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Abstract 
The beginning of a pandemic is a crucial stage for policymakers. Proper 
management at this stage can reduce overall health and economical damage. 
However, knowledge about the pandemic is insufficient. Thus, the use of 
complex and sophisticated models is challenging. In this study, we propose 
analytical and stochastic heat spread-based boundaries for the pandemic 
spread. These are compared with the stochastic Susceptible-Infected-Recovered 
(SIR) model taking place on an interaction graph. The proposed boundaries 
are not requiring accurate biological knowledge such as the SIR model does. 
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1. Introduction 

Over the history of mankind, pandemics cause repetitive catastrophic suffering 
[1]. It causes a significant increase in the mortality rate [2], major economic 
losses [3], and substantial political instability [4]. However, proper management 
of the pandemic can significantly reduce all of these [5] [6]. Nonetheless, suita-
ble governance during a pandemic time requires an understanding of the pan-
demic’s dynamics. Unfortunately, this task is very challenging. The main diffi-
culty is the uncertainty in real-time. To reduce this, one needs to consider all the 
relevant factors. Nevertheless, pointing out the suitable features that appear in 
real-time is extremely hard [7]. The process of collecting epidemiological, clini-
cal, and biological data is time-consuming, expensive, and complex at the opera-
tional level [8] [9]. In addition, policymakers need to act fast during the begin-
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ning of the pandemic to contain it at an early stage [10]. Inability to do so will 
result in greater disaster later in the pandemic [10]. 

Thus, providing policy-making good analytic tools is essential. The fashion to 
obtain data-driven decisions is epidemiological-mathematical models [11]. 
These provide an analytical framework to obtain an analysis of the pandemic’s 
spread dynamics [12]. A large group of epidemiological models is based on the 
Susceptible-Infected-Recovered (SIR) model [7]. This model provides good 
baseline results [13]. The SIR model assumes that the course of an epidemic is 
short compared with the life of an individual. Therefore, the size of the popula-
tion may be considered to be constant. This assumption is reasonable as far as it 
is not modified by deaths due to the epidemic disease itself. Furthermore, the 
SIR model assumes all individuals in the population are initially equally sus-
ceptible to the disease (S) and only one individual is infected (I) at the beginning 
of the pandemic. Moreover, it further assumed that complete immunity is con-
ferred by a single infection. In other words, it is possible to represent the SIR 
model using a system of non-linear ordinary differential equations where the 
average infected rate, β , and the average recovery rate, γ , are known:  

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

d
d

d
d

d
d

S t
S t I t

t
I t

S t I t I t
t

R t
I t

t

β

β γ

γ

= −

= −

=

                  (1) 

Naively, one would consider the average infected rate β  and the average re-
covery rate γ  to be deterministic quantities that might cause model artifacts. 
For example, a susceptible individual ( p S∈ ) can be infected and transformed 
into the infected sub-population (I) in a given time t. Immediately afterward, in 
time 1t + , there is a probability γ  that the same individual is recovered and 
transformed to the recovered sub-population (R) [14]. To overcome this, we 
considered these quantities to be stochastic. This is because the uncertain nature 
of multiple epidemiological, social, and economic processes produces these coef-
ficients. Hence, it is possible to treat these coefficients as a transformation prob-
ability between the states [15]. 

To gain a more epidemiological detailed model, one can use an interaction 
graph to represent infection routes. From an epidemiological point of view, an 
interaction graph gives a more descriptive representation of infections between 
individuals [16]. Formally, an interaction graph is where individuals are the 
graph’s nodes and the graph’s edges are the possible infection routes. Indeed, 
Wang et al. [17] proposed a graph-based Susceptible-Infected-Susceptible (SIS) 
model. In their settings, each individual is represented as a node in a static, con-
nected, and random graph. Similarly, Hau et al. [18] proposed an SEIR 
(E-exposed) model for sexually transmitted diseases. The authors defined the 
interactions between individuals using a bipartite static graph. These approaches 
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are shown to well capture the pandemic spread dynamics. However, they still 
depend on a precise approximation of the infection and recovery rates [18]. This 
is due to the resilience problem in ordinary differential equations [6]. 

Another possible approach to tackle the pandemic spread prediction task is 
using heat spread. The transformation of heat on manifold plays an important 
role in many fields of science and engineering [19] [20] [21]. Heat spread shown 
to be promising in both theoretical [22] [23] and practical settings [24] [25]. The 
heat spread can be represented using the following partial differential equation:  

( ) ( )
,

, ,
u t x

c u t x
t

∂
= ∆

∂
                       (2) 

where t is the time, x  is an n-dimensional space, and c +∈  is the diffusion 
coefficient. A discrete version of the heat spread equations takes the form:  
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where { }\ 0h +∈  [26]. 
Graphs are locally, on the node-level, isometric to manifold with a dimen-

sional corresponding to the number of neighbors of the center node. Hence, as-
suming a graph ( ): ,G V E= , the heat spread dynamics for each node v V∈  
agrees with Equation (3) such that 1h =  and ( ){ }| ,i in v V v v E= ∈ ∈ . 

Following this, one can conclude that knowledge is required to obtain a fine 
approximation of the heat spread in an interaction graph. Specifically, only in-
formation on the interaction between individuals is needed. While the stochastic 
graph-based SIR model is based on a more precise biological, social, and epide-
miological knowledge. This information is not necessarily available during the 
beginning of a pandemic. 

To fill this gap, we propose two upper boundaries for the pandemic spread in 
the population that based on the heat spread coefficient. Our method is based on 
the heat spread on interaction graphs. This allows us to provide policymakers a 
range of insights based on the connection between the two. This paper is orga-
nized as follows: in Section 2, we present two upper boundaries (maximum and 
mean) of a stochastic graph-based SIR model using the heat spread. In Section 3, 
we evaluate the usefulness of the proposed boundaries in k-regular and random 
graphs. Following this, we evaluate the boundaries on social network data from 
Facebook to simulate realistic interaction graph settings. In Section 4, we discuss 
the possible epidemiological usage of these boundaries with their limitations and 
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propose future work. 

2. Pandemic Spread Bounded by Heat Spread  

To formalize the heat equation on a single node, one needs to calculate the 
probability of the node to be infected. The probability a node i with ( )bN i  
adjacent nodes ( ( )bN i  is the set of adjacent nodes to node i) would be infected 
is corresponding to the probability that each infected adjacent node 
( ( )j bv N i∈ ) would infect node i.  

( )
( )

( )( )infected : 1 1 infected ,
b

i j
j N i

p p
∈

= − −∏              (4) 

such that ( )infected 0jp =  if node j is not infected and some probability 
( ]0,1p∈  otherwise.  

Based on this dynamics, we formally define the epidemiological interaction 
graph as follows. Let ( ): ,G V E=  be a underacted, connected graph such that 
E V V⊂ ×  and V N= . Each node v V∈  is representing an individual in the 
population. A node is defined by a finite state machine with three states 
{ }, ,S I R  corresponding to the SIR model’s states. In addition, the edge 

( ),i je v v E= ∈  is a possible interaction between two individual ,i jv v V∈ . 
Following this, a stochastic SIR on an infection graph can be defined as fol-

lows. Given an infection graph (G) and the parameters ( ], 0,1β γ ∈ . At a given 
point in time, if ( )j b i j iv N v v S v I∈ ∧ ∈ ∧ ∈ , than jv  infected. Viz, jv  
transforms to state I at a probability β . In addition, if iv I∈  than iv  recover. 
Namely, transforms to state R at a probability γ . The process is terminated 
when I reaches zero. Lazebnik et al. [14] had proved that the only recurrent state 
for the stochastic SIR model is ( ) ( ), , ,0,S I R N d d= −  such that 1 d N≤ ≤ . 
Thus, the asymptotically state of the dynamics is achieved when 0I = . There-
fore, the process halts. 

Akin, one can define the heat spread on an infection graph as follows. Given 
an infection graph (G) and the parameter c +∈ . At a given point in time, if 

( )j b i j iv N v v S v I∈ ∧ ∈ ∧ ∈ , then jv  become infected. That is, jv  transforms 
to state I) after 1

c
 time steps. Moreover, if iv I∈  then iv  recovered. Namely, 

transforms to state R if ( )j b iv N v∀ ∈  such that jv I∈ . The process is termi-
nated when I reaches zero. By treating the dynamics as a Markovian process 
[27], one can notice that the only recurrent state of the process takes the form 
( ) ( ), , 0,0,S I R N= . This happens because all individuals would eventually in-
fected and recover. Hence, the asymptotically state of the dynamics is achieved 
when 0I = . Consequently, the process halts. 

Based on these definitions, given an interaction graph that representing a 
population, one can bound the pandemic spread according to the stochastic SIR 
model using the heat spread model as shown in Theorem 1. 

Theorem 1. Given an infection graph (G) with infection rate ( ]0,1β ∈  and 
recovery rate ( ]0,1γ ∈ . In addition, assuming the initial condition  
( ) ( ), , 1,1,0S I R N= − . Than, exists a diffusion rate c +∈  that agrees with:  
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( ) ( ) ( ) ( ),
0 0: ,SIR Diffusion ct R t R tβ γ∀ ∈ ≤                 (5) 

where ( ) ( ) ( ) ( )
( ) ( )( )

,
0

1
:

max 1, 1
SIR I t I t

R t
R t R t

β γ − −
=

− −
 for a graph-based SIR model with 

infection rate β and recovery rate γ  and ( ) ( ) ( ) ( )
( ) ( )( )0

1
:

max 1, 1
Diffusion c I t I t

R t
R t R t
− −

=
− −

  

for a graph-based heat spread model with diffusion rate c.  
Proof. Let 0v  be the node which satisfies v I∈  at 0t = . Node 0v  is a sin-

gle node according to the assumptions. Performing a breadth-first search (BFS) 
[28] starting from 0v . During the BFS, each node v G∈  has been allocated 
with a distance d from 0v . On one hand, for the stochastic SIR process, the 
worst case scenario obtained where 1β =  and 0γ ε= > . This is happens as 
larger β  and smaller γ  increase the pandemic spread. In this case, 

( ) ( )

[ ]
( ){ }( ), 1,

0 0 0
1, 1

| , .maxSIR SIR
i

k N
R R v V d v v kβ γ ε

∈ −
≤ ≤ ∈ =            (6) 

By setting the diffusion rate c to be [ ] ( ){ }( )01, 1max | , ik N v V d v v k∈ − ∈ = , for 
any infection rate ( ]0,1β ∈  and recovery rate ( ]0,1γ ∈ , the condition 

( ) ( ) ( ) ( )
*

,
0 0: ,

Diffusion cSIRt R t R tβ γ∀ ∈ ≤                  (7) 

satisfied. 
□ 

A corollary of Theorem 1 is that the pandemic spread and heat spread are 
isomorphic where 1cβ = =  and 0γ = . This is true since, the processes are 
defined to be isomorphic if and only if { }: |t v V v I∀ ∈ ∈ ∈  is identical for 
both processes. Using the definition of the event horizon, one can immediately 
notice that. 

Definition 1.1. The event horizon is the set of nodes H which satisfies:  

( ){ }: , | :i j j b i j iH v v V i j v N v v I v S= ∈ ≠ ∧ ∈ ∈ ∧ ∈  

Following this, one can point out that, at time 0t =  in both processes the 
size of infected nodes depends on the interaction graph. For each step in time, 
the event horizon H V⊂  is infected while the other nodes are not. This means 
both processes are deterministically identical for 1cβ = =  and 0γ = . 

While this boundary holds for any pandemic, we note that this boundary is 
not tied for the most realization of a pandemic. This is due to the high variance 
in the pandemic spread [11] [29] [30]. Therefore, one can bound the mean pan-
demic spread given the interaction graph, as shown in Theorem 2. The mean 
pandemic spread provides a more tied boundary of the pandemic spread given 
only the infection rate β . 

Theorem 2. Given an infection graph (G) with infection rate ( ]0,1β ∈  and 
recovery rate ( ]0,1γ ∈ . In addition, assuming the initial condition  
( ) ( ), , 1,1,0S I R N= − . The vector of mean infection time ( i

jV ) agrees with the 
minimal (e.g., if jx  is another solution with 0jx ≥  then j jx V≥ ) non-negative 
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solution of the following equation:  

1 ,

0, otherwise

i i
j kk j

i
j

V V i j

V

β
β ≠

 = + ≠

 =

∑
                    (8) 

where i
jV ∈ ∪∞  is a random variable that stands for the time pass that an 

infection that starts at individual i will infect individual j. We define the hitting 
time of a state i V∈  as a random variable :iH V → ∪∞  given by  

( ) ( ){ }inf 0 : .i
nH v n X v i= ≥ =  

Proof. First, we show that i
jV  satisfies Equation (8). If i j=  than 0iH =  

by definition and therefore 0i
jV = . If i j≠ , than 1iH ≥ . According to the 

Markov property,  

( ) ( )1
1| .i i

i jE H X j E H
β

= = +  

and  

( ) ( )
( ) ( )

1

1 1

1

|

1 .

i i i
j j i X kk V

i
i ik V

i
kk j

V E H E H

E H X k P X k

Vβ
β

=∈

∈

≠

= =

= = =

= +

∑
∑

∑

              (9) 

Suppose that y is any solution to Equation (8). Than, for i j= , 0i
jV y= = . If 

i j≠ ,  

( )( )
( ) ( )

,
1 1 1

1 2

k k lk j k j l j

i i

y y y

P H P H

β β β
β β≠ ≠ ≠

= + = + +

= ≥ + ≥ +

∑ ∑ ∑



        (10) 

By repeating this substitution for y, in the final term (after n steps) we obtain  

( ) ( )1i iy P H P H n≥ ≥ + + ≥                (11) 

and, by letting n →∞ ,  

( )1 .i i
j jny P V n V∞

=
≥ ≥ =∑                   (12) 

□ 
Example 1. In the ladder graph, as illustrated in Figure 1, the inequality in 

Equation (8) is sharp. For that, two insights can be concluded. The first one is 
that each infection path is independent. Namely, if one path is faster or slower it 
is orthogonal to any other path. The second is that there exists a positive proba-
bility realization that the node would be infected by another path than the 
shortest path. This implies that when one calculates the expected infection time, 
he would get a lower time than taking only the shortest path. 

Corollary 1. Given an infection graph with a fixed infection rate ( )0,1β ∈  
and recovery rate ( )0,1γ ∈ . The infection rate would strictly increase by adding 
infection paths.  
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Figure 1. A schematic view of a ladder graph. 
 

We note that for a single adjacent node, the boundary in Equation (8) is tight. 
It can be monotonically relaxed by increasing the number of adjacent nodes, γ , 
and β . 

According to Theorem 1 and 2, for cβ =  and 0γ = , the processes are 
converging to the same mean. Thus, in the case 0γ > , the heat spread with 
diffusion rate c β=  is an upper boundary of the mean case of the stochastic 
SIR dynamics. This outcome can be obtained by computing the mean infection 
time from the first infected individual to any other individual in the population. 
Following this step, one needs to compute the inverse value for this quanta to 
obtain the mean pandemic spread rate. Nonetheless, to use this boundary re-
quires a good approximation of the infection rate ( β ). Otherwise, the boundary 
may be either too high or too low. In the case of the first boundary (Equation 
(5)), such knowledge is not required. 

3. Numerical Simulations  

Based on the proposed theoretical bounds on the pandemic spread, and since 
these bounds are not tight for some cases we further investigate them numeri-
cally. In this section, we numerically examine the spread dynamics on several 
graphs types. For each graph, we calculate the stochastic SIR spread and asso-
ciated heat spread models. 

In particular, k-regular graphs, random graphs, and a real-world social inte-
raction graph. We computed the pandemic spread with infection rate of 

0.07β =  and recovery rate of 0.07γ = . These values were chosen to represent 
the COVID-19 pandemic [30]. Additionally, according to Theorems 1 and 2 the 
maximum and mean diffusion rates are set to be 1 and 0.07, respectively. 

First, we obtain the connection between the k-regularity of a graph and the 
pandemic spread. In plain English, we computed the mean basic reparation 
number ( 0R ) of the pandemic. We choose this metric because it is commonly 
considered to be the proper metric to measure overall pandemic spread [31] 
[32]. We randomly generated 10n =  connected, k-regular graphs with 

1000V = . The results of this process are presented in Figure 2, where the 
x-axis is the value of k and the y-axis is the mean basic reparation number. 

Since interaction graphs are not necessarily k-regular, we computed the mean 
basic reproduction number for connected, random graphs. The graphs were 
randomly generated such that each node v V∈  has between 3 and 200 edges, 
sampled using a uniform distribution. We generated 100 samples for graphs at 
size 1000V = . The results of this process are presented in Figure 3. Where the  
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Figure 2. The mean basic reproduction number as a function of the k-regularity of the 
interaction graph. The values provided for the stochastic SIR model (blue circles), mean 
diffusion boundary (gray axis), and maximum diffusion boundary (black triangles). Each 
sample is shown as mean ± standard deviation for 100n = . 
 

 
Figure 3. The mean basic reproduction number as a function of the interactions graph’s 
connectivity (e.g., E ). The values for the stochastic SIR model, mean diffusion boundary, 

and maximum diffusion boundary are provided. 

RETRACTED

https://doi.org/10.4236/oalib.1109019


T. Lazebnik, U. Ital 
 

 

DOI: 10.4236/oalib.1109019 9 Open Access Library Journal 
 

x-axis is the number of edges in the graph ( E ) and the y-axis is the mean basic 
reparation number. 

The above graphs were constructed synthetically. Thus, a natural question 
that rise is “does this model words on real-life graphs?”. To answer this question, 
we tested the model on the Facebook interaction graph. This graph represents 
the friendships between individuals in the Facebook social platform [33]. In ad-
dition, it contains 4039V =  nodes and 176468E =  edges (1.01% density). 
Moreover, each node v V∈  has 44 ± 52 neighbors. A histogram of the number 
of neighbors per node is provided in the supplementary material. We calculated 
the pandemic spread for the maximum heat spread boundary, the mean heat 
spread boundary, and the stochastic SIR model, as shown in Figures 4(a)-(c), 
respectively. 
 

 
Figure 4. The pandemic spread over time for the Facebook [33] infection graph such that the susceptible, infected, and recovered 
normalized group sizes are donated by S, I, and R, respectively. 
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4. Discussion  

Estimating the infection rate is critical information for pandemic management 
[7] [18]. In this paper, we showed boundaries on the infection rate. By using the 
heat spread dynamics with different diffusion rates we learned that the rate is 
highly dependent on the topology of the interaction graph. The boundaries of a 
stochastic SIR model’s infection rate were assumed to take place on an interac-
tion graph. This provides a better representation of the epidemiological dynam-
ics in a heterogeneous population. Health professionals would benefit from the 
representation we provide. Since the proposed boundaries are relatively easy to 
obtain as they require almost no prior data. Specifically, we presented the worst 
case (also called the maximum case) and the mean case pandemic spread boun-
daries. This is especially useful at the beginning of a pandemic since acting fast 
can significantly reduce overall infection [10]. For example, during the COVID-19 
pandemic [34], the infection and recovery rates were rapidly update [13] [30] 
[35] [36] [37]. This led to large errors in the estimations of the pandemic spread. 
As a result, policymakers were provided with a distorted image. Hence, the pro-
posed boundaries provide an initial solution. Once more data is gathered, one 
would be able to both improve the proposed boundaries and use more sophisti-
cated and adjusted models. 

The maximum heat spread boundary is deterministic tight. Therefore, it can-
not be improved. Nonetheless, this case represents a catastrophic scenario where 

1, 0β γ= = . This case may cause unnecessary panic and extreme reactions. Ob-
viously, these are not necessarily required to contain the pandemic spread. 
However, if slightly more information is provided such as the approximation of 
the infection rate ( β ), one can obtain a better approximation of the infection 
spread rate. Indeed, in such a case, we can use the mean heat spread boundary. 
This boundary provides a tighter approximation to the stochastic SIR model. 
This is done without knowing the recovery rate or anything on the interaction 
graph, as shown in Figure 3. Withal, the mean heat spread boundary is consti-
tuent in providing a mean boundary over the stochastic SIR. This is significantly 
less than the maximum heat spread boundary over different levels of connectiv-
ity in the population, as shown in Figure 2. In fact, when applied to the Face-
book interaction graph [33], the maximum and mean heat spread boundaries 
provided 20 and 1.66 times greater pandemic spread rate on average compared 
to the stochastic SIR model, as shown in Figure 4. 

The usage of heat spread as the boundary for the pandemic spread is useful in 
real settings. This is because one can find the diffusion rate c from local infection 
spread by computing only the infection rate of interactions of infected individu-
als with their immediate environment. For comparison, this method does not 
work for obtaining the infection rate ( β ) and recovery rate ( γ ). Therefore, it is 
faster and more feasible to obtain the heat spread boundaries to the pandemic 
rather than the SIR-based pandemic spread. 

A possible future work can be removing the assumption that the interaction 
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graph is static over time. Specifically, one can allow the edges of the graph to 
change according to some socio-epidemiological logic. This relaxation would 
lead to a better representation of the pandemic spread in a population. As a re-
sult, this can reveal even better boundaries to the pandemic spread. 
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