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Abstract 
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1. Introduction and Main Results 

Our main purpose in this paper is to study the existence of nontrivial solution 
for the following system: 

( ) ( )
( )

2

2

2 ln , in ,
, on ,

pu V x u u u u u u
u
ω φ φ

φ ω φ

−−∆ + − + = + Ω

−∆ = − + ∂Ω

      (1.1) 

where 3Ω ⊂   is a smooth bounded domain, 0ω >  is parameters. We as-
sume: 

(V) ( )
3
2V L∈ Ω  and ( )0 inf

x
V V x

∈Ω
= > −∞ . 

In recent years, the following Klein-Gordon-Maxwell system:  
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has been object of interest for many researchers, 0ω >  is a parameter, 
3, :uφ →  , 3:V →   and 3:f × →   . Such a system was first in-

troduced by Benci and Fortunato [1] as a model describing solitary waves for the 
nonlinear Klein-Gordon equation interacting with an electromagnetic field. The 
unknowns of the system are the field u associated to the particle and the electric 
potential φ . The presence of the nonlinear term f simulates the interaction be-
tween many particles or external nonlinear perturbations. By applying a well 
known equivariant version of mountain pass theorem, Benci and Fortunato [1] 
[2] first studied the following special Klein-Gordon-Maxwell system with con-
stant potential 2 2

0m ω− , 

( )
( )

222 3
0

2 3

, ,

, .

pu m u u u x

u x

ω φ

φ ω φ

−  −∆ + − + = ∈  
∆ = + ∈




             (1.3) 

They considered 0mω <  and ( ) 2pf u u u−= , 4 2 6p ∗< < = , and proved 
that system (1.3) has infinitely many radially symmetric solutions. In [3], 
D’Aprile and Mugnai extended the interval of definition of the power in the 
nonlinearity for the case 2 4p< ≤ . A nonexistence result has been established 
by the same authors in [4]. In [5] [6] the existence of ground state solutions of 
(1.3) was established. 

Furthermore, if system (1.3) is added by a lower order perturbation, in the 
year 2004, Cassani [7] studied this kind of Klein-Gordon-Maxwell system:  

( )
( )

2 422 3
0

2 3

, ,

, ,

pu m u u u u u x

u x

ω φ µ

φ ω φ

−  −∆ + − + = + ∈  
∆ = + ∈





         (1.4) 

he obtained the existence of a radially symmetric solution. Later, Wang [8] im-
proved the result of [7]. Without need of symmetry, other related results about 
the autonomous Klein-Gordon-Maxwell system with a more general function 
( ),f x u  can be found in [9] [10] [11] and references therein. Very recently, the 

existence result for the (1.2) with a nonconstant potential ( )V x  can be found 
in [12] [13] [14] [15] [16] [17] and so on. Furthermore, on bounded domains 
about Klein-Gordon-Maxwell system we refer to research in [18] [19]. 

Moreover, logarithmic nonlinearity is widely used in partial differential equa-
tions which describe the mathematical and physical phenomena. For elliptic eq-
uations with logarithmic nonlinearity, we can refer to [20] [21] [22] [23] [24] 
and the references therein. Compared with polynomial nonlinearity, logarithmic 
nonlinearity has both advantages and disadvantages. However, because loga-
rithmic nonlinearity didn’t satisfy the monotonicity condition and Ambrose-
ti-Rabinowitz condition which is quite different from these in the polynomial 
case. 

Remark 1.1. In this paper, we have:  
2

0

ln
lim ,

p

t

t t t t
t

−

→

+
= −∞                      (1.5) 

it is obviously different from the usual conditions,  
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( )
0

,
lim 0.
t

f x t
t→

=                       (1.6) 

In other words, 2ln pt t t t−+  cannot be a special case of ( ),f x t  in gener-
al.  

Now we state our main results as following.  
Theorem 1.1. Assume (V) hold. Then when 4 6p< <  problem (1.1) has a 

nontrivial solution ( ) ( )1,2,u Eφ ∈ × Ω .  
The plan of the paper is as follows. In Section 2, we give the variational 

framework for problem (1.1) and some preliminary results. In Section 3, we 
prove the some basic lemmas. In Section 4, we complete the proof of Theorem 
1.1. 

Throughout the paper, we give the following natations: 
• C and ( )1,2,kC k =   for psositive constants;  

• ( ) ( )1,2

1
2 2du u u x

Ω Ω
= = ∇∫

 denote the norm of ( )1,2 Ω ; 

• ( ) ( )( )1 1

1
2 22 dH Hu u u u x

Ω Ω
= = ∇ +∫  denote the norm of ( )1H Ω ; 

• ( )
1

ds s
su u x

Ω
= ∫  denotes the norm of ( ) ( ), 1sL sΩ ≤ ≤ ∞ ; 

• S denotes the Sobolev constant.  

2. Variational Setting and Preliminaries 

Let  

( ) ( )( ){ }21 2: : d ,E u H u V x u x
Ω

= ∈ Ω ∇ + < ∞∫  

E is a Hilbert space with the inner product,  

( ) ( )( ), dEu v u v V x uv x
Ω

= ∇ ⋅∇ +∫  

and the norm,  

( )( ) ( )( )
1 1

2 22 22 2d d ,Eu u V x u x u V x u x
Ω Ω

= ∇ + = +∫ ∫  

which is equivalent to the standard norm in ( )1H Ω . Obviously, the embedding 
E ↪ ( )sL Ω  is continuous, for any 2,2s ∗ ∈   , where 2 6∗ = . Consequently, 
for each [ ]2,6s∈ , there exists a constant 0sS >  such that,  

, .ss Eu S u u E= ∀ ∈                     (2.1) 

The solutions ( ) ( )1,2,u Eφ ∈ × Ω  of the (1.1) system are critical points of 
the functional ( )1,2:J E× Ω →   defined as:  

( ) ( ) ( )( )2 22 2

2 2

1, 2 d
2

1 1 1ln d d d .
2 4

p

J u u V x u u x

u u x u x u x
p

φ φ ω φ φ
Ω

Ω Ω

= ∇ + − ∇ − +

− + −

∫

∫ ∫
       (2.2) 

By standard argument we can see that ( )( )1 1,2 ,J C E∈ × Ω   and that 
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weak solutions of (1.1) turn out to be critical points for the energy functional J. 
To obtain our main result, we have to overcome several difficulties. The first 

difficulty is that J is strongly indefinite, that is, is unbounded both from below 
and from above on infinite-dimensional subspaces. In order to avoid this indefi-
niteness, which rules out many of the usual tools of critical point theory, a re-
duction method is performed in [2] which we now recall. 

Similar to [[4], Lemma 2.1], which deal with in the case of entire domain 3 , 
for u and φ  defined above, we have the following lemmas. 

Lemma 2.1. For every ( )1u H∈ Ω , there exists a unique ( )1,2
uφ φ= ∈ Ω  

which solves the equation:  
2 2 .u uφ φ ω−∆ + = −                      (2.3) 

Moreover, the map ( ) ( )1 1,2: uu H φΦ ∈ Ω ∈ Ω   is continuously differen-
tiable, and  

0 a.e. in .uω φ− ≤ ≤ Ω                    (2.4) 

Proof. Its proof is similar to [19] [25].                                □ 
Multiplying (2.3) by uφ  and integrating by parts, one has  

2 2 2 2d d d .u u ux u x u xφ ωφ φ
Ω Ω Ω
∇ = − −∫ ∫ ∫               (2.5) 

Using (2.2) and (2.5), the functional ( ) ( ): ,I u J u φ=  reduces to the following 
form  

( ) ( )2 2 2

2 2

1 1 1d d d
2 2 2

1 1 1ln d d d ,
2 4

u

p

I u u x V x u x u x

u u x u x u x
p

ωφ
Ω Ω Ω

Ω Ω Ω

= ∇ + −

− + −

∫ ∫ ∫

∫ ∫ ∫
         (2.6) 

and we have for any ,u v E∈   

( ) ( ) ( )
2

, d d 2 d

ln d d .

u u

p

I u v u v x V x uv x uv x

uv u x u uv x

ω φ φ
Ω Ω Ω

−

Ω Ω

′ = ∇ ∇ + − +

− −

∫ ∫ ∫
∫ ∫

      (2.7) 

Then, ( ) ( )1,2,u Eφ ∈ × Ω  is a weak solution of (1.1) if, and only if, uφ φ=  
and u E∈  is a critical point of I, that is, a weak solution of  

( ) ( ) 22 2 ln ,p
u uu V x u u u u u uω φ φ −−∆ + − + = +           (2.8) 

for any x∈Ω . 
The second, to deal with logarithmic nonlinearity lnu u . We shall also need 

a logarithmic Sobolev inequality [26] which holds for all ( ) { }1 \ 0Nu H∈   and 
0b > , we have  

( )
2

2 22
2

2

2 ln d 1 ln d .N N

u bu x N b u u x
u

+ + ≤ ∇
π∫ ∫

 

         (2.9) 

For ( )1
0u H∈ Ω , we can define ( ) 0u x =  for \Nx∈ Ω . Then it holds, for 

any positive number b,  

( )
2

2 22
2

2

2 ln d 1 ln d .
u bu x N b u u x
uΩ Ωπ

+ + ≤ ∇∫ ∫          (2.10) 
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Lemma 2.2. (Sobolev imbedding theorem) [[27], Theorem 1.8] The following 
imbeddings are continuous:  

( ) ( )
( ) ( )
( ) ( )

1

1 *

*1,2 2

, 2 , 1, 2

, 2 2 , 3

, 3

N p N

N p N

N N

H L p N

H L p N

L N

⊂ ≤ < ∞ =

⊂ ≤ ≤ ≥

⊂ ≥

 

 

 

 

In particular, the Sobolev inequality holds:  

( )1,2

2*

2
2

1

: inf 0.
Nu

u

S u
∈

=

= ∇ >


 

Lemma 2.3. [[27], Lemma 2.13] Set 3N ≥ , ( )2
N

a L∈ Ω , then functional  

( )1
0: Hχ Ω →  ,  

( ) ( )2 1
0d , ,u au x u Hχ

Ω
= ∈ Ω∫                 (2.11) 

is weakly continuous.  

Lemma 2.4 (Hölder inequality) [28] Assume 1 ,p q≤ ≤ ∞ , 1 1 1
p q
+ = . Then  

if ( ) ( ),p qu L v L∈ Ω ∈ Ω , we have  

d .p quv x u v
Ω

≤∫                     (2.12) 

3. Some Basic Lemmas 

In this section, we prove that the functional I satisfy the Palais-Smale condition 
in the cases 4 6p< <  and ( )0, 2b∈ π . First, we recall that a 1C  functional 
I satisfies the Palais-Smale condition at level c ((PS)c in short) if every sequence 
{ } ( )1

n n
u H⊂ Ω  satisfying ( )nI u c→  and ( ) ( )0nI u n→ →∞  has a con-

vergent subsequence. 
We first begin giving the following general mountain pass theorem (see [29]).  
Theorem 3.1. Let X is a real Banach space and ( )1 ,I C X∈  , with 
( )0 0I = . Assume that  
1) there exist , 0r α >  such that ( )I u α≥  for all u X∈ , with u r= ;  
2) there exist e r>  satisfying Xu r>  such that ( ) 0I e < . 

Define [ ]( ) ( ) ( )( ){ }: 0,1 , : 0 0 and 1 0C X Iγ γ γΓ = ∈ = < ,  

[ ]
( )( )

0,1
inf max

t
c I t

γ
γ α

∈Γ ∈
= ≥                     (3.1) 

and there exists a (PS)c sequence { }nu X∈ . 
Next, we begin proving that I satisfies the assumptions of the mountain pass 

theorem.  
Lemma 3.1. Suppose that 4 6p< <  and ( )0, 2b∈ π  are satisfied. Then 

the functional I satisfies the mountain pass geometry, that is, 
1) there exist , 0r α >  such that ( )I u α≥  for any u E∈  such that 

u r= ;  
2) there exists e E∈  with u r>  such that ( ) 0I e < .  

https://doi.org/10.4236/oalib.1109120


Q. Y. Shi 
 

 

DOI: 10.4236/oalib.1109120 6 Open Access Library Journal 
 

Proof. By (V), (2.4) and (2.10), one has  

( ) ( )

( )( )

2 2 2

2 2

2 2 2

2

1 1 1d d d
2 2 2

1 1 1ln d d d
2 4

1 1 1d 2 1 d d
2 4 2

1 1ln d d
2

u

p

u

p

I u u x V x u x u x

u u x u x u x
p

u x V x u x u x

u u x u x
p

ωφ

ωφ

Ω Ω Ω

Ω Ω Ω

Ω Ω Ω

Ω Ω

= ∇ + −

− + −

= ∇ + + −

− −

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫

∫ ∫

 

( )( )

( ) ( )

( )

2 2 2

2 2
2

2

2 22
0 2

2
2 2

2

2
2 2

0 2 2

1 1 1d 2 1 d d
2 4 2

1 1 1ln d ln d d
2 2

1 1 3d 2 1 d 1 ln
2 4 4

1 1d ln d d
4 2

1 1 12 4 3ln 2ln .
2 4 4

u

p

p

p
p

u x V x u x u x

u
u x u u x u x

u p

u x V u x b u

b u x u u x u x
p

b u V b u u u
p

ωφ
Ω Ω Ω

Ω Ω Ω

Ω Ω

Ω Ω Ω

= ∇ + + −

− − −

≥ ∇ + + + +

− ∇ − −
π

 
= − + + + − − π 

∫ ∫ ∫

∫ ∫ ∫

∫ ∫

∫ ∫ ∫

 

(3.2) 

When { }\ 0u E∈  and 0

3
22

2 eVu b +≤ , we get 0 22 4 3ln 2ln 0V b u+ + − ≥ .  

Then, by Sobolev imbedding theorem, one has  

( )
22 2

2 21 1 1 .
2 4 2 4

p

p pp
p

Sb bI u u u u u
p p

−

π π
   

≥ − − ≥ − −   
   

 

When ( )0, 2b∈ π , we can choose , 0r α >  such that ( )I u α≥  for 
u r= . 

On the other hand, let { }\ 0u E∈  and 4 6p< < , using (2.4), we get  

( ) ( ) ( )

( )

2 2
2 2 2

2 2
2 2

2 2 2 2
2 2 2

2 2 2
2 22
2 2

1 d d
2 2 2

ln d d d
2 4

d
2 2 2

ln ln d
2 2 4

, as .

ωφ

ω

Ω Ω

Ω Ω Ω

Ω

Ω

= − +

− + −

≤ + +

− − + −

→ −∞ → +∞

∫ ∫

∫ ∫ ∫

∫

∫

tu

p
p

p
p
p

t tI tu u tu x V x u x

t t tu tu x u x u x
p

t t tu u V x u x

t t t t tu u u x u u
p

t

        (3.3) 

Thus, there exists { }\ 0e E∈  such that ( ) 0I e < . This completes the proof 
of Lemma 3.1.                                                 

Lemma 3.2. Assume (V) and 4 6p< <  hold. Then I satisfies the (PS)c con-
dition, that is, for any (PS)c sequence { }nu E⊂ , there admits a subsequence 
strongly convergent in E.  
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Proof. First we show that { }nu  is bounded. We assume that { }nu E⊂  sati-
sifies  

( ) ( )

( )2 2 2

2 2

1
1 1d d d
2 2

1 1 1ln d d d
2 4

ωφ
Ω Ω Ω

Ω Ω Ω

+ =

= ∇ + −

− + −

∫ ∫ ∫

∫ ∫ ∫

n

n n

n n u n

p
n n n n

c o I u

u x V x u x u x

u u x u x u x
p

       (3.4) 

and  

( ) ( )
( ) ( )2 2 2

2

1 ,

d d 2 d

ln d d .
n n

n n n n

n n u u n

p
n n n

o u I u u

u x V x u x u x

u u x u x

ω φ φ
Ω Ω Ω

Ω Ω

′=

= ∇ + − +

− −

∫ ∫ ∫
∫ ∫

      (3.5) 

One has  

( ) ( ) ( )

( )2 2 2 2

2 2

11 ,
4

1 1 1d d d
4 4 4

1 1 1 1ln d d d
4 4 4

n

n n n n n

n n u n

p
n n n n

c o u I u I u u

u x V x u x u x

u u x u x u x
p

φ
Ω Ω Ω

Ω Ω Ω

′+ = −

= ∇ + +

 
− + + − 

 

∫ ∫ ∫

∫ ∫ ∫

 

( )2 2 2

2

2 32
0

2 3
1 2 3

1 1 1d d ln d
4 4 4

1 1 1d d
4 4

1 1 1 1 1d d d
4 4 4 4

,

n n n n

p
n n

p
n n n n

p
n n n

u x V x u x u u x

u x u x
p

u V u x u x u x
p

C u C u C u

Ω Ω Ω

Ω Ω

Ω Ω Ω

≥ ∇ + −

 
+ + − 

 
 

≥ + − + − 
 

≥ − +

∫ ∫ ∫

∫ ∫

∫ ∫ ∫

         (3.6) 

where 1 2 3, ,C C C  are positive constants. Since ( )4,6p∈ , then { }nu  is 
bounded in E. Going if necessary to a subsequence (still denoted by { }nu ), we 
can assume that  

( ) [ )
( ) ( )

in ,

in , 2,6 ,

a.e. in .

n
s

n

n

u u E

u u L s

u x u x

→ Ω ∈

→ Ω



 

According to (2.7), one obtains  

( ) ( ) ( ) ( )
( ) ( )

( ) ( )2

, d

2 d

ln d d .

ω φ φ
Ω Ω

Ω
−

Ω Ω

′ − = ∇ ∇ − + −

− + −

− − − −

∫ ∫
∫
∫ ∫

n n

n n n n n n

u u n n

p
n n n n n n

I u u u u u u V x u u u x

u u u x

u u u u x u u u u x

   (3.7) 

Similarly, one gets  

( ) ( ) ( ) ( )
( ) ( )

( ) ( )2

, d

2 d

ln d d .

n n n

u u n

p
n n

I u u u u u u V x u u u x

u u u x

u u u u x u u u u x

ω φ φ
Ω Ω

Ω

−

Ω Ω

′ − = ∇ ∇ − + −

− + −

− − − −

∫ ∫
∫
∫ ∫

     (3.8) 
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We easily get that  

( ) ( ) ( ) ( )( )

( )( )

( )( )
( )( )

( )( )

2 2

2 2

2 2

, d

2 d

d

ln ln d

d .

n

n

n n n n

u n u n

u n u n

n n n

p p
n n n

I u I u u u u u V x u u x

u u u u x

u u u u x

u u u u u u x

u u u u u u x

ω φ φ

φ φ

Ω Ω

Ω

Ω

Ω

− −

Ω

′ ′− − = ∇ − + −

− − −

− − −

− − −

− − −

∫ ∫
∫

∫
∫
∫

    (3.9) 

It is clear that  

( ) ( ) , 0, asn nI u I u u u n′ ′− − → →∞             (3.10) 

In fact, by (2.5), we get  

1

2 2 2 2

2 22
12
5

d d

d ,
n n n

n n

u u n u n

u u n u n H

u x u x

u x C u C u

φ ωφ φ

ωφ φ φ
Ω Ω

Ω

= − −

≤ − ≤ ≤

∫ ∫
∫

       (3.11) 

So { }nuφ  is bounded in ( )1,2 Ω . By the Hölder inequality and the Sobolev 
inequality, one has  

( ) ( ) 3 26

3 26

d

.

n n

n

u u n n u u n n

u u n n

u u u x u u u

C u u u

φ φ φ φ

φ φ
Ω

− − ≤ − −

≤ − −

∫
      (3.12) 

Because nu u→  in ( )sL Ω  for any [ )2,6s∈ , we have  

( ) ( )d 0, as ,
nu u n nu u u x nφ φ

Ω
− − → →∞∫            (3.13) 

and  

( )2

6 3 2d 0 as .u n u n nu u x u u u u nφ φ
Ω

− ≤ − − → →∞∫      (3.14) 

Thus, we get  

( )( )

( ) ( ) ( )2

d

d d

0, as .

n

n

u n u n

u u n n u n

u u u u x

u u u x u u x

n

φ φ

φ φ φ
Ω

Ω Ω

− −

= − − + −

→ →∞

∫
∫ ∫          (3.15) 

Observe that the sequence { }2
nu nuφ  is bounded in ( )

3
2L Ω , since  

22
3 36
2

,
n nu n u nu uφ φ≤                     (3.16) 

so  

( )( )2 2

2 2
3 3
2

2 2
33 3
22

d

0 as .

n

n

n

u n u n

u n u n

u n u n

u u u u x

u u u u

u u u u

n

φ φ

φ φ

φ φ

Ω
− −

≤ − −

 
≤ + − 
 

→ →∞

∫

                 (3.17) 
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Because ( ) ( )
3
2V x L∈ Ω , by Lemma 2.3, we get  

( )( )2 d 0 as .nV x u u x n
Ω

− → →∞∫               (3.18) 

By 2ln 1 ,t t C t t≤ + ∈ , and Hölder inequality, one has  

( )( )

2 2

ln ln d

ln d ln d

1 d 1 d

0 as .

n n n

n n n n

n n n

u u u u u u x

u u u u x u u u u x

C u u u x C u u u x

n

Ω

Ω Ω

Ω Ω

− −

≤ − + −

≤ − + + − +

→ →∞

∫
∫ ∫
∫ ∫

           (3.19) 

Moreover, by the Hölder inequality, we have that  

( )( )2 2

2 2

1

d

0 as .

p p
n n n

p p
n n np p

p

u u u u u u x

u u u u u u

n

− −

Ω

− −

−

− −

≤ − −

→ →∞

∫
               (3.20) 

Therefore, according to (3.10)-(3.20), we obtain that  
2 0 as .nu u n− → →∞                    (3.21) 

Thus { }nu  has a strongly convergent subsequence in E.  

4. Proof of Theorem 1.1 

Next, we only need to prove that 0u ≠ . Suppose by contradiction that 0u = , 
and hence 0uφ = . Since as n →∞ , ( ) , 0n nI u u′ → , 0nu →  in 

( ) ( )( )*2, 2pL pΩ ∈ . Thus we get  

( ) 2d 0,nV x u x
Ω

→∫  

2 2 2d 2 d 0,
n nu n u nu x u xφ ω φ

Ω Ω
+ →∫ ∫  

2 ln d 0,n nu u x
Ω

→∫  

d 0.p
nu x

Ω
→∫  

We may assume  
2 2d , 0.n nu x u l l

Ω
∇ = → ≥∫  

Obviously, 0 0nl u= ⇔ →  in E. As a consequence we obtain that  

( ) , as .
2n
lI u n→ →∞  

According to ( ) 0nI u c→ > , we get  

0,
2
lc = >  

which implies that 0l =  is impossible, this is, which contradicts with 0u = . 
Therefore, u is a nontrivial solution of system (1.1). We have completed the 
proof of Theorem 1.1.                                         
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