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Abstract 
In this paper, we have introduced some concepts about topological dynamical 
systems and proved some new corollary and theorems of transitivity of a the-
ta irresolute function defined on topological space. 
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1. Introduction 

In this paper, we have investigated and introduced some new definitions of tran-
sitivity in topological space. To study the dynamics of a self-map :f X X→  
means to study the qualitative behavior of the sequences ( ){ }nf x  as n goes to 
infinity when x varies in X, where nf  denotes the composition of f with itself n 
times: 

By a topological system I mean a pair ( ),X f , where X is a locally compact 
Hausdorff topological space (the phase space), and :f X X→  is a continuous 
function. The dynamics of the system is given by ( )1 0, ,n nx f x x X n+ = ∈ ∈N  
and the solution passing through x is the sequence ( ){ }nf x  where n∈N . 

Let x X∈ , then the set ( ) ( ){ }2, , ,x f x f x   is called an orbit of x under f 
and is denoted by ( )fO x , so ( )fO x  is the set of points which occur on the 
orbit of x at some positive time, and the sequence ( ) ( )2, , ,x f x f x   is called 
the trajectory of x. Any point with dense orbit is called a transitive point. A point 
which is not transitive is called intransitive. 
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Topological dynamics is concerned with the behavior of iterations of a conti-
nuous map f from a space X into itself. Suppose for some x X∈ , sequence 

( ) ( )2, , ,x f x f x   converges to some point say 0x X∈ , then we must have 
( )0 0f x x= , because f is continuous. Such points we call as fixed points. We say 

that the point x is attracted by the fixed point 0x . The set of all points in X at-
tracted by 0x  is called the stable set or the basin of attraction of the fixed point 

0x  and is denoted by ( )0fW x . A fixed point 0x  is said to be attracting if its 
stable set is a neighborhood of it. 

A point x X∈  is said to be periodic if there exists a positive integer n∈N  
such that ( )nf x x= . The set of all periodic points of the map f is denoted by 
per(f). 

A point x X∈  is called a θ-adherent point of A [1], if ( )A Cl U φ∩ ≠  for 
every open set U containing x. The set of all θ-adherent points of a subset A of X 
is called the θ-closure of A and is denoted by ( )Cl Aθ . A subset A of X is called 
θ-closed if ( )A Cl Aθ= . Dontchev and Maki [2] have shown that if A and B are 
subsets of a space X, then ( ) ( ) ( )Cl A B Cl A Cl Bθ θ θ∪ = ∪  and that 

( ) ( ) ( )Cl A B Cl A Cl Bθ θ θ∩ = ∩ . Recall that a space (X, τ) is Hausdorff if and 
only if every compact set is θ-closed. The complement of a θ-closed set is called a 
θ-open set. The family of all θ-open sets forms a topology on X and is denoted 
by θτ . This topology is coarser than τ and that a space (X, τ) is regular if and 
only if θτ τ=  [3]. 

2. Basic Definition and Theorems 

Definition 2.1 [4] By a topological system I mean a pair ( ),X f , where X is a 
locally compact Hausdorff topological space (the phase space), and :f X X→  
is a continuous function. The dynamics of the system is given by  

( )1 0, ,n nx f x x X n+ = ∈ ∈N  and the solution passing through 0x  is  the se-
quence ( ){ }nf x  where n∈N . 

Definition 2.2. 1) Let x X∈ , then the set ( ) ( ){ }2, , ,x f x f x   is called an 
orbit of x under f and is denoted by ( )fO x , so ( )fO x  is the set of points 
which occur on the orbit of x at some positive time, and the sequence 

( ) ( )2, , ,x f x f x   is called the trajectory of x. 
2) Let X be a topological space, :f X X→ , ( ){ }0 0

n

n
f x

∞

=
 be a sequence in 

X, and let x X∈ . Then ( ){ }0
nf x  converges to x if for all open sets U con-

taining x, there exists an integer N such that ( )0
nf x U∈  for all n >N, Note 

that if this sequence is convergence then it converges to a fixed point, say y, i.e. 
( )f y y= . 
Any point with dense orbit is called a transitive point. A point which is not 

transitive is called intransitive. 
Definition 2.3. 1) (Transitivity) Let X be a topological space with no isolated 

point. Then the function :f X X→  is said to be transitive if for any two open 
sets U and V in X, there is a point x U∈  and an n > 0 such that ( )nf x V∈ . It 
is easily to show that if f is transitive then for every pair U, V of non-empty open 
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sets, there exist a positive integer n such that ( )nf U V φ∩ ≠ . 
2) Let X be a topological space, the function :f X X→ , is said to be topo-

logically mixing if for every pair U, V of non-empty open sets, if there exist N 
such that ( )nf U V φ∩ ≠  for all n N> . 

Definition 2.4. (topological weak mixing) Let X has no isolated point. g is 
topologically weakly mixing, if the product of two functions g g×  is topologi-
cally transitive. 

Proposition 2.5. Every topological mixing function implies topological weak 
mixing. But the converse is no necessarily true. 

Proof: It is easily to prove the foregoing theorem. 
Definition 2.6. A map f is said to be transitive (resp., θ-transitive [5]) if for 

any non-empty open (resp., θ-open) sets U and V in X, there exists n∈N  such 
that ( )nf U V φ∩ ≠ . 

Theorem 2.7 [5]. Let X be a non-empty locally θ-compact Hausdorff space. 
Then the intersection of a countable collection of θ-open θ-dense subsets of X is 
θ-dense in X. 

Corollary 2.8. A subset A of a space ( ),X τ  is θ-dense if and only if 
A U φ∩ ≠  for all U ατ∈  other than U φ= . 

Two topological spaces ( ),X τ  and ( )1,Y τ  are called homeomorphic if 
there exists a one-to-one onto function ( ) ( )1: , ,f X Yτ τ→  such that f and 

1f −  are both continuous. 
Note that any homeomorphic spaces have the same dynamics, if we have any 

notion about first space then we have the same notion about the other one. 
A map :h X Y→  is a homeomorphism if it is continuous, bijective and has 

a continuous inverse. 
A function :f X X→  is called θ-irresolute [6] if the inverse image of each 

θ-open set is a θ-open set in X. 
A map :h X Y→  is θr-homeomorphism if it is bijective and thus invertible 

and both h and 1h−  are θ-irresolute. 
Theorem 2.9. Let ( ),X f  be a topological system where X is a non-empty 

θ-compact topological space and :f X X→  is θ-irresolute map and that X is 
separable. Suppose that f is topologically θ-transitive. Then there is an element 
x X∈  such that the orbit ( ) ( ) ( ) ( ){ }2, , , , ,n

fO x x f x f x f x=    is θ-dense 
in X. 

Proof: Let { }, 1, 2,3,iB U i= =   be a countable basis for the θ-topology of 

X. For each i, let ( ){ }: for some 0n
i iO x X f x U n= ∈ ∈ ≥  

Then, clearly iO  is θ-open and θ-dense. It is θ-open since f is θ-irresolute, so, 

( )1

1
i i

i
O f U

∞
−

=

=


 is θ-open and θ-dense since f is topological θ-transitive map. Fur-

ther, for every θ-open set V, there is a positive integer n such that ( )n
if V U φ∩ ≠ , 

since f is θ transitive. 

Now, apply theorem 2.7 to the countable θ-dense set { }iO  to say that 
0

i
i

O
∞

=
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is θ-dense and so non-empty. Let 
0

i
i

y O
∞

=

∈


. This means that, for each i, there is 

a positive integer n such that ( )n
if y U∈  for every i. By Corollary 2.8 this im-

plies that ( )fO x  is θ-dense in X. 
Definition 2.10. The function :f X X→ , is strongly transitive [7] if for any 

nonempty open set U X⊂ , ( )
0

s
k

k
X f U

=

=


 for some s > 0. It is easily seen 

that ( )
0

k

k
X f U

∞

=

=


 for any nonempty open set U X⊂  if and only if 

( )
0

k

k
f x

∞
−

=


 is dense in X for any x X∈ . 

We may consider that, the last statement of the foregoing definition as lemma, 
because we can use this statement to prove the following corollary. 

Lemma 2.11. ( )
0

k

k
X f U

∞

=

=


 for any nonempty open set U X⊂  if and 

only if ( )
0

k

k
f x

∞
−

=


 is dense in X for any x X∈ . 

According to the definition 2.10 and lemma 2.11, we have the following im-
portant corollary. 

Corollary 2.12. If ( )
0

k

k
f x

∞
−

=


 is dense in X for any x X∈ , then the function 

:f X X→ , is strongly transitive. 

3. Conclusion: 

There are the following results: 
Proposition 3.1. Every topological mixing function implies topological weak 

mixing. But the converse is no necessarily true. 
Theorem 3.2. Let ( ),X f  be a topological system where X is a non-empty 

θ-compact topological space and :f X X→  is θ-irresolute map and that X is 
separable. Suppose that f is topologically θ-transitive. Then there is an element 
x X∈  such that the orbit ( ) ( ) ( ) ( ){ }2, , , , ,n

fO x x f x f x f x=    is θ-dense 

in X. 

Conflicts of Interest 

The author declares no conflicts of interest. 

References 
[1] Velicko, N.V. (1968) H-Closed Topological Spaces. American Mathematical Society 

Translations, 78, 102-118. https://doi.org/10.1090/trans2/078/05  

[2] Dontchev, J. and Maki, H. (1998) Groups of θ-Generalized Homeomorphisms and 
the Digital Line. Topology and Its Applications, 20, 1-16. 

[3] Jankovic, D.S. (1986) θ-Regular Spaces. International Journal of Mathematics and 
Mathematical Sciences, 8, 615-619. https://doi.org/10.1155/S0161171285000667  

https://doi.org/10.4236/oalib.1104998
https://doi.org/10.1090/trans2/078/05
https://doi.org/10.1155/S0161171285000667


D. M. Mohammed 
 

 

DOI: 10.4236/oalib.1104998 5 Open Access Library Journal 
 

[4] Kaki, M.N.M. (2015) Chaos: Exact, Mixing and Weakly Mixing Maps. Pure and 
Applied Mathematics Journal, 4, 39-42.  
https://doi.org/10.11648/j.pamj.20150402.11  

[5] Murad, M.N. (2012) Introduction to θ-Type Transitive Maps on Topological Spac-
es. International Journal of Basic & Applied Sciences IJBAS-IJENS, 12, 104-108. 

[6] Khedr, F.H. and Noiri, T. (1986) On θ-Irresolute Functions. Indian Journal of Ma-
thematics, 3, 211-217. 

[7] Kameyama, A. (2002) Topological Transitivity and Strong Transitivity. Acta Mathema-
tica Universitatis Comeniana, LXXI, 139-145. 

 

https://doi.org/10.4236/oalib.1104998
https://doi.org/10.11648/j.pamj.20150402.11

	On Theta Transitivity in a Topological Space with Countable Base
	Abstract
	Subject Areas
	Keywords
	1. Introduction
	2. Basic Definition and Theorems
	3. Conclusion:
	Conflicts of Interest
	References

