library Journal
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and introduce the generalized metricon S:

d(g,h)= inf{ﬂ IS ]R:"g(x)—h(x)"ﬁ/I(p(x,x,O,n-,O),‘v’xeX},

where, as usual, inf¢=+ow. It is easy to show that (S,d ) is complete ([17])
Now we consider the linear mapping J:S — S such that

Jg(x) = 2g(£j
2
forall xeX.Let g,heS be given such that d(g,h) =¢ then

||g(x)—h(x)|| < ep(x,x,0,-+,0)

forall xeX.

Hence

V& (x)=Jn(x)| =

Zg(z)‘zhf (z) ’5"’""’0]

SZgégo(x,x,O,---,O)S Lep(x,x,0,-+,0)

< 28(/)(

| &

forall xeX. So d(g,h) =¢ implies that d (Jg,Jh) < L-¢g . This means that
d(Jg,Jh)< Ld(g,h)

forall g,he X Itfollows from (19) that
1 X X L
S—(p(—,—,O,---,OjS—go x,x,0,---,0
T R AT

fio-2r()
L

forall xeX. So d(f,.]f)gm for all xe€X By Theorem 1, there ex-
L

ists a mapping y :X — Y satisfying the following:

1) v isafixed point of / ie,
w(x)=2y @ (20)
forall x e X .The mapping ¥ is a unique fixed point /in the set
M={geS:d(f.g)<»|

This implies that ¥ is a unique mapping satisfying (20) such that there exists
a Ae(0,00) satisfying
"f(x)—t//(x)" <Ap(x,x,0,---,0)

forall xeX.
2) d(J'f,y/) — 0 as /— oo. This implies equality

limZ”f(%J =y (x)

>

forall xeX.
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L
-1

|7 (x)-w (x)] <

3) d(f,l//)S d(f,Jf).whichimplies

— = _(x,x,0,---,0
T, )

forall xe X .Itfollows (16) and (37) that
"l//(x] +X, +-..+xn)—l//(x1)—(//(x2 +...+xn) .

NG+t x, ) () [,
(G M Eo |
me x1+x2+ +X, j_f(xl—xzz—n---—xnj_zf(ﬁj

R s AR N N T
Zf(—zm A=)

+1im2”g0(x1 Y ,x—"j

=1lim?2"

n—o

< hm 2"

Y

+lim 2"
n—»00

|

Y

e 9 2n’ 9
=||/31 (l//(x1 +x, + X, )=y (X - x, —~--—xn)—21//(x1))||Y

+ ﬁz[zw(w)_w(xl)_v,(%+...+xn)J

forall x;eX,j=1->n.S0

21)

Y

"t//(x] +X, +---—|—xn)—t//(x])—!//(xz+---+)cn)||Y

S”131 (l//(xl +x2+"'+xn)_W(xl —X _"'_xn)_Z‘//(xl))"Y
. ﬂz(zW(Wj—W(%)—‘/’(%+"'+xn)j

forall x, €X,j=1-n.ByLemma 2, the mapping y :X —Y isadditive. Ei

Y

w(x+x,++x) =y (x)+y(x+-+x,). 0

Theorem 4. Let ¢:X" —[0,0) be a function such that there exists an L <1
with

Xy Xy, 0y X <2L 1 xz ...,ﬁ 22
o (x,x, )"’(22 2] (22)

forall x,y,zeX.Let f:X—>Y beamappingsatisfy f(0)=0 and
"f(x,+x2+---+x,,)—f(x1)—f(962+---+xn)Y
S"ﬂl(f(xl+x2+~--+xn)—f(x1—x2—~--—xn)—2f(xl))"Y

+ ﬂ{zf(%j_f(xl)_f(xz+...+xn)]

(23)

¢
+¢(x1,x2,---,xn)

forall x, eX,j=1->n.

Then there exists a unique mapping  :X — Y such that

DOI: 10.4236/0alib.1109183 7 Open Access Library Journal
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L

f(x)-w(x)| £—o(x,x,-,x (24)
" ( ) ( )"y 2(1—L)(1—|ﬂ1|) ( )
forall xeX
Proof. Replacing (x],x2,-~,xn) by (x,x,O,---,O) in (23), we get
(1-18])|f (2x) -2/ (x)], < @(x.x,0.--,0) (25)
forall xeX.

Suppose (S,d) be the generalized metric space defined in the proof of
Theeorem 1 Now we cosider the linear mapping J:S —S such that

1
Jg(x) = Eg(Zx)
for all x e X. It follows from (25)

@)

x,x,0,---,0
o( )

)H 2(1- |ﬂ1)

The rest of the proof is similar to proof of Theorem 3. I
From proving the theorems we have consequences:
Corollary 1. Let »>1 and 6 be nonnegative real numbers and let
f:X—>Y beamappingsatisfy f(0)=0 and
"f(x1 +x, +---+)cn)—f(xl)—f(x2 +---+xn) N
S”ﬂl (f(x1 +x, +---+x,,)—f(xl -X, —---—xn)—Zf(xl))"Y

+ ﬁ{:f(%j—f(xl)—f(xz+---+x,,)] 0
Y
+t9(||x1 i X, r)
forall x, eX.
Then there exists a unique mapping  :X — Y such that
f(x)- —| : (27)
| RN
forall xeX
Corollary 2. Let <1 and & be nonnegative real numbers and let
f:X > Y beamapping satisfy f(O) =0 and
"f(x1 +x, +---+xn)—f(x1)—f(x2 +---+xn) N
< "ﬂl (f(x1 +Xx, +~--+xn)—f(x1 - X, —~--—xn)—2f(xl))"Y
+ ﬂ{zf(%)_f(xl)_f(xz+...+xn)j (28)
Y
+9("xl ' n ")
forall x, eX.
Then there exists a unique mapping  :X — Y such that
[ (0)=w ()], < I (29)

(2- )(1 )

DOI: 10.4236/0alib.1109183
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forall xeX.

4. Establish the Solution of the Additive (g,,f,)-Function
Inequalities Using a Direct Method

Next, we study the solutions of (1). Note that for these inequalities, when X is
a real or complete normed space and Y complex Banach space.

Theorem 5. Let ¢:X" — [O,oo) be a function and let f:X —>Y be a
mapping such that

¢(x1,x2,--- ) i [x1 ,...,%\J<oo (30)

andlet f:X—>Y beamapping f(O):O and
"f(xl+x2+---+xn)—f(x1)—f(xz+---+xn)Y
S"ﬁl(f(xl+x2+---+xn)—f(xl—x2—---—xn)—2f(xl))"Y

(31)
R ﬂz(zf[wj_f(xl)_f(xz+...+xn)j
Y
+§0(x1’x2v"'rxn)
forall x; eX,j=1->n.
Then there exists a unique mapping w :X — Y such that
f(x)-w(x -, x) (32)
A Tk
forall xeX
Proof. Replacing (xl,xz,---,xn) by (x,x,O,---,O) in (31), we get
(1-18])|f (2x) -2/ (x)], <@ (x.x,0.--,0) (33)
forall xeX. So
1 X X
f(x —2f(fj S—(p[—l,—z,o,---,OJ (34)
H () 2 )l 1_|'Bl| 22
forall xeX. Hence
2(5)(5)
Pz,
m—1 . .
<3|l f(%]—Z”' f(%jy (35)

- 2/ X X
T 0.---0
“250-08)" (2”"2’“” J

for all nonnegative integers m and /with m >/ and all xeX. It follows from

(35) that the sequence {Zkf(zikj} is a Cauchy sequence for all x e X. Since

Y is complete, the sequence {2" f (Zlkj} coverages. So one can define the

DOI: 10.4236/0alib.1109183
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mapping y:X —>Y by
.1
w(x)= }eroloz—kf(fx) (36)

for all x e X. Moreover, letting /=0 and passing the limit m — o in (35),
we get (32) It follows from (30) and (31) that

"V/(xl+x2+”'+xn)_‘//(x1)_‘//(x2 +"'+xn) N

Ntk x, ) (x ) (et
e 6

=1lim?2"

n—»0

Y
< lim 2" ﬂ1|f X X, 44X, iy X =Xy — =X, Y X
n—>o 2n 2n 2n .
X X, et x X X, et x
+1lim 2" 2f |2 w2 e
(s () (2

Y

(37)

forall x;eX,j=1->n.So

||l//(x1+x2 +...+xn)—l//(xl)—(//(x2+...+xn)

Y

:"ﬂl (1//(x1+x2+---+xn)—l//(xl—x2—---—)cn)—Zl//(xl))||Y

ﬂz(ZW(WJ_V/(Xl)_W(XZ +...+xn)j

+

Y
for all x; €X,j=1—>n. By Lemma 2, the mapping y:X — Y is additive.
Implied
w(x +x,++x,)
=y (x)+y(x+-+x,)
Now, let ':X —> Y be another additive mapping satisfying (33). Then we

have

v ()= (x)] =

s

24 X X
<= gl =—,=—,0,--,0
<1—|ﬁ1|¢(2q’2‘f’ n j

which tends to zeroas ¢ > o forall xeX. So we can conclude that

Y

w(x)=y'(x) forall xeX.Thisprovesthe uniqueness of y .
Theorem 6. Let ¢:X" —>[O,oo) be a function and let f:X—>Y be a

DOI: 10.4236/0alib.1109183
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mapping such that f (0) =0,

l//(xlsxzsu'7xn):= ii'¢(2jx192jx2""92jxn)

=2 (38)
<o
and
"f(xl+x2+---+xn)—f(x1)—f(xz+-~+xn)||Y
S"ﬁl(f(xl+x2+---+xn)—f(xl—x2—---—xn)—2f(xl))"Y
(39)
R ﬂz(zf(wj_f(xl)_m+...+xn)j
Y
+§0(x1’x2>"'7xn)
forall x, eX,j=1->n.
Then there exists a unique mapping  :X — Y such that
|7 ()= (),
1 (40)
S————d(x,x,-,x
2(-76])" )
forall xeX
Proof. Replacing (xl,xz,---,xn) by (x,x,O,---,O) in (39), we get
S(p(x,x,O,---,O)
forall xeX. So
1
lr()-3 (20
| ’ (42)
<——¢(x,x,0,---,0
TR A
for all x e X. Hence
1 I
()50
Y
m—1 1 X 1 .
S sy )
= 2 Y
m—1 1 . .
<Y ———0(2/x,2x,0,---,0
2 i) )

for all nonnegative integers m and /with m >/ and all xeX. It follows from

(43) that the sequence {Zikf(f‘ x)} is a Cauchy sequence for all x € X. Since
Y is complete, the sequence {2% f(zkx)} coverges. So one can define the
mapping y:X—>Y by

.1
v(x)= 11m2—kf(2kx) (44)

k—w

DOI: 10.4236/0alib.1109183 11 Open Access Library Journal
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Moreover, letting /=0 and passing the limit m — o0 in (43), we get (40).

The rest of the proof is similar to the proof of theorem 5. [

From proving the theorems we have consequences:

Corollary 3. Let r>1 and €@ be nonnegative real numbers and let
f:X—>Y beamappingsatisfy f(0)=0 and

[ s b, )= £ () = f (s k3,
§||ﬂ1 (f(x1+x2+"‘+xn)_f(x1 - X, _..._xn)_zf(xl))"Y

45
+ ﬂz[zf(LZ_{—xnj_f(xl)_f(xz+"'+xn)j )
¥
+9(||x1 N Y g ’)
forall x, eX.
Then there exists a unique mapping  :X — Y such that
20 -

[lx1[, (46)

|7 (x)-w ()], < EEDIE

forall xeX
Corollary 4. Let r<1 and €@ be nonnegative real numbers and let
f:X—>Y beamapping satisfy f(0)=0 and

||f(x1 +x2+...+xn)—f(xl)—f(x2+...+xn) ,
S||ﬁ1 (f(x1+x2+...+xn)—f(xl —xz_..._xn)_zf(xl))"Y

n ﬂz[zf(Lz'"mj—f(xl)—f(xz+---+x,1)j “7)
¥
+9(||x1 N Y g ’)
forall x; €X.
Then there exists a unique mapping w :X — Y such that
20 %[l (48)

|7 () =w (), < 2-2)118)

forall xeX.
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