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Abstract 
We suggest a field theory based on a generalization of Maxwell’s equations of 
electromagnetism, which allows one to describe the various elementary par-
ticles’ structures. It seems to us, that such a theory must exist because under 
suitable reactions, particles can turn into particles of other forms and that the 
photon which partakes in many reactions, being a quantum of electromag-
netic field, is described by the Maxwell equations. The fact that particles are 
supposed to have an internal structure and not be singular points, as is gener-
ally accepted in modern physics, supports Plank’s hypothesis that every free 
particle is associated with a harmonic oscillation related to its internal energy. 
The photon can serve as an example, whose internal motion is described by 
the interaction of electric and magnetic fields. In order for a particle to exist 
on its own, that is without external influence, the equations that describe its 
field, in our opinion, must be compatible with each other (source being de-
termined by the field, and the field by the source) and nonlinear. Let us note 
that the photon is an exception to this rule, since it is defined by linear equa-
tions. This is related, apparently, to the fact that it travels with the maximum 
speed—the speed of light c. Unlike in Maxwell’s theory where sources are in-
dependent of the field that they generate, we propose a model with nonlinear 
self-compatible equations in which the sources happen to be quadratic func-
tions of the electric and magnetic fields. We give an approximate solution to 
the nonlinear equation for the electron and we show that the structure of its 
electric field is asymptotically determined by Coulomb’s law away from the 
particle’s center, while near the center the field changes its nature. 
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1. Introduction 

In modern physics, elementary particles are viewed as points (i.e. not having an 
internal structure) or consisting of several such point particles (e.g. quarks). The 
behavior of complex systems (atoms, molecules, atomic nuclei, etc.) is success-
fully described by quantum mechanics using the motion of external fields of 
point particles. The point explanation, regardless of the fact that it contradicts in 
a large way the development of modern science, is a necessary but useful ideali-
zation. Observing that according to Plank’s hypothesis, in reality particles are 
not simply points and have internal structures, in our opinion that to every free 
particle is associated an oscillation frequency ω, related to its internal energy E 
by the expression E ω=  , where   is Plank’s constant. That is the particle is 
associated to some internal motion that determines a periodic oscillation. The 
photon is an example, a quantum of electromagnetic wave, whose internal mo-
tion is described by Maxwell’s field equations. In the photon, this motion is de-
termined by the interaction of two components: the intensities of the electric 
field E  and the magnetic field H . This agrees well with the various philosoph-
ical concepts (ancient and modern), that the development and self-development 
happens as a result of the interaction of two beginnings, as in the living and non-
living worlds (male and female beginnings). The fact that the Maxwell field equ-
ations describe an electromagnetic phenomenon in the whole range of frequen-
cies without limits from above or below is worthy of awe, and hints at particular 
directions of thought. 

The characteristic property of elementary particles is their capacity for mutual 
transformation while satisfying certain conservational laws. Photon for instance 
partakes in many such reactions. Both of these factors indicate at the fact the 
nature of elementary particles is one. Due to the fact that the photon is described 
electrodynamically by Maxwell’s equations, the other elementary particles can 
also have an electrodynamic basis albeit a little bit modified. 

Since a systematic theory of elementary particles does not exist at the moment, 
we attempt here to create a field theory of particles free of external influence on 
the basis of a generalized theory of Maxwell’s equations of electrodynamics. The 
concept of a free particle remains relatively abstract, since the presence of exter-
nal influence is always present. Such an ideal model is accepted by physics and 
for the most part has justified itself.  

In order for a particle to exist on its own, that is without external sources, the 
equations describing its field, in our opinion, must be self-compatible (i.e. source 
is determined by the field, and the field by the source) and nonlinear. Einstein’s 
general theory of relativity can serve as an example, in which the theory of grav-
ity is described by self-compatible nonlinear tensor differential field equations. 
But this theory, based on the equality of inertial and gravitational mass, de-
scribes the behavior of macrobody and in our opinion is not entirely suitable for 
a construction of a theory of elementary particles. Most likely because of this the 
construction of a single field theory explaining all forms of interaction (includ-
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ing the theory of gravity), despite of numerous attempts and effort, has not been 
created as of yet. 

For the creation of a field theory giving the internal structure of elementary 
particles, we choose Maxwell’s model of electrodynamics, operating on only two 
vector quantities E  and H . Maxwell’s equations are linear and the electro-
magnetic field is created by external independent sources (i.e. current and 
charges). 

We propose a model that works with nonlinear self-compatible equations in 
which the sources of the field are quadratic forms of E  and H . The purpose 
of this investigation is the creation of a field theory describing the structure of 
various elementary particles on the basis of generalized Maxwell’s equations of 
electrodynamics. 

2. Basic Relations 

First of all, let us note that the CGS absolute system of units will be used, since it 
forms a more convenient configuration in theoretical physics. 

Maxwell’s equations in empty space are as shown [1]: 

1rot ,

1rot ,

div 0,
div 0,

c t

c t

∂
= ⋅

∂
∂

= − ⋅
∂

=
=

EH

HE

E
H

                        (1) 

where E  and H  are the electric and magnetic fields respectively. For our 
analysis below we will need the fact that the present components E  and H  
have different natures, even though both are vectors. E  is a polar (usual) vec-
tor while H  is an axial vector [1]. They differ by the fact that under a reflec-
tion of system of coordinates that is by a change of sign of all coordinates, the 
components of all vectors change sign. The components of the axial vector (that 
can be described as the vector product of two polar vectors) don’t change sign 
under such a reflection. The scalar product of two vectors of the same type is a 
scalar, but of different types is a pseudoscalar, that is under a reflection of coor-
dinates changes sign. We note that the “rot” operator changes one type of vector 
into the other. The fact that E  is polar while H  is axial is seen, for example, 
from the famous relation: 

1rot , grad
c t

ϕ∂
= = − ⋅ −

∂
AH A E  

(e.g. see [1]), where A  is a vector potential (a polar vector), ϕ  is a potential, 
and c is the speed of light. 

It’s interesting to note that Maxwell’s equations allow a beautiful formulation 
in complex notation if one introduces a new complex vector quantity Ψ : 

.E i= + HΨ                            (2) 
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Then the four equations in (1) become the two equations: 

rot ,

div 0.

i
c t

∂
= ⋅

∂
=

Ψ
Ψ

Ψ
                        (3) 

Maxwell’s equations have to relative invariants [1]: 
2 2

1

2

,
.

= −
=

E H
EH




                        (4) 

Or alternatively: 
2

1 2

,
2 ,i

=
= +


  

Ψ
                        (4') 

where 1 2,   are a real scalar and real pseudoscalar respectively. The two inva-
riants 1  and 2  are independent [1]. 

For an electromagnetic monochromatic planar wave in empty space (photon), 
the following is true: 

1 2
2

0,

0.

= =

=

 

Ψ
                          (5) 

We note that 
* 2 2 8E H W= + = πΨΨ  

where W is the energy density of the electromagnetic field. 

* 82i i
c
π

× = − × = −E H SΨ Ψ  

where S  is Poynting’s vector, the power flow density of the electromagnetic 
field [1]. 

3. Generalization of Maxwell’s Equations 

From the quadratic forms in (4) we construct two vectors: 1grad  and 2grad , 
and taking into account that the first is a polar vector while the second is an axial 
vector, and that quantities in the first equation in (1) are polar vectors, in the 
second equation are axial, in the third are scalars, and in the fourth are pseudos-
calars, we generalize the Maxwell equations (1) in the following way: 

1 1

2 2

1 1

2 2

1rot grad ,

1rot grad ,

div ,
div ,

c t

c t

β

β

α
α

∂
= ⋅ +

∂
∂

= − ⋅ +
∂

=
=

EH

HE

E
H








                   (6) 

where 1 2 1 2, , ,α α β β  are real constants. 
We now require that the system of Equation in (6) is reducible into the com-

plex form (3) using the complex vector Ψ  (2). Then setting: 

1 2 2; 2 ; ; 2 ,β β β β α α α α= − = =  
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the system (6) takes the form: 

2

2

rot grad ,

div ,

i i
c t

β

α

∂
= ⋅ +

∂
=

Ψ
Ψ Ψ

Ψ Ψ
                    (6') 

where instead of four constants, only two are involved: α  and β . Or in expli-
cit form: 

1

2

1

2

1rot grad ,

1rot 2 grad ,

div ,
div 2 .

c t

c t

β

β

α
α

∂
= ⋅ +

∂
∂

= − ⋅ −
∂

=
=

EH

HE

E
H








                  (6'') 

We point out that (6") is analogous to Maxwell’s equations with external 
sources: with electric current density ej  and the charge density eρ  [1]: 

1 4rot ,

1rot ,

div 4 ,
div 0.

e

e

j
c t c

c t
ρ

∂ π
= ⋅ +

∂
∂

= − ⋅
∂

= π

=

EH

HE

E
H

                     (7) 

By Comparing (7) and (6"), it can be seen that 1gradβ   is analogous to the  

electric current density 
4

ec
π j , 1α  is analogous to the electric charge density  

4 eρπ . However, unlike the Maxwell’s equations written in (7), the magnetic 
current density mj  and the magnetic charge density mρ  are present if we de-
fine: 

2

2

4 2 grad ,

4 2 .

m

m

c
β

ρ α

π
= −

π =

j 


                      (8) 

We note that the “electric” current and charge densities and the “magnetic” 
current and charge densities in (6") are quadratically dependent on both the 
fields E  and H , but in different forms, and if the former are a scalar and 
vector respectively, then the latter is a pseudoscalar and pseudovector. Compar-
ing the obtained system of Equation (6") with the Maxwell Equation (7), we ob-
serve two additional differences between them. The main and substantial differ-
ence is that if the electromagnetic field in Equation (7) is excited by external 
sources, then (6") is excited by the field itself and are nonlinear equations. 

1) The Maxwell Equation (7) is invariant relative to a change in sign in the 
time variable and the magnetic field [1] that is: 

, , .t t→ − → → −E E H H  

This way, processes in electromagnetic fields can run in one direction as in the 
other. However, solutions to (6") don’t allow for such a phenomenon because of 
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the second equation, that is the processes inside particles exhibit a one way na-
ture in time. 

2) It’s possible to show that the Equation in (6"), unlike the Maxwell Equation 
(7), is not relativistically invariant with respect to a Lorentzian change of coor-
dinates. This seems to imply that the physics of processes inside particles, that is 
for 1210 cmr −<  (the radius of heavy nuclei) is somewhat different, comparable 
to that physical process inside atoms ( 810 cmr −< ) is described not by classical, 
but quantum mechanics. 

By applying the divergence operator to the first Equation in (6'), considering 
the second Equation in (6'), it is easy to see that: 

2 2
2 2d ddiv grad 0 or Δ 0,

d d
a a

t t
+ = + =

Ψ Ψ
Ψ Ψ             (9) 

where a cβ α=  and Δ is the Laplacian. The first Equation in (9) is from a cer-
tain point of view an analog of the charge continuity equation of electromagnetic 
theory [1]: 

div 0,e
et

ρ∂
+ =

∂
j  

and of that in quantum mechanics [2]: 

div 0,
t
ρ∂
+ =

∂
j  

where we have that 

( )* * *and
2mi

ρ = ΨΨ = Ψ ∇Ψ −Ψ∇Ψj 

 

where m is the mass of the particle and Ψ , unlike the complex vector [2], is the 
complex scalar wave function satisfying the Schrödinger equation conveying a 
physical explanation the space time wave [3]. 

4. Static Solutions 

The system of Equations (6') and (6"), as well as Maxwell’s Equation (7), allow us 
to obtain static solutions 0Ψ , i.e. time independent solutions: 

2
0 0

2
0 0

rot grad ,

div ,

iβ

α

=

=

Ψ Ψ

Ψ Ψ
                      (10) 

where 

0 0 0 ,i= +E HΨ  
2 2 2
0 0 0 0 02 .i= − +E H E HΨ  

By applying the rotor operator to the first Equation in (10), considering the 
second Equation in (10) and the fact that that for any vector A  

rot grad div ,A = − ∆A A  

we get 
2

0 0grad .α∆ =Ψ Ψ                         (10') 
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Equation (10) can be written explicitly in the following form: 

( )
( )

( )

2 2
0 0 0

0 0 0
2 2

0 0 0

0 0 0

rot grad ,
rot 2 grad ,
div ,
div 2 .

β

β

α
α

= −

= −

= −

=

H E H
E E H
E E H
H E H

                    (11) 

From (11) it follows that separately, unlike in the Maxwell Equation (7), the 
fields 0E  and 0H  don’t exist. In the case 0 0⊥E H , 0rot 0=E  the electric 
field is simply a potential, while the magnetic is a rotational field ( 0div 0=H ) 
and the Equation (11) simplify as 

( )

( )

2 2
0 0 0

0
2 2

0 0 0

0

rot grad ,
rot 0,
div ,
div 0.

β

α

= −

=

= −

=

H E H
E
E E H
H

                    (12) 

An approximated solution for (12) is shown on Appendix. 

5. Dynamic Solutions 

The functions ( ), tE r , ( ), tH r , and ( ), trΨ  are all dependent on the coor-
dinate r  and time t. 

We will later analyze the dynamically stationary solutions that are dependent 
on time through a harmonic rule e i tω− , that is analogous to the quantum states 
in Schrödinger equation with constant energy E ω=   [2]. 

Let us note that while Schrödinger equation is linear, Equation (6') aren’t, as a 
result of the existence of 2Ψ . So stationary solutions are allowed in particular if 
the following relations are met: 

( ) ( ) ( )
( ) ( ) ( )

0

2 2
0 0

, e ,

, 2 e ,

i t

i t

t

t

ω

ω

−

−

= +

= +

r r r

r r r





Ψ Ψ Ψ

Ψ Ψ Ψ Ψ
                (13) 

under the following condition: 
2 0,=Ψ                            (14) 

which doesn’t imply that 0=Ψ . Yet, as in the electromagnetic field Condition 
(5), the following conditions are met: 

2 2
1 2

1 2

0,

0,

− =

=

 

 

Ψ Ψ

ΨΨ
                        (14') 

where 

1 2 ,i= +  Ψ Ψ Ψ  

where 1
Ψ , 2

Ψ  are real vectors. 
Considering Equations (13) and (14), Equation (6') can be divided into a static 

part ( )0 rΨ  defined in Equations (10) and (10') and a dynamic part ( )rΨ  
( ) ( ) ( )
( ) ( )

rot grad ,

div ,

k iβ

α

= +

=

r r r

r r

 







Ψ Ψ

Ψ
                 (15) 
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where 

( ) ( ) ( )02 ,r=r r  Ψ Ψ  

.k
c
ω

=  

The relationship between ( ), tE r , ( ), tH r , and ( )rΨ  can be obtained in 
the following relations: 

( ) ( ) ( ) ( ) ( ) ( )0 0, , , , , ,t t t t= + = +E r E r E r H r H r H r   

( ) ( ) ( ), , e .i tt i t ω−+ =E r H r r  Ψ  

Note that ,E H   are real vectors, but Ψ  is a complex one. 
Considering Equations (13) and (14), Equation (9) for 2Ψ  can also be di-

vided into constant and varying parts: 

( ) ( ) ( ) ( )0 0Δ 0,i aω  − + = r r r r Ψ Ψ Ψ Ψ               (16) 

( )2
0Δ 0.=rΨ                         (17) 

It is seen that for stationary (i.e. stable in time) particles, the dynamic part of 
the field Ψ  is always connected with the static part 0Ψ . 

Another form of dynamic equations can be obtained by applying the rotor 
operator to Equation (6'): 

( ) ( ) ( ) ( )2 2
2

2 2

, ,1Δ , grad , grad .
t t

t t
c tc t
βα

∂ ∂
− = +

∂∂

r r
r r

Ψ Ψ
Ψ Ψ     (18) 

For an electromagnetic field, Equation (18) becomes the known wave equa-
tion [1]: 

( ) ( )2

2 2

,1Δ , 0.
t

t
c t

∂
− =

∂

r
r

Ψ
Ψ                  (19) 

To find the stationary solutions of Equation (18) let us assume, as was done 
above, that Conditions (13), (14) are satisfied; then Equation (18) can be shown 
as follows: 

( ) ( ) ( ) ( ) ( )2
0Δ 2 grad ,k ik rα β  + = −  r r r  Ψ Ψ Ψ Ψ        (20) 

( ) ( )2
0 0Δ grad .r rα=Ψ Ψ                   (21) 

Equation (21) corresponds, of course, to Equation (10'). 
Equation (20) holds as a generalized wave equation for a stationary particle 

(perhaps it is a neutrino). It can be seen that this particle is coupled to a charged 
particle 0Ψ ; let us say that it is an electron. 

6. Some Commentary 

Let us note that for a particle to be stable, strong enough conditions have to be 
satisfied (13), (14), that is why probably most free particles are not stable, and 
decay at one time or another. Hence, stable particles are, in a way, an unusual 
thing. 
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Note 

It is interesting to consider a few other questions, especially those regarding ball 
lightning whose nature remains unknown to this day. It can be assumed that a 
ball lightning is an electrostatic field, which is held by itself. The intensity of the 
electric field is defined through (A.3). 
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Appendix 

Despite its seeming simplicity, the nonlinearity of Equation (12) makes them 
difficult to solve. For this reason, we simplify the problem by assuming that 

2 2
0 0H E . This way, we are led to the following system of differential equations: 

( )
( ) ( )

0

2
0 0

rot 0,

div ,α

=

=

E r

E r E r
                     (A.1) 

For a spherically symmetric particle, assuming that the vector ( )0E r  has 
only one component, 0r

E , which depends only on the radius r (with this the 
first equation in (A.1) is automatically satisfied) and Equation (A.1) becomes 

( ) ( )2 2
0 02

1 d ,
d r r

r E r E r
rr

α  =                    (A.2) 

or 

( )
( ) ( )0 2

0 0

d 2 .
d

r
r r

E r
E r E r

r r
α+ =  

This is a Bernoulli equation [4]: 

( ) ( )d , 2,
d

ny P x y Q x y n
x
+ = =  

which is analytically solvable: 

( ) 12
0 ,

r
E r crα

−
= +                      (A.3) 

where c  is an arbitrary constant. 
For 1r  , away from the particle’s center, 

0 2

1~ ,
r

E
cr

 

which corresponds to Coulomb’s law: 

( ) 2 ,qE r
r

=  

where q is the particle’s charge. 
We get: 

1c
q

=                            (A.4) 

Close to the particle’s center, the field does not match Coulomb’s law: 

0
1~ .

r
E

rα
 

The value of the constant c  can be found directly by equating the third Eq-
uation in (7) and (A.1), so that the following is obtained: 

( )2
04 .E rρ απ →  

Hence, the charge q equals to: 

https://doi.org/10.4236/oalib.1109129


I. Man’kin 
 

 

DOI: 10.4236/oalib.1109129 11 Open Access Library Journal 
 

( )
2

220

d 1d ,r rq V
cr cr

ρ α
α

∞

= = =
+

∫ ∫  

which satisfies (A.4) as well. 
Now let us estimate the value of the constant α . For this we introduce the 

particle’s radius 0r . We will assume that inside the volume, defined by 0r , 
most of the charge q exists. We will also assume that inside there is 0.9q. 

Hence, 

( )
0 2

21 20

d0.9 ,
r r rq

r q r
α

α −
≅

+
∫  

we get: 

00.1
.

r
q

α ≅  

For an electron, 19 1010 C 3 10 esuq e − −= ≅ ≅ × . For the electron’s radius 0r , 
let us assume that it is equal to 14 15

0 ~ 10 -10 cmr − −  (a radius of a heavy nucleus 
is about 10−12 cm). 

Therefore, 

6 7 cm ~ 10 -10 .
esu

α − −  
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