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Abstract 
This work defined the concept of entropy for states of a quantum system and 
built a stochastic model of a dynamic closed quantum system. This paper also 
is considered new approaches to the concepts of statistics and spin of ele-
mentary particles. 
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1. Introduction 

In the algebraic approach, a quantum system is represented by the pair ( ),U ℑ  
where the U is some C∗ -algebra observables, the ℑ  is some set of states: posi-
tive linear functionals :f U C→  with unit norm [1]. In work [2], for any state 
f we define probability measure on the spectrum UP  of any C∗ -algebra  
U , which is the set of all pure states on this algebra. The set U u

u
P ⊂∏σ  where 

u
u
∏σ  is Tikhonov product of spectrums uσ  of all Hermite operators in U. 

On any [ ],u u u⊂σ α β  we have Lebesgue measure ul . On u
u
∏σ  we also  

have product measure uu
L l= ⊗  [3]. This measure induces on UP  measure 

UPL . 
In work [4] we prove that there exists density distribution function :f UP R→φ   
for measure fµ , such that ( )0 1f p≤ ≤φ , ( )d

U

f
P

f p p L= ∫ φ , ( )d 1
U

f
P

p L =∫ φ . 

Consider the function ( ),fF p t  which the module squar 2
f f=ϕ φ .  

Every elementary particle is dinamical system in the unperturbed state. They 
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are stationary, it follows that function or functional which represents the particle 
must depend on the time. The function which depends on time and has module 

fϕ  is function ( ) ( ) ( ) ( )( ) ( ),, cos , sin , ei p t
f f fF p t p p t i p t= + = βϕ β β ϕ , this 

complex value function uniquely defines state f, the stationarity of fF  gives that  
( )d ,
d

p t
const

t
′

=
β

 and ( ) ( ) ( ),p t p t p= +β ω θ . Hence  

( ) ( ) ( ) ( )( ), ei p t p
f fF p t p += ω θϕ . This function is like the solution of stationary  

Sch-rodinger equation. Let’s call it the wave function. Ett =


ω ,  

( ) ( )
( )0 ,

p
k p

d p p
= −

θ
, where the E energy of particle, d any metric on the space 

UP  It follows ( )
( ) ( )( )0 ,

, e
Ei t k p d p p

f fF p t
 − 
 = ϕ . Identical particles in the same state 

have equal energies, so their wave functions may differ only in phase α ,  

( )
( ) ( )( )0 ,

, e
Ei t k p d p p

f fF p t
 − + 
 = 

α
ϕ  We, known ( )pω  is called frequency and  

( ) ( )
( )0 ,

p
k p

d p p
= −

θ
 is called wave number.       

2. Concept of Entropy of State of Quantum State and It’s  
Dynamic 

Let f is the state of quantum system it has some support fSuppµ , { }hΓ =  is a 
family of homeomorphisms : U Uh P P→  which save minimal open pseudo- 
convex cover [5] { } 1,2, ,i i k

O
= 

 of support fSuppµ , and save distribution func-
tion f fh =ϕ ϕ  of measure fµ  defined by state f. Let fk  is the number of 
orbit of action of homeomorphism { }h  on the cover { } 1,2, ,i i k

O
= 

 and fn   

number of elements in family { } 1,2, ,i i k
O

= 

. Let’s call the number f
f

f

n
H

k
=  the 

entropy of state f. 
Let sequence of states 1 2, , , ,nf f f   represents dynamic : U Uh P P→  of 

closed quantum system. As known, the entropy at the evolution closed system 
decreases, so 

1 2 nf f fH H H≤ ≤ ≤ ≤   
Let 1 2 nt t t< < < <   ascending sequence of points in time i.e. entropy 

value , 1, 2,
nt

nℑ =   the set of states of a quantum system whose entropy of is 
less than nt , proceeding from the consideration that the entropy of the state of a 
quantum system should be quantized that the sets , 1, 2,

nt
nℑ =   will be finite 

Define on the sets 
nt

ℑ  probability measures [6] 
nt

µ  as the measure 
nt

µ  of 
one point subset { }fβ  be number:  

{ }( )
1

n n

f
t l

f

H
f

H
=

=

∑
β

β

β

β

µ , 

where 
nt

f ∈ℑβ  and nl  number of elements in the set 
nt

ℑ . Measure for subset 
{ } 1,2, , ni ti k l

f
= ≤

⊂ ℑ


 is number:     
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{ }( ) { }( )1,2, ,
1

n nn

k

t i ti k l
f f

= ≤
=

= ∑


β
β

µ µ . 

This probability measure defines on the set 
nt

ℑ  random value 
nt

Ψ  with 
distribution law [3] [5]: 

{ } { } { }
{ }( ) { }( ) { }( )
1 2

1 2

, , ,

, , ,

n

n

n n n n

l

t

t t t l

f f f

f f f
Ψ =



µ µ µ
 

 

Let ( ) ( )
1

n

n n

l

t tE f f
=

Ψ = ∑ β β
β

µ  is the mathematical expectation of random value  

nt
Ψ  [6] [7]. The stochastic dynamics of a closed quantum dynamic system 
which is represented by states on any C∗ -algebra observables A may described 
by a sequence of random values:    

1 2
, , , , ; 1, 2,3,

nt t t nΨ Ψ Ψ =    

The most probability realization of this random process [6] [7] will be a se-
quence of states:  

( ) ( ) ( )1 2
, , , ,

nt t tE E EΨ Ψ Ψ   

3. New Approaches to the Concepts of Statistics and Spin of  
Elementary Particles 

The family { } 1,2, ,i i k
O

= 

 is renumbered whit natural numbers, Let homeomor-
phism 

1 21 2 :
kj j kj U Uh P P→



 which save the cover { } 1,2, ,i i k
O

= 

 of fSuppµ  such 
that ( )

1 21 2 k ij j kj i jh O O=


, ( )1 21 2 k ij j kj j ih O O=


, 1,2, ,i k=  . We call such a 
map mirror map.  

Let the family ( )
( ) ( )( )0 ,

, e
Ei t k p d p

f

p

fF p t
 − 
 

  =


Φ = 
 


δ ϕ  of all wave function of  

all particles which are in state f. They
 
have same module, and they differ only in 

phase ( ) ( )( )0 ,k p d p p .  
Theorem 1. If 

1 21 2 kf j j kj fF h F= −




δ δ , where ( ){ },f fF F p t∈Φ =δ δ  is the fam-
ily of wave functions of identical particles which are in one state such, mirror 
map 

1 21 2 :
kj j kj U Uh P P→



 is only one. 
Proof: let 

1 21 2 kf j j kj fF h Fδ δ= −


 , and 
1 21 2 :

kj j kj U Uh P P′ →


 other mirror map, 
for which also 

1 21 2 kf j j kj fF h Fδ δ′ = −


 . For composition 
1 2 1 21 2 1 2k kj j kj j j kjh h′

 

  
mast be 

1 2 1 2 1 2 1 21 2 1 2 1 2 1 2k k k kf j j kj j j kj f j j kj j j kj fF h h F h h F′ ′= =
   

   

δ δ δ .  

It means that 
1 2 1 2 1 2 1 21 2 1 2 1 2 1 2k k k k fj j kj j j kj j j kj j j kj Supph h h h Id′ ′= =

   

  µ . Thus  

1 2 1 2

1
1 2 1 2k kj j kj j j kjh h−′ =

 

, for mirror maps 
1 2 1 2

1
1 2 1 2k kj j kj j j kjh h−=

 

, It follows that 

1 2 1 21 2 1 2k kj j kj j j kjh h′=
 

. The theorem is proved.  
Definition 1. We say that elementary particle is subject to the Bose-Einstein 

statistics if it’s wave function is symmetric with respect to mirror maps  

1 21 2 :
kj j kj U Uh P P→



, (
1 21 2 kf j j kj fF h F=





δ δ ) and we say that elementary particle Is 
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subject to the Fermi-Dirac statistic if it’s wave function is anti-symmetric with 
respect mirror maps:  

( )1 2 1 21 2 1 2: ,   
k kj j kj U U f j j kj fh P P F h F→ = −

 



δ δ . 

Theorem 2. In given quantum state may be located in only one Fermi-Dirac 
elementary particle. 

Proof: let fF δ ∈Φ , fF δ ′ ∈Φ , and ( ) ( )( )f i f iF O F h Oδ δ′ =  two wave function 
which located in one state, where : U Uh P P→  homeomorphism which saves 
the cover { } 1,2, ,i i i k

O O
=

∈


 and the module of the wave function. Every such 
homeomorphism performs a rotation at some angle area of value of function 

fF δ  on complex plain around zero point. Obviously in case of mirror map this 
angle is π  radian. Let for : U Uh P P→  angle of rotation is α , and f fF F ′≠δ δ . 
If 

1 21 2 :
kj j kj U Uh P P→



 corresponds to fF δ  and 
1 21 2 :

kj j kj U Uh P P′ →


 corres-
ponds to fF ′δ , we have: 

1 21 2 kf j j kj fh F h h Fδ δ′ = −


   , 

it follows:  

1 21 2 kf j j kj fF h Fδ δ′ = −


 , 

hence 

1 2 1 21 2 1 2k kj j kj j j kjh h′ =
 

. 

From the theorem 1, follows  

1 2 1 21 2 1 2k kj j kj j j kjh h′ ≠
 

. 

We took the opposite, our assumption f fF Fδ δ ′≠  was not correct. Hence 

f fF Fδ δ ′= . 
The theorem is proved. 
From Theorem 2, follows that in case Fermi-Dirac particles the angle of rota-

tion which corresponds to cover saving homeomorphism : U Uh P P→  may be 
nπ , for mirror maps is ( )2 1kπ +  and 2kπ , 0,1, 2,k =   another for rota-
tion maps. 

For Bose-Einstein particles the mirror map 
1 21 2 kj j kjh



 for which  

1 21 2 kj j kj f fh F Fδ δ=


 . 
For Bose-Einstein particles, we do not have a theorem analogous to theorem 2. 

Therefore in one state may be any number of elementary particles.  
Let new we have representation ( )2 2: turns ,T G E E→  of group G of mirror 

maps in tarns of complex flatness, which is considered a two-dimensional Eucli-
dian vector space. For only one wave function fF δ  of Fermi-Dirac particle which 
is in given state f, we have only one mirror map which transfers fF δ  in fF δ− . 
Let this mirror map is 

1 21 2 kj j kjh


 and ( )1 21 2 kj j kjT h h=


 where h is tarn at angle 
( )2 1 ,n n Zπ+ ∈ . In state In state f is particle with wave function fF δ  or particle 
with wave function fF δ− , if assume that on each particle comes the half of the  

rotation angle 
( )2 1 1 ,

2 2
n

n n Z
+ π

π= + ∈ 
 

. Call the number 1 ,
2

n n Z + ∈ 
 

  a 
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spin of Fermi-Dirac particle. 
For Bose-Einstein particles for each mirror map and for wave function fF δ  

of this particle we have 
1 21 2 kf j j kj fF h Fδ δ=



  it means that for representation 

( )2 2: turns ,T G E E→  ( )1 21 2 ,
kj j kjT h h const n n Z= = = π ∈



 in this case on each 
particle comes the total rotation angle ,n n Zπ ∈ . Call the number ,n n Z∈  a 
spin of Bose-Einstein particle.  

4. Conclusions 

1) In the paper is defined entropy of states of some quantum system. 
2) In the paper is constructed discrete random process describing the evolu-

tion of the states of a closed dynamical system. 
3) In the article, we are in a new way to prove the fact that a particle subject to 

Fermi-Dirac statistics can only be one in a given state, while particles that are 
subject to Bose-Einstein statistics can be of any number in a given state. 

4) In the article, we are a new way to introduce the notion of spin for elemen-
tary particles. 
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