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Abstract

In this paper, we study the fractional Klein-Gordon-Maxwell system with
steep potential well. On the basis of overcoming the lack of compactness, the
ground state solution is obtained by proving that the solution satisfies the
mountain pass level.
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1. Introduction and Main Results

In the present paper, we are concerned the following fractional Klein-Gordon-

Maxwell system
(—A)xu+(1a(x)+1)u—(2a)+¢)¢u:f(x,u), in R?,
(-A) p=—(o+¢)u’ inR?,

(1.1)

3 s
where s e (Z,lj, (-A)" denotes the fractional Laplacian, @ >0 is a parame-

ter, ¢,u:R’ >R are functions. Recently, a great attention has been focused
on the study of nonlinear problems involving the fractional Laplacian, in view of
concrete real-world applications. For instance, this type of operators arises in the

thin obstacle problem, optimization, finance, phase transitions, stratified materials,
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crystal dislocation, soft thin films, semipermeable membranes, flame propagation,
materials science and water waves, see [1]. The study of existence of positive solu-
tions for problems related to the fractional Laplacian operator has been vigorous
in the past three decades, see [1] [2] [3] [4] and references therein. In [5], Miyagaki,
de Moura and Ruviaor studied the fractional Klein-Gordon-Maxwell system

{(_A)Suw(x)u_(zmq;)qﬁu:K(x)f(u), nR’,

AN¢=(o+¢)u’ inR’, 42

and the existence of positive ground state solutions was obtained.

The Klein-Gordon-Maxwell system has been introduced in [6] as a model de-
scribing solitary waves for the non-linear stationary Klein-Gordon equation
coupled with Maxwell equation in the three-dimensional space interacting with
the electrostatic field. Some existence results for Klein-Gordon-Maxwell system
have been investigated extensively. In [7] [8] [9], the authors studied the exis-
tence of ground stated solutions for Klein-Gordon-Maxwell system with period-
ic potential. Moura [10] obtained the same result involving zero mass potential.

In [11], Liu, Chen and Tang studied the following Klein-Gordon-Maxwell

system

{—Au+(ﬂa(x)+l)u—(2a)+¢)¢uzf(x,u), inR?, (13)

-Ap=—(w+¢)u’ inR’

and the existence of a ground state solution was proved by using variational
methods. Later, In [12], Zhang, Gan, Xiao and Jia expand the range of ®, and
the existence of a ground state solution for the above system is established under
suitable conditions on a(x) and £

We are going to explore problem (1) showing the existence of the ground state
solution with steep potential well. Moreover, we will treat the problem Klein-
Gordon-Maxwell using the fractional Laplacian operator instead of classical
Laplacian operator. The interest in this kind of problem is: the vast range of ap-
plications; the mathematical challenge the nonlocal problem; the challenge when
working in the domain like R’ and also fractional Laplacian.

In case ¢ =0, our problem becomes doubly nonlocal because of the term ¢
and the fractional operator. Classical compactness arguments are not available
and the equation cannot be treated point wisely. We overcome these difficulties
using the reduction method introduced by Caffarelli and Silvestre [3], for the
fractional Laplacian. When ¢ =0 a process of plugging the ¢ into the main
equation is used, allowing look at the system as a single equation. This technique
was also employed in [6] [13] [14], and so on.

Inspired by the works in the above references, our main purpose in this paper
is to study the existence of ground state solution for problem (1.1). In order to
state our main results, we assume that

(a) aeC' (R3,R), a>0 forall xeR’.

(a,) Thereis M >0 such that meas({x eR*: a(x) < M}) <00,

(a;) The set Q, = {x eR’:a(x)= 0} is nonempty and has smooth boundary
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with Q,=a"'(0).
(f) fecC (R3 XR,R) and |f(x,t)|SC(l+|t|q_1) for some C>0 and

6
3-2s

2<q<2.,where 2, =

(f,) lirr()l@ =0 uniformlyin xe R®.

(f}) There exists x>2 such that 0< uF(x,t):= ,uﬂf(x,s)ds < f(xt)t,
V(x,t)e R xR.

(f,) inf F(x,t) >0.

xeR3 Jr=1
Remark 1.1. The conditions (a,)-(a;) were first introduced in [15] and Aa(x)
was called a steep potential well when A was large.

Now we state our main results as following.
Theorem 1.1 Suppose s e (%,lj and assume that (a,)-(a;) and (f,)-(f,) hold.

There exists A >0 such that problem (1.1) has a ground state solution for
A=A Ifone of the following conditions is satisfied:
1) 4 pu<ow;
8 ( H— 2)
4—py
The plan of the paper is as follows. In Section 2, we give the variational frame-

2) 2<u<4 and O<w<

work for problem (1.1) and some preliminary results. In Section 3, we prove some
basic lemmas. In Section 4, we complete the proof of Theorem 1.1.

Throughout the paper, we give the following notations:

Cand C,(k=1,2,---) for psositive constants.

— (—) denote the strong (weak) convergence.
B, ::{xeR3 :|x|<r}.

The integral -[R3 udx is represented by IR3u.

1
jul, = ([,sul" )7 for 1< p <o,

2. Variational Setting and Preliminaries

We reformulate the nonlocal Klein-Gordon-Maxwell system (1.1) into a local

system using the local reduction due to Caffarelli and Silvestre [3], that is,

~div(y' Vv ) =0, in RY,

v =u, on R*x{0},
kxy"zsg—‘;;z ~(Aa(x) +1)u+ 20+ #)gu+ f (xu), onR’x{0},
~div(y"*Vy, ) =0, inR?, =
v, =9, on R’ x{0},
ksylzs%:(er(é)”z, on R* x{0}.
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Here k, =2""T(1-5)/T(s), such that

g e ()
K lim =2 = (A) (),

where u(x)=v,(x,0):=7, #(x)=v,(x,0):=7, and the outward normal de-

rivative should be understood as

12 iy

on oot oy
Similar definition is given for v, .
The fractional Laplacian (—A)S with se (%,lj of a function ¥:R’ >R
is defined by

F((-a) ®)(&) =l F(2). <R,

where F is the Fourier transform, that is

1 .
f(‘P)(g) = W'{R} exp(—2m§ . x)‘I’(x) dx,
iis the imaginary unit. If ¥ is smooth enough, (-A)" can be computed by
the following singular integral
¥ (x)-¥(»)

3+2s
e~

where ¢, is a normalization constant and P.V. stands the principal value. For

~AY ¥ (x)=c, PV.|, dy, xeR’,
(=A) ¥ (x)=c,PV.|

3
any se (Z,lj . About fractional Sobolev space a very complete introduction can

be found in [1].
The spaces X** (Ri) is defined as the completion of C; (Rj), under the
norms (which actually coincide, see ([16], Lemma A.2))

1
va[ dy )7,

EY = ( Joky™
The Sobolev space D* (Rj) is defined by

DS(Ri)z{ueLf; (Rj):

g

sﬁeLz(Rj)},

where # is the usual Fourier transforms of u, which is the completion of
Cy (Ri) under the norm

Iz

We are looking for a solution in the Hilbert space E defined by
E= {z e X (Rj) : IR3 Aa(x)z* (x,0)dx < oo}

2

= IRi Y |Vu|2 dxdy, ueD’ (Ri).

Zx(m) = ‘(—A); u

2

endowed with norm
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1

VZ|2 dxdy + J}R3 (/Ia(x)+l)z(x,0)2 dJC)E ,

o=kt

It follows from Poincaré inequality and (a,)-(a;) that the embedding E <
X (Ri) is continuous (Its proof is similar to [17]). Thus there exists C, >0
forany /e [2,22] such that

1
([ <l vzek 22)

E is a Hilbert space. In the following, for convenience, for any u, let
ii:=u(x,0), furthermore ¢ =¢(x,0) for any ¢eD’ (Ri). By a standard ar-
gument, solution (u,¢) € ExD’ (R3 ) of problem (1.1) is a critical point of the
energy functional 7, :ExD’ (]R3 ) — R defined as

k 2
]4(u,¢)=7x Riyl x

k

s 1-2s
2 Jt?

Vu|2 dxdy +%J.R3 (ia(x) + l)ﬁzdx

vy’ dxdy—%jR3 (20+§)gi*de—[ , F(xi)dx.

We need the following lemma to reduce the functional [, in the only varia-
ble u.
Lemma 2.1. Forevery u(x,y)e X* (Rf ) , there exists a unique
¢=¢,(x.y)eD (]Ri) which solves
—diV(yHSVv) =0, in Rj,
12s av (2-3)

g anz(a)+¢)u2, on R’ x{0}.

Furthermore, in the set {(x,O) tu(x,0)# 0} wehave —0<¢ <0 if 0>0.
Proof. Its proof is the same as ([5], Lemma 2.1), and we omit it.

We rewrite I, asa C' functional 7:E —R defined as

k, y 1 _
1(0)=1, (u.4,) == [y [Vuf dudy + ] (Aa(x) +1)ide

1 v _
Sl a)(ﬁuuzdx—jR3 F(x,u)dx,

where F(x,u) = I:f(x,s)ds.

From (f,), 7is well defined C'-functional with derivative given by

(I'(u). @)=k, w YEVEVp)drdy + [ (Aa(x)+1)agdx
[, (20+4,)dapdxc—[ . f(x,i)@dx, Vu,p e E

Lemma 2.2. If u,(x,y)—u,(x,y) in E, as n— o, then passing to a sub-
sequence if necessary, ¢, (x,y)— b (x,y) weakly in D' (Ri) , 45 n—>o.
As a consequence I'(u,)—>I'(u,) in the sense of distributions.

Proof. The proof of this lemma is similar to ([5], Lemma 2.3], but we exhibit it

here for completeness. Consider u, (-,-), u, (-,-) € X** (Rj) such that

u, (x,9) —u,(x,y) in X* (Rj ) ,as n—> . It follows that
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i, — i, weaklyinLV(RSX{O}),asn—MD, 2<r<

n

3-2s

Since that H* (Ri) o I (R3) it is compact for bounded domain, we have

i, —> i, inLZOC(R3x{O}),asn—>oo, 2<r<

—2s

We denote by ¢, the function ¢, . From Lemma 2.1, note that for any
n=>1 weget

2

or(xt) S Cllls (e

2

P, u,| 12 .

+25

It means that {¢,} isboundedin D’ (]Ri) Since that D’ (]Ri) is a Hilbert
space, thereisa &e D’ (Ri) such that

6
3-2s

g, —& weaklyinL"(R3x{O}),asn—)oo, 2<r<

and

6
3-2s

g, —& inLjnc(R3><{0}),asn—>oo, 2<r<

We want to prove the following equality @, =< . To this end, it is necessary to
show, in the sense of distributions,

—div(y]_ZSVv) =0, in Ri R
(2.4)
ky'™ S—V =(w+&)u;, onR’x{0},
n

and use the uniqueness of the solution given from Lemma 2.1.
Consider a test function y € Cy (Rj) and ¥ eC/ (R3 x{O}). We know by
Lemma 2.1 the following equality
—div( yHSVv) =0, inRR*,
(2.5)

l’zxﬂ—(awgzﬁn)uf, on R* x{0}.

k =
sy on

Then, we just need to see how each term of the equality above converges. To
verify that

Juo Vg Vpdedy > [y HVEVydidy, asn— oo

it follows from the weak convergence, also

J.Rs(a)+¢3”)zlfy7dx—>J.Rs(a)+§)ﬁ0y7dx.

By the strong convergence in L, (R3 X{O}), as n—>ow, 2<r< 3205 we
—2s
have
J‘ ~) ~ ~2 ~
oo i,y dx — jR3 iiyydx, asn—> oo.
Whereas
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Joo (A2 -2 )ras
= [ (@)~ e+ [, (4, & )wrde

Ds(Ri) [I}R3

6 6
l/7|3+2dej
+-[]R3ﬁ§ (¢Zn _E)de—)(), as n — oo,

6
3425

<C

~2 ~2
un _-uO

?,

Now we pass to prove the second part of the Lemma. Consider a test function

weCy (R3x{0}). Using boundedness of {¢,}, the strong convergences in

and the Sobolev embeddings follow that as

L, (R’ x{0}), 257 <3 62

n — o, it has

3+2s
I 6
un —u0|3+2s

Cli2.,

(=) URs Z |ﬁ dx]
+ [ iy (4, —&)pdx —>0.
Analogously, we prove that
[(Fra, -, )yrdx
= [ 87 (@, —d, )ydx+ [ iy (4 - & )yrdx
2
(=) URz g dxj 3
+ [ty (8 & )irdx >0,

as n—> o . For density, Vy e X™ (Ri) we infer that,
t YV Vydedy+ [ (Aa(x)+1)i,pdx

2s

<C ii, — i[> |7

¢I‘l

converges to
o VIV AV pdxdy + [.s(2a(x)+1)i,pde
and
[ (20+4,)4,,7dx
converges to
I, (20+8) a7,

as n — oo, thus <I'(u" ),l//> - <I'(u0),l//> in the sense of distributions.

3. Basic Lemmas

In this section, we first begin proving that [/ satisfies the assumptions of the

mountain pass theorem.
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Lemma 3.1. Suppose that (a,)-(a;) and (f,)-(f,) are satisfied. Then the func-
tional I satisfies the mountain pass geometry, that is,
1) There exist r,a >0 such that I(u) >2a for any ueE such that

o =75
2) There exists e€ E\{0} with |u|>r suchthat I(e)<0.
Proof From (f) and (f,), given &> 0 thereexists C, >0 such that
F(S)S5s2+Cg|s|p, VselR

By sobolev embedding, we have

I(u)= %LR;* Py |Vu|2 dxdy-i—%_fR3 (la(x)+ l)ﬁzdx

1 - -
5 ) a)¢uuzdx—_..R3F(x,u)dx
. r » (3.1)
2l =l =, [ .l

Z{(g_gcl)—czcg un“}uuni

then we can choose r,a >0 such that I(M)Za for ||u||:r On the other

hand, from (f;), for any u € E, there exists C >0 such that F(s) > C|s|“ , for
all seR.Hence ue E\{0},byLemma 2.1, one has

Vul dxdy+§ [s(Aa(x)+1)idx

£ oy
I(tu) = ?-[Ri ksy1 :
£ - .
-5 e a)¢mu2dx—.[R3 F(x,ti1)dx (32)
o’
2
— —00, ast—> +o.

t2
< Sl =l - o

It is obvious that /(fu)—> -0 as t—>+oo. Thus, there exists ee E\{0}
such that /(e)<0. This completes the proof of Lemma 3.1.

So, there is a Cerami sequence {u,} < E such that
I(u,)—>c and (1 +||un ||)||I'(un )" 50, n>ow, (3.3)

where

¢ = inf max I(;/(t))

yel te[O,l]

is the Mountain-Pass level, with T := {y eC([0.1].E):y(0)=0.1(y(1))< 0} .
Lemma 3.2. Under the assumptions of Theorem 1.1, the Cerami sequence
{u,} © E given in(3.3) is bounded.
Proof. With the fact that (a,) and (a,) hold, there exists ve E\{0} such that
vhas support in 5_20 . Then,

DOI: 10.4236/0alib.1109189 8 Open Access Library Journal


https://doi.org/10.4236/oalib.1109189

Q.Y. Shi

c< n}z%xl(tv)

t2 1-2s5
< 51k

=c,.

Vv|2 dxdy + IR3 P2 dx — IR3 a)¢lv\72dx) - J'R3 F (x,tﬁ) dx}

If u4>4,by(3.3), (f;) and Lemma 2.1, we have

cto,(1)= I(u")—%<1'(un),un>

1 1 Y
(31 ko
2 u +

1 2 7 2 1 72~2
_(E_;] I]R3 w¢nundx+;IR3 ¢n undx (34)

Vu"|2 dxdy + IR3 (ﬂa(x) + l)ﬁjdx]

Thus,

P 2 2
u=2 u=2

8(1-2)

Co- (3.5)

n

If 2<u<4 and 0<w< . Using Lemma 2.1 and (f;), it obtains

c+o,(1) =I(un)—%<l'(un),un>
{2

2 2
—j 3—(4—;1) wzﬁjdx+j 3—(4_'”) o’ dx
R ® 16u

Vi [ drdy + [, (2a(x)+1)i2dx |

16u
1 2 - 1 o
- [E_;] I]R3 w¢nu3dx +;IR3 ¢n2u5dx
1 N\~ -
+; R3(f(x,un)un —,uF(x,un ))dx

2
u | - (=) g
n IR3 16/,[ n

4-pu) . .
A e (L2 a L i |
Bl 16w 2 U

oo

Similar to (3.5), one sees

2
u

n

(3.6)

2 . 16uc < 16uc,
8(u-2)-(4-u) & 8(u-2)~(4-p) @

(3.7)

un

DOI: 10.4236/0alib.1109189

9 Open Access Library Journal


https://doi.org/10.4236/oalib.1109189

Q.Y. Shi

In light of (3.5) and (3.7) we conclude that {u,} isbounded. (]

Lemma 3.3. For any boundedness of (C). sequence {un} , there exists
u, € E\{0} such that I'(u)=0.

Proof. Inspired by [15]. Let {un} be a bounded (C). sequence, there exists
u, € E such that u, —u,. Lemma 2.1 implies that I'(x,)=0. By (f,) and (£,),
there exists C, >0 such that

% Fat)i-F(xt)<el +C . ¥ (xr) R xR, (3.8)
8(u-2 D= (4-uY &*
If 2<pu<4 and 0<a)<£. Let g=8(y 2) (4 y) i , it fol-
4-pu 2u

lows from (3.9) and (3.10) that
1

e=tim| 1(u,)- (1))

n—®0

- tim( 4 (044 )i [, L (e )i - P, o

n—ow\

un

(u=2)=(4-p) & [

i, dx+CJ |
32u : K

n—wo|

s

< 1im(ljR3 (0+4,)d,idx+ 5
(3.9)
? dxdy

Vu,

n—w 32/J i s

]

Sllmlnf[g(ﬂ 2) (4 /u) o (J‘]R kyl—Zs

+ [ (2a(x)+1)@dx)+C[

un

? dx.

< lc+1iminfcj Ja,
2 n—w R

Thus,

liminf [ [, |” dx> % (3.10)

-2
If u>4.Let = 'L;— , as in proof of (3.9), we can also get (3.10).
U

For r>0,let
A(r)::{xe]R3 :|x|>r,a(x)2M},
B(r)::{xe]R3 :|x|>r,a(x)<M}.

2 16
Since Ladp s -, from (a,), (2.2) and (3.7), for 1>1, one
#=2 8(u-2)-(4-nu)

sees

2 < 1
AM +1

1
AM +1

< 1
AM +1

u

n

IA(r)(la(x)+1)|ﬁn|2 dx

IR3 (ﬂa (x) + 1)|L7" |2 dx

L(,.)

<

2

uf’I
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<! [ 16uc o (1)]
A (a2~ &

<! [ 164, o (1)]
A S 2) (4w

and using the Holder inequality and (3.7), we obtain

IB(r)

(3.11)

3-2s 2s

e (1,0
a(B(0))
<O e (B) <0, 0)
8(u—2)—(4-pu) & )
8(%’—2)1?(1:0—#)2 —u(B0) +o,(0)

where u(B(r)) is the measure of B(r) . Hence

.[R3\B, i, | dx = .[A(r)

un

<C

un

2

~ |2
un| dx

uVI

Tdvt IB(r)

16uc 1 273 . (3.12)

When 2 and rare large enough, we can obtain that I}R}\B

n

*dr is small

u}'l
enough. Holder inequality and (2.2) imply that

3p—2sp—6+4s

2sp-3p+6
Lo faf e[, fmEza] ([ j@fa) *
—Z8
R3\B, 177 SV M R3\B, 177
3p-6 R 2.\‘[1;3p+6
< [ 25 1 !
Sl ([, I o)
Since |ju,|| is bounded which is independent of n and A, there are A >0

and 7 >0 such that IR

ﬂnpdx<%, A=A, r27. From (3.10), we ob-

3\B,

un

tain I Pde>——, 124, r 27, , which implies u, € £\{0}. 0O
B 4c

4. Proof of Theorem 1.1

In this section, we prove that problem (1.1) has a ground state solution.

Proof of Theorem 1.1. By the previous discussion of Lemmas 3.1-3.3, it fol-
lows that there exists a sequence {v,} and ve E\{0} such that v, —v and
<I'(V),v> =0 . Define

m= ig\ffl(u), (4.1)

where N = {u e E\{0} :<1’(u),u> = 0} .
Clearly, A is not an empty set. Let {u,} = N be a minimizing sequence

for / thatis, /(u,)—>m and (I'(un ),un> =0. It follows from Lemmas 3.2 and
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3.3, {u,} is bounded in E and there exists u, #0 such that u, —u, in E

u, >u, in LjUC(R3) for 1<s< , u, >u, ae in R’. Using the defi-

3-2s
nition of m together with the fact that <I’(un ),un> =0 and I(u,)—>m, it has

<I’(u0),u0>:0 and I(u,)>m.Next, we will claim 1 (u,)=m.

If u>4.Combining (f;) and Fatou’s Lemma, it gets

= 1im[1(u")_l(1'(un),u,,>j

n—»00 /1

—m{[ j[jw k™ |V, | dxdy+jR3(,1a(x)+1)ajdx]
—(%—%)j @i’ dx +— j $rildx

Zliminf{l lj[jug s
n—x 2 /’l R

—G—%) [ a)¢nujdx+— [odiidx

Va, | ddy + [, (Aa(x)+ l)ﬁjdx}

+% Rg(f(x,ﬁn)ﬁ,, ~HF (x.d, ))dx}

2(1—1j|:.[4ky 1-2s
2 u LR

_(%_%jj a)¢0u0dx+ _[ ¢0

Vu0|2 dxdy + J']R3 (ﬁ,a (x)+ l)u0 dx}

| (4.2)
+; JR{3(f(x uo) ,uF(x uo))dx
1,
:[(uo)—;<l (uo),u0>=l(u0)2m.
8(x-2)
If 2<pu<4 and 0<w<4—.1t follows from (a,) that
—u
Q= {x eR’:a(x)< M} is a bounded domain. Therefore,
(4—,u)2a)2 2 (4 ,u
164 Joltul &<~ 164 “°| . 43

From (f;), (4.3) and Fatou’s Lemma, we have

=t ) (11,

n—o

:lim{(l——j w K o
n—»w ﬂ

¢ (dmw) e’
B 16u

Vi, [ dxdy+ [, (a(x) +1) 3]

4—uy &
+JR3 %Mr dx
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4—uY 1 o
_ 9( l,zllw ( f(x,un)un—F(x,un)]dx

4—/1 .2 1 2 . L
J.Rs( 162t . —[2 jj o, i2dx +— I¢n dx}

. . 1 1 *
legilgf{[z ﬂJ(-[]R“kv 1-2 )+1) dx)
o ) d—u) &
*[a‘z)fgua(x)H)usdx—Im%”"2‘“

R{%f(x,ﬁn)ﬁn —F(x,ﬁn)de

4-u) o 1 2 N .
+IR3(ﬂ—)u de_(g_;].l.ﬂ%}w¢n 2d)C+ .[]R3¢"2u:dx}

16u

o

+[l—l]_|.g(/1a(x)+l)ﬁé - R3\Q%| 0| dx

2 u
S N e
+JR{(“(6z)z o[ —(;—gjwwﬂ%%}x

g

_(%_%JI a)¢0u0dx+ I ¢02”§

n

Vu0| dxdy+j )+l)u§dx)

Vu0|2 dxdy + LRB (ﬂa(x) + 1)ﬂ§dx)

(4.4)

1

:1(u0)—;<1'(u0),u0>:I(uo)z m.

Obviously, this proves that u, is a ground state solution of problem (1.1).

Hence, Theorem 1.1 is proved. [
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