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Abstract

The beginning of a pandemi policymakers. Proper
and economical damage.

insufficient. Thus, the use of

analytical and stochas
spread. These

nteraction graph. The proposed boundaries
ogical knowledge such as the SIR model does.

1. Introduction

Over the history of mankind, pandemics cause repetitive catastrophic suffering
[1]. It causes a significant increase in the mortality rate [2], major economic
losses [3], and substantial political instability [4]. However, proper management
of the pandemic can significantly reduce all of these [5] [6]. Nonetheless, suita-
ble governance during a pandemic time requires an understanding of the pan-
demic’s dynamics. Unfortunately, this task is very challenging. The main diffi-
culty is the uncertainty in real-time. To reduce this, one needs to consider all the
relevant factors. Nevertheless, pointing out the suitable features that appear in
real-time is extremely hard [7]. The process of collecting epidemiological, clini-
cal, and biological data is time-consuming, expensive, and complex at the opera-

tional level [8] [9]. In addition, policymakers need to act fast during the begin-
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ning of the pandemic to contain it at an early stage [10]. Inability to do so will
result in greater disaster later in the pandemic [10].

Thus, providing policy-making good analytic tools is essential. The fashion to
obtain data-driven decisions is epidemiological-mathematical models [11].
These provide an analytical framework to obtain an analysis of the pandemic’s
spread dynamics [12]. A large group of epidemiological models is based on the
Susceptible-Infected-Recovered (SIR) model [7]. This model provides good
baseline results [13]. The SIR model assumes that the course of an epidemic is
short compared with the life of an individual. Therefore, the size of the popula-

tion may be considered to be constant. This assumptiong pnable as far as it

is not modified by deaths due to the epidemic disedSe ermore, the

considered these quantities to be stochastic. This is because the uncertain nature

f multiple epidemiological, social, and economic processes produces these coef-
ficients. Hence, it is possible to treat these coefficients as a transformation prob-
ability between the states [15].

To gain a more epidemiological detailed model, one can use an interaction
graph to represent infection routes. From an epidemiological point of view, an
interaction graph gives a more descriptive representation of infections between
individuals [16]. Formally, an interaction graph is where individuals are the
graph’s nodes and the graph’s edges are the possible infection routes. Indeed,
Wang et al [17] proposed a graph-based Susceptible-Infected-Susceptible (SIS)
model. In their settings, each individual is represented as a node in a static, con-
nected, and random graph. Similarly, Hau et al [18] proposed an SEIR
(E-exposed) model for sexually transmitted diseases. The authors defined the

interactions between individuals using a bipartite static graph. These approaches
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are shown to well capture the pandemic spread dynamics. However, they still
depend on a precise approximation of the infection and recovery rates [18]. This
is due to the resilience problem in ordinary differential equations [6].

Another possible approach to tackle the pandemic spread prediction task is
using heat spread. The transformation of heat on manifold plays an important
role in many fields of science and engineering [19] [20] [21]. Heat spread shown
to be promising in both theoretical [22] [23] and practical settings [24] [25]. The
heat spread can be represented using the following partial differential equation:

ou(t,x)

=CAuU(t,X),
- cAu(t,X)

)

such that

=(V,E), the heat spread dynamics for each node veV
dtion (3) such that h=1 and n =|{Vi eVi(vy)e E}|

formation on the interaction between individuals is needed. While the stochastic

aph-based S/R model is based on a more precise biological, social, and epide-
miological knowledge. This information is not necessarily available during the
beginning of a pandemic.

To fill this gap, we propose two upper boundaries for the pandemic spread in
the population that based on the heat spread coefficient. Our method is based on
the heat spread on interaction graphs. This allows us to provide policymakers a
range of insights based on the connection between the two. This paper is orga-
nized as follows: in Section 2, we present two upper boundaries (maximum and
mean) of a stochastic graph-based S/R model using the heat spread. In Section 3,
we evaluate the usefulness of the proposed boundaries in 4regular and random
graphs. Following this, we evaluate the boundaries on social network data from
Facebook to simulate realistic interaction graph settings. In Section 4, we discuss

the possible epidemiological usage of these boundaries with their limitations and
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propose future work.

2. Pandemic Spread Bounded by Heat Spread

To formalize the heat equation on a single node, one needs to calculate the
probability of the node to be infected The probability a node 7 with |Nb (I)|
adjacent nodes (N, (i) is the set of adjacent nodes to node /) would be infected
is corresponding to the probability that each infected adjacent node
(v; € N, (i)) would infect node i.

p; (infected) =1- [ (1— p; (infected (4)
jer(i)
such that p;(infected)=0 if node / is not infe e probability

pe(0,1] otherwise.

Based on this dynamics, we formally de
graph as follows. Let G:=(V,E) be a un ed graph such that
EcVxV and [V|=N.Eachnode i ifig an individual in the

e:(vi,vj)e E isapossi

Following this, a stoch@stic S/R on an infection graph can be defined as fol-
lows. Given an infection
SAv,el , than Vv i infected. Viz, v,
transforms to staté a ability f.Inaddition, if v, €l than Vv, recover.
e/R at a probability y. The process is terminated

ebnik ef al [14] had proved that the only recurrent state

re, the proces
in, one can define the heat spread on an infection graph as follows. Given
an i ion graph (G) and the parameter ¢ R". At a given point in time, if
V; €N, (V,)Av; €S AV, el, then V; become infected. That is, V; transforms

state J) after — time steps. Moreover, if v, €| then v, recovered. Namely,
transforms to state R if WV, € N, (v;) such that v; €. The process is termi-
nated when 7 reaches zero. By treating the dynamics as a Markovian process
[27], one can notice that the only recurrent state of the process takes the form
(S,1,R)=(0,0,N). This happens because all individuals would eventually in-
fected and recover. Hence, the asymptotically state of the dynamics is achieved
when | =0. Consequently, the process halts.

Based on these definitions, given an interaction graph that representing a
population, one can bound the pandemic spread according to the stochastic SIR
model using the heat spread model as shown in Theorem 1.

Theorem 1. Given an infection graph (G) with infection rate S e (O,l] and
recovery rate y € (0,1] . In addition, assuming the initial condition

(S,1,R)=(N-1,1,0) . Than, exists a diffusion rate ceR" that agrees with:
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vte N:RS™47) (1) < RP™C) (¢), (5)

SIR(A,7) ('[) L | (t)— | (t —l)

where R " max(LR(1)-R(t-1))

for a graph-based SIR model with

- I(t)-1(t-1
infection rate 4 and recovery rate y and RY™"(t):= (1(2 0 (tR (t) )
max| 1, - -

for a graph-based heat spread model with diffusion rate c.
Proof. Let v, be the node which satisfies vel at t=0.Node v, isa sin-
gle node according to the assumptions. Performing a breadth-first search (BFS)

[28] starting from V,. During the BFS, each node Vg been allocated

process, the

happens as

(6)

(7)

is that the pandemic spread and heat spread are
and y =0. This is true since, the processes are
if and only if VteN: |{V eV|ve I}| is identical for

e definition of the event horizon, one can immediately

1. The event horizon is the set of nodes A which satisfies:
H={v,v,eV]izjav,eN,(v):v,elry S}

Following this, one can point out that, at time t=0 in both processes the

ize of infected nodes depends on the interaction graph. For each step in time,

the event horizon H <V is infected while the other nodes are not. This means
both processes are deterministically identical for f=c=1 and y=0.

While this boundary holds for any pandemic, we note that this boundary is
not tied for the most realization of a pandemic. This is due to the high variance
in the pandemic spread [11] [29] [30]. Therefore, one can bound the mean pan-
demic spread given the interaction graph, as shown in Theorem 2. The mean
pandemic spread provides a more tied boundary of the pandemic spread given
only the infection rate /3.

Theorem 2. Given an infection graph (G) with infection rate S e (O,l] and
recovery rate y € (O,l] . In addition, assuming the initial condition
(S, l, R) = (N -1,1, 0) . The vector of mean infection time (VJ-i ) agrees with the

minimal (e.g., if X; is another solution with X; >0 then X; 2V;) non-negative
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solution of the following equation:

i 1 | - -
VJ=E+Zk¢jﬂVk'I¢J 8)

Vji =0, otherwise

where Vii € NUo is a random variable that stands for the time pass that an
infection that starts at individual 7 will infect individual /. We define the Aitting
timeof a state i€V asarandom variable H':V —Nuoo given by

H'(v)=inf{n>0: X, (v)=i}.
Proof. First, we show that VJ-i satisfies Equation

by definition and therefore V] =0. If i j, tha
Markov property,

and
)
Suppose that y tion to Equation (8). Than, for i=j, Vji =y=0.1If
i],

Zk;éjﬁyk =%+Zk¢jﬁ(1+2|¢j(ﬁykvl))

=P(H'21)+P(H'22)+-

(10)

By repeating this substitution for y; in the final term (after n steps) we obtain
y=P(H'21)+--+P(H'>n) 11)
and, by letting n — oo,
y=>" P(Vj=n)=V]. (12)
O

Example 1. In the /adder graph, as illustrated in Figure 1, the inequality in
Equation (8) is sharp. For that, two insights can be concluded. The first one is
that each infection path is independent. Namely, if one path is faster or slower it
is orthogonal to any other path. The second is that there exists a positive proba-
bility realization that the node would be infected by another path than the
shortest path. This implies that when one calculates the expected infection time,
he would get a lower time than taking only the shortest path.

Corollary 1. Given an infection graph with a fixed infection rate e (0,1)
and recovery rate y €(0,1) . The infection rate would strictly increase by adding

infection paths.
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Figure 1. A schematic view of a Jadder graph.

We note that for a single adjacent node, the boundary in Equation (8) is tight.
It can be monotonically relaxed by increasing the number of adjacent nodes, 7,
and .

According to Theorem 1 and 2, for f=c and y, he processes are

converging to the same mean. Thus, in the case

diffusion rate ¢=/ is an upper boundary of 1e stochastic

. Otherwise, the boundary
e _of the first boundary (Equation

the COVID-19 pandemic [30]. Additionally, according to Theorems 1 and 2 the
aximum and mean diffusion rates are set to be 1 and 0.07, respectively.

First, we obtain the connection between the k-regularity of a graph and the
pandemic spread. In plain English, we computed the mean basic reparation
number (R;) of the pandemic. We choose this metric because it is commonly
considered to be the proper metric to measure overall pandemic spread [31]
[32]. We randomly generated Nn=10 connected, k-regular graphs with
|V| =1000. The results of this process are presented in Figure 2, where the
x-axis is the value of kand the y-axis is the mean basic reparation number.

Since interaction graphs are not necessarily k-regular, we computed the mean
basic reproduction number for connected, random graphs. The graphs were
randomly generated such that each node veV has between 3 and 200 edges,
sampled using a uniform distribution. We generated 100 samples for graphs at

size |V| =1000. The results of this process are presented in Figure 3. Where the
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Figure 3. The mean basic reproduction number as a function of the interactions graph’s
connectivity (e.g., |E| ). The values for the stochastic S/R model, mean diffusion boundary,

and maximum diffusion boundary are provided.
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x-axis is the number of edges in the graph (|E|) and the y-axis is the mean basic
reparation number.

The above graphs were constructed synthetically. Thus, a natural question
that rise is “does this model words on real-life graphs?”. To answer this question,
we tested the model on the Facebook interaction graph. This graph represents
the friendships between individuals in the Facebook social platform [33]. In ad-
dition, it contains [V| =4039 nodes and |E| =176468 edges (1.01% density).
Moreover, each node VeV has 44 * 52 neighbors. A histogram of the number
of neighbors per node is provided in the supplementary material. We calculated
the pandemic spread for the maximum heat spread bg
spread boundary, and the stochastic S/R model, as gh

the mean heat
res 4(a)-(c),

respectively.

Portion of the population [1]

1.0 1

opulation [1]

!

opul

Portion of the

0.4

0.2

0.01

T T T T

20 40 60 80
Time [t]

(b) Mean heat spread (¢ = ) boundary.

+
==

0 20 40 60 80 100 120 140

Time [{]
(c) The stochastic SIR model.

Figure 4. The pandemic spread over time for the Facebook [33] infection graph such that the susceptible, infected, and recovered
normalized group sizes are donated by S,  and R, respectively.
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4. Discussion

Estimating the infection rate is critical information for pandemic management
[7] [18]. In this paper, we showed boundaries on the infection rate. By using the
heat spread dynamics with different diffusion rates we learned that the rate is
highly dependent on the topology of the interaction graph. The boundaries of a
stochastic SIR model’s infection rate were assumed to take place on an interac-
tion graph. This provides a better representation of the epidemiological dynam-
ics in a heterogeneous population. Health professionals would benefit from the

representation we provide. Since the proposed boundaries are relatively easy to

case (also called the maximum case) and the mean

daries. This is especially useful at the beginnin

tuent in providing a mean boundary over the stochastic S/R. This is significantly

ss than the maximum heat spread boundary over different levels of connectiv-
ity in the population, as shown in Figure 2. In fact, when applied to the Face-
book interaction graph [33], the maximum and mean heat spread boundaries
provided 20 and 1.66 times greater pandemic spread rate on average compared
to the stochastic SIR model, as shown in Figure 4.

The usage of heat spread as the boundary for the pandemic spread is useful in
real settings. This is because one can find the diffusion rate ¢ from local infection
spread by computing only the infection rate of interactions of infected individu-
als with their immediate environment. For comparison, this method does not
work for obtaining the infection rate ( £ ) and recovery rate ( 7 ). Therefore, it is
faster and more feasible to obtain the heat spread boundaries to the pandemic
rather than the S/R-based pandemic spread.

A possible future work can be removing the assumption that the interaction
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graph is static over time. Specifically, one can allow the edges of the graph to
change according to some socio-epidemiological logic. This relaxation would
lead to a better representation of the pandemic spread in a population. As a re-
sult, this can reveal even better boundaries to the pandemic spread.
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