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Abstract 
Around one billion persons could not possess access to secured potable wa-
ter. In developing countries, the largest part of the illnesses remains provoked 
by pathogens infected water. As a well-known pathogen, Escherichia coli is 
largely employed as an indicator of coliform contamination. This work firstly 
defines microbiologically E. coli bacteria, presents a brief history relating to 
their first discovery and following contagions, and discusses their clinical cha-
racteristics besides their subsistence in nature. A general examination con-
cerning different techniques used for controlling such bacteria is presented. 
The level of morbidity and mortality changes following the strain and the 
host’s properties. In poor nations, diarrhoeal illness largely conducts to dan-
gerous diseases and dying. In rich nations, even if childhood diarrhoea stays 
not much serious, contagion with verocytotoxigenic E. coli may lead to haemo-
lytic uremic syndrome and thrombiotic thrombo-cytopaenia purpura. Conven-
tional water treatments employ chlorine injection that remains neither an 
appropriate nor economically feasible method in poor regions. Such competi-
tive techniques may be overcome by a more affordable and off-grid method 
like a device founded on TiO2 photoelectrocatalytic disinfection concepts and 
an advanced hydrodynamic cavitation reactor (ARHCR). Applying photoe-
lectrocatalytic processes in scaled-down and portable equipment authorizes 
performant water treatment when employing an off-grid point-of-use appa-
ratus. A pilot-scale ARHCR was tested to kill microbes in water, and a fresh 
probable disinfection route of the ARHCR was suggested comprising hydro-
dynamical and sonochemical impacts. The ARHCR could be used as an en-
couraging different or finishing instrument for neutralizing pathogens in wa-
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ter, even if more investigation on the disinfection route and scale up remain 
required.  
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1. Introduction 

Around one billion persons do not possess access to secured potable water and 
150 million persons use surface water instead of potable water [1] [2]. In devel-
oping countries, a large part of the illnesses stays provoked by pathogens in-
fected water [2]. Thus, furnishing secured potable water remains a huge dare to 
humans [2]. As a part of the present water treatment techniques, chlorination 
[3] [4] [5], ozonation [6], and ultraviolet (UV) technology remain frequently 
employed for killing pathogens and treating water [7] [8]. However, the two first 
methods form toxic disinfection by-products (DBPs) and the last one suffers 
from energy consumption [9] [10] [11]. To deal with such challenges, solar wa-
ter disinfection (SODIS) was proposed as a cost-effective, point-of-use water 
treatment process, and especially practicable in developing countries [12] [13] 
[14]. Nonetheless, such a technique needs a comparatively longer period (from 
many hours to many days) for killing microbes following the intensity of access-
ible sunlight and water contamination [2]. Consequently, if more important dis-
infection rates in direct sunlight could be attained, it could certainly be a viable 
solution to the remaining disinfection techniques accessible [15] [16]. 

As an encouraging green method for ecological treatment and water reme- 
diation, photocatalysis has emerged during the past thirty years [2]. In photo-
catalytic disinfection technology, semiconductors with an appropriate optical 
bandgap may be employed as photocatalysts to produce reactive oxygen species 
(ROSs) in the occurrence of light for demobilizing microbes. Combining photo-
catalysis and SODIS methods seems to be a plausible concept to increase the ki-
netics of SODIS [2]. 

This work aims to focus on Escherichia coli especially its health impacts, ex-
posure evaluation, and hazard reduction. This work firstly defines microbiologi-
cally E. coli bacteria and presents a brief history relating to their first discovery 
and following contagions. To understand E. coli’s behavior, a short description 
relating to their metabolism and physiology is given. As humankind is concerned 
by E. coli contagion, their clinical characteristics are discussed besides their sub-
sistence in nature. A general examination concerning different techniques used 
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for controlling such bacteria is finally presented. 

2. Microbiological Viewpoint and Natural History 
2.1. Microbiological Viewpoint 

In most cases, E. coli are Gram-negative, rod shaped (2.0 - 6.0 mm in length and 
1.1 - 1.5 mm wide bacilli) bacteria with rounded ends (Figure 1) [1] [15]. The 
real form of such microbes could, nonetheless, change from spherical (cocci) 
cells to elongated or filamentous rods [17] [18]. E. coli are non-spore forming, 
and are generally motile through the action of peritrichous flagella. E. coli are 
facultatively anaerobic and generate gas from fermentation of carbohydrates, as 
seen by acid and gas formation from lactose at 37˚C and 44˚C. Most E. coli 
produce a positive ortho-nitrophenyl-β-D-galactoside (ONPG) reaction, show-
ing β-galactosidase activity. The methyl red reaction is also positive for E. coli 
showing mixed acid fermentation of glucose; however, the Voges-Proskauer 
reaction (acetoin production) is negative. E. coli generate indole, yet are not able 
to hydrolyze urea or develop in Møller’s KCN broth (depicting an incapability to 
develop in the existence of cyanide). In addition, formation of hydrogen sulfide 
(H2S) is not usually clear when E. coli are cultured on triple sugar iron (TSI) agar 
or Kligler’s iron agar (KIA). E. coli as well do not induce gelatin liquefaction via 
gelatinase activity. The majority of strains decarboxylate lysine, utilize sodium 
acetate, yet do not develop on Simmons’ citrate agar, where citrate is the only 
carbon source [1]. 
 

 

Figure 1. Typical microscope image of E. coli cells processed with Microbe Tracker [15]. 

https://doi.org/10.4236/oalib.1108860


D. Ghernaout et al. 
 

 

DOI: 10.4236/oalib.1108860 4 Open Access Library Journal 
 

Numerous E. coli cells are capsulated or microcapsulated and such capsules 
are constituted of acidic polysaccharides [1]. Mucoid strains of E. coli generate 
extracellular slime consisting either of a polysaccharide of certain K antigen spe-
cificities, or a usual acid polysaccharide (frequently reported as M antigen) 
formed of colanic acid [19]. E. coli display fimbriae (or pili) of changing struc-
ture and antigenic specificity and since such fimbriae are hydrophobic, they fur-
nish host- or organ-specific adhesion features. 

Many E. coli serogroups are familiar and the plurality is non-pathogenic; none-
theless, several groups could provoke dangerous diarrhoeal disease, sometimes 
with fatal outcome. E. coli is of faecal origin and is almost exclusively detected in 
the digestive tract of warm-blooded animals, especially human beings. There-
fore, observation of E. coli in drinking water is employed as an indicator of hu-
man or animal excreta pollution, and is known as the coliform index [20]. 

The most famous and well-investigated E. coli strain is enterohaemorrhagic 
(EHEC) E. coli O157: H7 [1] [21]. Members of the “O157” serogroup possess the 
usual somatic (cell surface) O antigen, while the flagellar H antigen is employed 
to define the specific serotype. E. coli O157: H7 is seen as one of the most prob-
lematic and pathogenic serotypes, and is frequently synonymously referred to as 
EHEC. From 1982 to 2002, E. coli O157: H7 was notified in 49 states of the USA 
and related to 73,000 illnesses [22]. Such serotype manifests extended subsis-
tence in water at low temperatures [23] [24]. Subsistence was indeed depicted to 
expand beyond 8 months in a farm water gutter, and such microbes were then 
capable to colonize cattle. Importantly, swimming in polluted water has as well 
led to outbreaks of contagion [25] [26]. 

Some less frequently faced strains of E. coli could be found in nature and 
drinking water reservoirs, and could as well provoke diarrhoeal illnesses (like 
dehydrating diarrhoea and traveler’s diarrhea [27]) via changing routes [1]. The 
incubation period for disease depends on strain and this is mostly related to the 
changing pathogenic routes revealed. In most cases, the incubation period is 1 - 
2 days, even so could expand to 5 days. Even if the pathogenic character of E. co-
li has been recognized for a long time, its character as an enteric pathogen has 
not long ago been reinforced via the manifestation of E. coli O157: H7 and the 
relationship of such strain with haemorrhagic enteritis and haemolytic uremic 
syndrome (HUS) [28]. 

E. coli are linked with a set of human infections, following circulation from 
the intestines of patients who have an underlying problem [1]. As an illustration, 
urinary tract infections (UTIs) attributed to E. coli frequently happen following 
direct diffusion from the rectum to the urethra. Infections at other body sites 
commonly grow by haematogenous diffusion (through the blood stream), as ty-
pified by appearance of meningitis in young babies. E. coli are as well a frequent 
reason for postoperative wound contagion, where direct infection of the wound 
(when the bowel was opened) could grow, or indirect infection by faecal infec-
tion of patient fingers. E. coli can as well infect patients via colonized members 
of the health care team, as well as other patients [1]. 
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As aforesaid, some strains of E. coli provoke diarrhoea after faecal-oral diffu-
sion from humans and animals [1]. The next sections will be dedicated mostly to 
diarrhoeal contamination emerging from the different pathogenic types of E. co-
li and will define the epidemiology and clinical characteristics as well as viru-
lence factors and their underlying genetic pathways [29]. 

2.2. Natural History 

Escherichia coli was originally discovered in 1885 and called “Bacterium coli” 
[30] by Dr. Theodor Escherich, a German paediatrician [1]. He discovered the 
bacterium during investigations of the intestinal flora of infants. After that, the 
bacterium was established to possess pathogenic features implying extraintestin-
al contamination [1]. Up until 1919, the name “Bacterium coli” was largely em-
ployed and then Castellani and Chalmers [31] described the genus Escherichia 
and established the type species E. coli [1]. 

There are at least six principal diarrheagenic pathovars of E. coli (two differ-
ent pathovars are related to UTIs and neonatal meningitis) and each type inte-
grates some form of initial attachment to the host cell with following harmful 
results, either via the elaboration of a toxin, or direct action [32]. Such E. coli 
types comprise the already mentioned enterohaemorrhagic (EHEC), along with 
enterotoxigenic (ETEC), enteroinvasive (EIEC), enteropathogenic (EPEC), en-
teroaggregative (EAEC) and diffuse adherent E. coli (DAEC). Each specific type 
provokes diarrhoeal disease by numerous routes and each disease manifests with 
many clinical symptoms [1]. 

3. Metabolism and Physiology, and Clinical Characteristics 
3.1. Metabolism and Physiology 

Most strains of E. coli have the potential to ferment lactose, and the occurrence 
of lactose will as well display a positive ONPG reaction via the activity of β- 
galactosidase [1]. E. coli forms indole from the amino acid tryptophan via action 
of the enzyme tryptophanase, and this is a special property of E. coli from other 
enteric bacteria [33]. 

E. coli are incapable to hydrolyze urea and as well do not form gelatinase [1]. 
E. coli do not develop in Møller’s KCN broth due to development inhibition by 
cyanide. H2S generation is usually absent when E. coli are grown on TSI and 
KIA. These media are utilized to reveal fermentation of specific carbohydrates 
and via integration of sodium thiosulfate and iron allow H2S detection. E. coli does 
not deaminate phenylalanine, while most strains can decarboxylate lysine and use 
sodium acetate. E. coli do not grow on Simmons’ citrate agar, which includes ci-
trate as the sole carbon source. The biochemical properties of the Escherichia 
genus are listed in Table 1, and those of E. coli are given in Table 2. 

3.2. Clinical Characteristics 

A century ago, Muir and Ritchie [34] were the premier to define the pathogenic  
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Table 1. Biochemical properties of Escherichia genus [1]. 

Properties Reaction 

Motility + 

MacConkey growth + 

Mannitol fermentation +, generally gas 

Lactose, 37˚C Acid +, gas + 

Lactose, 44˚C Acid +, gas + 

Adonitol Rarely fermented 

Inositol Rarely fermented 

Indole at 37˚C Generally produced 

Indole at 44˚C Generally produced 

Methyl red reaction + 

Voges-Proskauer reaction − 

Urea No hydrolysis 

Phenylalanine deamination − 

Kligler’s H2S (hydrogen sulfide) medium No blackening 

Møller’s KCN (potassium cyanide) medium No growth 

Gluconate oxidation − 

Gelatin liquefaction − 

Glutamine acid decarboxylase + 

Lysine decarboxylase + 

 
Table 2. Biochemical properties of E. coli [1]. 

Properties Reaction 

Gram stain Negative 

Morphology Straight rods 

Motility + (peritrichous) some non-motile 

Aerobic and anaerobic growth + 

Oxidase − 

Catalase + 

MacConkey growth + 

D-mannitol fermentation +, generally gas (over 90% of strains) 

Lactose, 37˚C Acid +, gas + (over 90% of strains) 

Lactose, 44˚C Acid +, gas + (over 90% of strains) 

D-adonitol Rarely fermented (over 90% of strains) 

Inositol Rarely fermented 
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Continued 

D-glucose Acid 

Indole at 37˚C Generally produced 

Indole at 44˚C Generally produced 

Methyl red reaction + (over 90% of strains) 

Voges-Proskauer reaction − (over 90% of strains) 

Urea No hydrolysis 

Phenylalanine deamination − (over 90% of strains) 

H2S (triple sugar iron) medium No blackening (over 90% of strains) 

KCN (potassium cyanide) medium No growth 

Gelatin liquefaction − (over 90% of strains) 

Glutamine acid decarboxylase + 

Lysine decarboxylase + (75% - 89% of strains) 

 
features of Bacterium coli related to contaminations of the intestine and urinary 
tract, some cases of summer diarrhoea (cholera nostras), infantile diarrhoea and 
food poisoning [1] [34]. The pathogenicity of Bacterium coli was defined as: 
Bact. coli is a normal inhabitant of the intestine of man and other animals. In 
certain circumstances it acquires pathogenicity, and may cause local or general 
infection. It is a frequent cause of acute and chronic infection of the urinary 
tract, and may give rise to an acute or chronic cholecystitis” [1]. 

Nowadays, E. coli is rated as a harmless member of the normal microbiota of 
the human inhabiting the distal end of the intestinal tract [1]. The organism is 
usually acquired at birth or via the faecal oral route from the mother and also 
from nature. The serotypes of E. coli that provoke contaminations are listed in 
Table 3. 

E. coli remains the most prevalent reason for acute UTIs and urinary tract 
sepsis [35]. E. coli could as well rise neonatal meningitis and sepsis, and as well 
abscesses in several organ systems. E. coli can as well occasion acute enteritis in 
humans, as well as animals and is a reason for “traveler’s diarrhea”, dysenteryl-
ike disease touching humans and haemorrhagic colitis frequently known as 
“bloody diarrhea”. Numerous oral challenge investigations have been performed 
with E. coli serogroups to evaluate infection doses. The findings of such investi-
gations propose that levels of 105 - 1010 EPEC organisms, 108 - 1010 ETEC and 108 
cells of EIEC have to be ingested to bring about diarrhoea and infection. Such 
numbers will naturally change with the age and sex of the recipient as well as the 
acidity of stomach. For EHEC, the infective dose that is apt to provoke conta-
mination is less than 100 [1]. 

EHEC is the E. coli serogroup that is probably of most clinical concern. Such 
microbes are recognized to provoke HUS, a case that is distinguished by acute 
renal failure and generally happens in children under the age of 5 years old. An  
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Table 3. Serogroups and illness associations of E. coli [1]. 

Virulence Type Serogroup Disease 
Summary of Host Cell 

Interaction 

Enteropathogenic 
(EPEC) 

055 H6, NM 
086 H34, NM 

0111 H2, H12, NM 
0119 H6, NM 
0125ac H21 

0126 H27, NM 
0128 H2, H12 

0142 H6 

‒ Enteritis in infants 
‒ Traveler’s diarrhoea 

‒ EPEC attach to intestinal 
mucosal cells causing cell 
structure alterations (attaching 
and effacing) 

‒ EPEC cells invade the mucosal 
cells 

Enterotoxigenic 
(ETEC) 

06 H16 
08 H9 

011 H27 
015 H11 
020 NM 

025 H42, NM 
027 H7 

078 H11, H12 
0128 H7 
0148 H28 
0149 H10 
0159 H20 
0173 NM 

‒ Diarrhoea, vomiting and 
fever 

‒ Traveler’s diarrhoea 

ETEC adhere to the small intestinal 
mucosa and produce toxins that act 
on the mucosal cells 

Verocytotoxigenic 
(VTEC; including 

enterohaemorrhagic, EHEC) 

026 H11, H32, NM 
055 H7 

0111ab H8, NM 
0113 H21 
0117 H14 
0157 H7 

‒ Shigella-like dysentery 
(stool contain blood 
and mucus) 

‒ Haemolytic uraemic 
syndrome 

EHEC attach to and efface mucosal 
cells and produce toxin 

Enteroinvasive (EIEC) 

028ab NM 
029 NM 

0112ac NM 
0124 H30, NM 

0136 NM 
0143 NM 
0144 NM 
0152 NM 

0159 H2, NM 
0164 NM 

0167 H4, H5, NM 

Shigella-like dysentery 
EIEC invade cells in the colon and 
spread laterally, cell to cell 

Enteroaggregative (EAEC) 

03 H2 
015 H18 
044 H18 
086 NM 
077 H18 
0111 H21 
0127 H2 

Persistent diarrhoea in children 
EAEC bind in clumps (aggregates) 
to cells of the small intestine and 
produce toxins 

Diffusely adherent (DAEC) Not yet established Childhood diarrhoea 
Fimbrial and non-fimbrial 
adhesions identified 
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evaluated 10% of those contaminated with EHEC 0157 may develop HUS, hae-
molytic anaemia or thrombocytopaenia. Around 5% of cases of EHEC develop 
haemorrhagic colitis, which could progress into HUS, in which mortality rates 
may be as high as 10%. The pathogenic pathways of the major pathogenic groups 
of E. coli are summarized by Percival and Williams [1]. 

4. Subsistence in Nature 

The normal source of E. coli stays in the intestine of humans and other warm- 
blooded animals [36]. Even if E. coli will remain alive in nature, it does not seem 
to develop and will finally die [37]. Therefore, natural occurrence is considered a 
sign of faecal contamination [1]. There is proof that E. coli may, nevertheless, 
remain alive and multiply in tropical environments and so its value as an indica-
tion of faecal contamination in such regions is less certain [38] [39]. 

E. coli possesses significance in water bacteriology since it supplies a helpful 
sign of faecal infection and not on account of its intrinsic pathogenicity [40]. 
The philosophy is that, if E. coli is there, then possibly so could other pathogenic 
enteric microorganisms [41] [42]. Regardless of worries about the accuracy of E. 
coli as a sign of water safety, it remains the sole species that almost all routine 
samples are tested for [1] [43] [44]. 

Situations of E. coli pollution linked with infected under-treated water, and 
especially public potable water, have been communicated [45] [46] [47]. Conta-
minated cattle on farms are suspected to engender water infection with E. coli 
[48] [49] and irrigation water has been announced to be a pollution origin [50]. 
Researchers [51] established that E. coli O157: H7 was apt to remain alive for 
prolonged times in commercially bottled mineral water. As an illustration, after 
seeding water with 103 E. coli O157: H7 cells/mL and storing samples at 15˚C, 
about 70 days passed before E. coli was not detectable in non-sterile mineral wa-
ter, 49 days in sterile mineral water and 21 days in sterile distilled deionized wa-
ter. Scientists [52] investigated subsistence of E. coli O157: H7 in well water mi-
crocosms utilizing water implied in a waterborne outbreak. Subsistence of the 
outbreak strain was similar to a wild-type E. coli strain under the identical cir-
cumstances. E. coli 0157 has been found in well water from four different sites in 
Scotland, UK [53]. Water samples were seeded with a lux-marked E. coli O157: 
H7 strain and stored at 15˚C. Following the water type, such microbes can be 
observed by culture for at least 65 days (end of monitoring) [1]. 

4.1. Subsistence in Water and Epidemiology 

All enterovirulent E. coli are obtained directly or indirectly from human or ani-
mal carriers [1]. Danger from potable water, for that reason, only follows faecal 
pollution of the supply. Considering the vulnerability of E. coli to Cl2 and other 
killing agents, even if the microbes infect the supply, sufficient chlorination as a 
rule efficiently eliminates any health hazard [54]. 

There are no standards for E. coli 0157 (EHEC) inside the 1980 European 
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Drinking Water Inspectorate Directive [1]. In 1997, the Environment Group of 
the previous Scottish Office of Agriculture, Environment and Fisheries Depart-
ment authorized the Water Research Council to assume an investigation inspect-
ing present proof for waterborne transmission of E. coli 0157 [1]. Such investi-
gation concluded that there was no proof that E. coli 0157 was more enduring in 
nature or more reluctant to water treatment technologies contrasted with non- 
pathogenic E. coli detected in the human gastrointestinal tract [1]. 

Worries subsist concerning the possible part that biofilms play in saving en-
terovirulent E. coli. The very elevated infectious injections needed for all entero-
virulent E. coli, other than EHEC, propose that such potential pathway of trans-
mission is improbable as a hazard. The lower infectious injection of EHEC dose 
possibly augments the danger of contamination from biofilms in water; however, 
there have been no epidemics or occasional cases of EHEC involved with ade-
quately disinfected water supplies [1]. 

Fresh investigation has proved that E. coli may persist in aquatic environ-
ments, even if the elements that participate in subsistence are not well grasped. 
Higher predominance of E. coli 0157 has surely been observed throughout warmer 
periods [55]. Recreational water exposure, comprising use of swimming pools, 
has been implied as an origin of E. coli O157: H7 [25] [56], yet details concern-
ing E. coli O157: H7 in natural waters and potable water stays restricted, which 
is mainly related to the reality that frequently only small levels (below the sensi-
tivity limits of detection) of such bacterium take place [1]. 

In the Netherlands, E. coli O157 was isolated (employing a particular enrich-
ment procedure) in 2.7% of 144 private wells, regardless of such samples satisfy-
ing the requested potable water standards [57]. In Canada, after a 2-year inves-
tigation realized in the Oldman River watershed, 0.9% of surface water samples 
(n = 1483) were infected with E. coli O157: H7 [49]. In river water, E. coli O157: 
H7 has as well been isolated from the Oldman River Basin in Southern Alberta, 
Canada [58]. E. coli O157 was detected in 33 surface water samples in Baltimore, 
USA. Nonetheless, E. coli 0157 was only observed in low levels of <1 cells per 
100 mL of raw water [59]. 

4.2. Enterotoxigenic (ETEC) 

Person to person diffusion of ETEC seems to be scarce and most diffusion of 
occasional illness is via food and water sources [1]. Because of ETEC, numerous 
waterborne outbreaks have been registered. One very huge outbreak touched 
more than 2000 staff and visitors to an American National Park in Oregon in the 
summer of 1975 [60]. ETEC were separated from 20 (16.7%) of 120 rectal swabs 
inspected. There was a strong association between disease and potable park wa-
ter in park staff and visitors (p < 0.00001). The only group in which there was no 
correlation with potable water was one comprising visitors on 7-9 July 1975, 
when chlorination of the water supply was carefully supervised. Water came 
from a shallow spring that was polluted by a sewage overflow some 650 m uphill 
from the spring. The supply was assumed to be chlorinated; however, there was 
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no methodical control of Cl2 concentrations throughout the distribution system. 
Different known outbreak touched 251 passengers and 51 crew on a Mediterra-
nean cruise [61]. ETEC was separated from 13 of 22 passengers and 6 of 13 crew 
sampled. Faecal coliforms were separated from tap water and potable tap water 
was the single hazard element related to disease in a case-control study. There 
were numerous disorders in the ship’s water system, comprising probable mal-
functioning chlorination and malfunctioning includes letting bilge water into the 
water containers. Researchers [62] notified three outbreaks of ETEC contamina-
tion linked with cruise ships. All three outbreaks were related to consuming 
drinks with ice cubes on board the ship and two were as well linked with potable 
unbottled water. Water bunkered in overseas ports was the probable origin of 
the pollution and this water should be treated before usage [1]. 

4.3. Enterohaemorrhagic (EHEC) 

EHEC are observed in the intestines of numerous animal species, comprising 
cattle [1]. Contamination of persons may go after direct faecal-oral diffusion 
from infected animals or other persons, or be linked with pollution of food or 
water. Several outbreaks have pursued the consumption of beef products, espe-
cially undercooked beef burgers or salad products. Numerous outbreaks of EHEC 
related to recreational water contact and consuming drinking water have been 
reported. Serotype O157: H7 stays the most regularly announced EHEC strain in 
Europe and North America and the single strain related to outbreaks of potable 
water-related illness. Nonetheless, EHEC strains other than O157 are more and 
more being seen as reasons for outbreaks due to foodborne and person-to- 
person transmission [1]. 

The first outbreak of contamination related to E. coli O157: H7, which was 
robustly associated with the consumption of potable water, took place in Bur-
dine Township (Missouri, USA) between 15 December 1989 and 20 January 
1990 [46]. Of a population of 3126, a total of 243 persons developed illness and 
of these, 86 developed bloody diarrhoea, 36 were hospitalized and four died [1]. 
In a case-control investigation founded on 53 cases, the sole crucial element was 
that contaminated persons drank more cups of urban water per day than other 
persons. The water supply to the city came from two deep-ground water sources, 
and two major water breaks took place on the 23 and 26 December, following 
the beginning of the outbreak, yet prior to its principal peak. 

4.4. Enteroinvasive (EIEC) 

Most sickness is suggested to be food- or waterborne, even if individual to indi-
vidual diffusion as well happens. Nonetheless, at most one outbreak of invasive 
EIEC because water has been noticed in the literature and this was some 50 years 
ago [1]. 

5. Antimicrobial Monitoring 

For E. coli 0157, the concentrations of chlorine (Cl2) usually observed in water 
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have been proved to be enough for its demobilization [63] [64]. Nonetheless, re-
searchers [65] found that Cl2 (5 mg/L) and ozone (O3) at (22 - 24 mg/L) possess 
modest killing impact on E. coli O157: H7 [1]. 

Cheswick et al. [66] examined the performance of Cl2 disinfection for the first 
time over a range of disinfection conditions employing flow cytometry to fur-
nish new insights into disinfection methods. Demobilization was followed for 
pure culture bacteria (E. coli) and pathogens in real treated water from opera-
tional water treatment works (WTWs). A dose dependent increase in demobili-
zation rate (k) was noted for both test matrices, with values of 0.03 - 0.26 and 
0.32 - 3.14 L/mg min for the WTW bacteria and E. coli, respectively. Following 2 
min, E. coli was decreased by 2 log for all Cl2 doses (0.12 - 1.00 mg/L). For the 
WTW filtrate microbes, following 2 min log reductions were between 0.54 and 
1.14 with augmenting Cl2 injection, reaching between 1.32 and 2.33 after 30 min. 
A reduction in disinfection performance was detected as temperature decreased 
from 19˚C to 5˚C for both microbial populations. Concerning chlorination at 
varying pH (pH 6, 7, 8), membrane demolition was more significant at higher 
pH. This was not consistent with the higher disinfection performance observed 
at lower pH when culture based methods are utilized to estimate microbial re-
ductions [66]. 

With chloramines, E. coli O157: H7 is known to possess a CT level (C = dis-
infectant concentration (mg/L); T = time in min) of around 9.2 mg-min/L. Such 
value is required to reach a 4 log10 degree of demobilization [67]. Elevated tem-
peratures have been proved to be efficient in killing E. coli [68] [69]. Regardless 
of this, EHEC has been observed to be fit to develop across a wide temperature 
span [1]. 

Radiofrequency power and UV light subjection have been notified to block E. 
coli [70]. Scientists [71] depicted that at 12 J/m2, a 6-log reduction in culturabil-
ity of E. coli O157: H7 happened. Nonetheless, resistant strains of E. coli O25: 
K98: NM requested bigger degrees of UV light for demobilization [1]. 

Researchers [72] tested potential merits of consecutive disinfection to domi-
nate E. coli under circumstances of potable water distribution systems. They 
treated biofilms developed in polycarbonate and cast-iron reactors with Cl2, 
chlorine dioxide (ClO2) and monochloramine single or in integration with UV. 
Most important killing took place with the integration treatments with UV. 
Most importantly, chloramine was proved to be efficient in neutralizing E. coli 
in the effluent, yet not in the biofilm. The influence of Cl2 on the growth phase 
of E. coli, in matter of its vulnerability to Cl2, has established Cl2 to be less per-
formant when E. coli is in the stationary phase (juxtaposed with initial lag and 
exponential growth phase). This has been considered as a significant thought in 
wastewater treatment technique with changing solids retention times [1] [73]. 

The growing demand to decrease Cl2 use and dominate (DBPs) augmented 
the search of fresh procedures in wastewater disinfection. For example, organic 
peracids are more and more attracting attention in killing pathogens as an en-
couraging alternative to Cl2 and Cl2-founded chemicals. Pironti et al. [74] eva-
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luated the antimicrobial characteristics towards E. coli and Staphylococcus au-
reus of a fresh organic peracid, permaleic acid (PMA) juxtaposed with the refer-
ence peracetic acid (PAA). PMA presented a 10- and 5-fold reduction in the mi-
crobial inhibitory concentration level toward E. coli and S. aureus respectively, 
juxtaposed to PAA. Trials demonstrated higher performance of PMA concern-
ing wastewater and treated wastewater disinfection at low dosages. PMA was 
more performant than PAA to avoid the regrowth of planktonic cells of S. au-
reus and E. coli. Therefore, PMA may be utilized as a potential alternative to the 
presently employed disinfection agents [74]. 

Even if pulsed UV (PUV) technique is adopted commercially for disinfection 
inside the food packaging industry, it is not used in the water/wastewater field 
[75]. Fitzhenry et al. [75] estimated the performance of PUV for disinfecting 
water disinfection below flow-through conditions. They employed E. coli, S. au-
reus and Listeria innocua to examine the capacity for photoreactivation and/or 
dark repair post PUV flow-through disinfection. Bacterial demobilization via 
flow-through PUV is a function of energy output with E. coli showing greatest 
sensitivity to PUV application (5.3 log10 demobilization following application at 
1539 mJ/cm2, output in UV range < 300 nm); L. innocua presented the highest 
PUV resistance (3.0 log10 demobilization following application at 1539 mJ/cm2, 
output in UV range < 300 nm) below identical treatment circumstances. Greater 
photoreactivation took place at lower PUV outputs for both S. aureus and E. coli 
following flow-through PUV treatment. Therefore, exposure of inactivated bac-
teria to natural light, immediately post flow-through PUV treatment, must be 
averted to decrease photoreactivation. The LPUV proved demobilization of all 
microbes below the limit of detection (1 colony-forming unit (CFU)/mL) and 
inhibited the presence of photoreactivation.  

He et al. [76] suggested a solar-light-driven magnetic photocatalyst, reduced- 
graphene-oxide/Fe,N-TiO2/Fe3O4@SiO2 (RGOFeNTFS), for the photocatalytic dis- 
infection of various strains of bacteria: gram-negative E. coli and Salmonella ty-
phimurium, and gram-positive Enterococcus faecalis (Figure 2). Gram-positive E. 
faecalis was observed to be more vulnerable to photocatalytic disinfection and 
showed a higher leakage of intracellular components than the two gram-negative 
bacteria. The interactions between the bacteria and RGOFeNTFS were examined 
for Zeta potential, hydrophilicity and scanning electron microscopy (SEM). The 
opposite surface charges of the bacteria (negative Zeta potential) and RGOFeNTFS 
(positive Zeta potential) contribute to their interactions. With a more negative 
Zeta potential (than E. coli and E. faecalis), S. typhimurium interacts more strong-
ly with RGOFeNTFS and is mostly attacked by •OH near the photocatalyst sur-
face. With less negative Zeta potentials, E. coli and E. faecalis interact less strongly 
with RGOFeNTFS, and compete for the dominant reactive species (• 2O− ) in 
the bulk solution. Thus, the co-existence of bacteria significantly inhibits the 
photocatalytic disinfection of E. coli and E. faecalis, but insignificantly for S. ty-
phimurium. Furthermore, photocatalytic disinfection employing RGOFeNTFS is  
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Figure 2. Scanning electron microscopy (SEM) images of (a) E. coli; (b) S. typhimurium; (c) E. faecalis after 60 min of photocata-
lytic disinfection using RGOFeNTFS [76]. 

 
promising for dealing with real sewage, and various bacteria are killed simulta-
neously [76]. 

Suggesting narrow-band mercury-free light sources, like light emitting dio-
des (LEDs) and excilamps, has motivated investigation on killing pathogens via 
dual-wavelength light radiation [77]. Indeed, dual-wavelength light radiation is 
considered as a developed instrument for improving microbial demobilization in 
water in view of potential synergistic effect. Matafonova and Batoev [77] focused 
on its pathways under dual-wavelength light exposure and discussed some re-
lated references in terms of yes-or-no synergy. They suggested three funda-
mental demobilization pathways, which work in the estimated spectrum 
ranges I (190 - 254 nm), II (250 - 320 nm) and III (300 - 405 nm) and furnish a 
synergistic effect when combined. Such pathways implicate proteins damage and 
deoxyribonucleic acid (DNA) repair suppression (I), direct and indirect DNA 
damage (II) and generation of ROSs via endogenous photosensitizers (III), like 
porphyrins and flavins (Figure 3). A synergy under dual-wavelength light ir-
radiation simultaneously or sequentially takes place if coupling two wavelengths 
of different ranges (I + II, I + III, II + III) in order to trigger various demobili-
zation pathways. New progresses of dual-wavelength light strategy in photo-
dynamic therapy can be applied for water disinfection. They open perspectives 
for using the sources of near-UV and visible radiation and making the disinfec-
tion techniques more energy- and cost-effective. In such context, the synergisti-
cally efficient dual-wavelength combinations II + III and the combinations within 
the extended to 700 nm range III (near-UV + VIS) seem to be encouraging for  

https://doi.org/10.4236/oalib.1108860


D. Ghernaout et al. 
 

 

DOI: 10.4236/oalib.1108860 15 Open Access Library Journal 
 

 

Figure 3. Conceptual model of sunlight inactivation pathways in viruses and bacteria. For direct mechanisms, the photon is ab-
sorbed by a chromophore at the site of damage (orange star). For indirect pathways, the photon is absorbed by a sensitizer (Sens), 
and damage (orange star) occurs at a different site. Green shapes represent proteins. PPRI = photo-produced reactive interme-
diates [77]. 

 
developing fresh advanced oxidation processes for disinfection of real turbid 
waters [77]. 

In rural communities, developing communities with low quality centralized 
water distribution, portable water purification devices are requested to furnish 
potable water. As mentioned above, filtration, UV light, or chemical injections 
present tools to eliminate microorganisms from water. Montenegro-Ayo et al. 
[78] suggested a small portable photoelectric point-of-use device that uses a com-
mercial teacup from which TiO2 nanotube photoanodes were formed in-situ. 
With a small rechargeable battery powered 365 nm LED, the apparatus was 
found to reach 5-log demobilization of E. coli in 10 s and 2.6-log of Legionella in 
60 s of treatment in model water samples (Figure 4). Dealing with natural water 
attained a 1-log bacteria demobilization after 30 s thanks to matrix effects.  

For killing pathogens, hydrodynamic cavitation seems to be an encouraging 
technology. Sun et al. [79] investigated the disinfection properties of an advanced 
hydrodynamic cavitation reactor (ARHCR) in pilot scale. They examined the im-
pacts of different flow rates (1.4 - 2.6 m3/h) and rotational speeds (2600 - 4200 
rpm) on killing E. coli. A disinfection rate of 100% was attained in only 4 min 
for 15 L of simulated effluent under 4200 rpm and 1.4 m3/h, with energy effi-
ciency at 0.0499 kWh/L. The morphological changes in E. coli were studied by 
SEM (Figure 5). The ARHCR may conduct to serious cleavage and surface dam-
ages to E. coli. They suggested a likely damage route of the ARHCR, comprising 
both the hydrodynamical and sonochemical impacts (Figure 6). 
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Figure 4. E. coli inactivation utilizing the portable photoelectric point-of-use device in ( ) photolysis, ( ) photocatalysis, ( ) 
electrocatalysis, and ( ) photoelectrocatalysis mode. (a) Logarithm of demobilization and (b) the plating assays to evaluate E. 
coli CFUs. The initial E. coli concentration was 1 × 105 CFU/mL [78]. 

 

 

Figure 5. Scanning electron micrographs of E. coli cells before ((a) 0 min (×10,000) and 
(b) 0 min (×40,000)) and after ((c) 10 min (×10,000) and (d) 10 min (×40,000)) the 
ARHCR treatment at 3800 rpm and 1.4 m3/h [79]. 
 

Antibiotic-resistant bacteria (ARB) form a dangerous threat to public health 
[80]. As a low energy consumption and environmentally-friendly technology, 
electrochemistry seems to be appropriate for killing ARB. Liu et al. [80] investi-
gated the suitability of electrochemical disinfection (ED) for demobilizing ARB 
(E. coli K-12 LE392 resistant to kanamycin, tetracycline, and ampicillin) and the 
regrowth probability of the treated ARB. They depicted that 5.12-log ARB reduc-
tion was reached within 30 min of applying molybdenum carbide as the anode  
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Figure 6. Likely disinfection mechanism of the ARHCR: (a) hydrodynamical and (b) so-
nochemical effects [79]. 
 
and cathode material under a voltage of 2.0 V. No ARB regrowth was noted in 
the cathode chamber after 60 min of incubation in unselective broth, showing 
that the technique in the cathode chamber was more efficient in demobilizing 
ARB permanently. The pathways underlying the ARB demobilization were veri-
fied founded on intercellular ROSs measurement, membrane integrity detection, 
and genetic damage assessment. Higher ROSs generation and membrane per-
meability were detected in the cathode and anode groups (p < 0.001) compared 
to the control group (0 V). Furthermore, the DNA was more likely to be dam-
aged throughout the ED application. Such investigation establishes once again 
that ED is an encouraging process for disinfecting water to avert the diffusion of 
ARB (Figure 7).  

Xia et al. [81] presented a new process founded on piezoelectric catalytic per-
sulfate (PS) activation for water advanced disinfection. They synthesized and 
used silver modified barium titanate (Ag-BTO) as a piezoelectric catalyst to ac-
tivate PS under ultrasonic (US) vibration for demobilizing E. coli. The suggested 
US/Ag-BTO/PS method reached a 6.2 log demobilization within 5 min and 20 
min, respectively, for E. coli at culturable state and viable but nonculturable state 
(Figure 8). The important performance of E. coli reduction was related to the 
successive formation of hydroxyl radicals and sulfate radicals via PS activation 
by piezo-catalytically formed electrons and superoxide radicals. A synergism 
between ultrasonication and radical oxidation was observed by employing the  
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Figure 7. Variations of the current, potential and pH levels in the two-chamber apparatus 
below various voltages (1.2, 1.5, and 2.0 V) throughout electrochemical disinfection (ED) 
with Mo2C employed as the anode and cathode. (a): Current and potential below 1.2 V 
voltage; (b): Current and potential below 1.5 V voltage; (c): Current and potential below 
2.0 V voltage; (d): pH levels in the two-chamber apparatus below various voltages (1.2, 1.5, 
and 2.0 V) [80]. 
 

 

Figure 8. (a) Fluorescence microscopic images and (b) Scanning electron microscopy 
(SEM) images of E. coli K-12 untreated E. coli and after the treatment in the US/Ag-BTO 
and US/Ag-BTO/PS systems for 5 min. 
 
US/Ag-BTO/PS method for E. coli demobilization. The ultrasonication disrupted 
cell membrane of E. coli, accelerated the permeation of the radicals and en-
hanced the following inner metabolic dysfunction and enzyme oxidation by rad-
icals [81]. 

Concerning E. coli diarrhoeal contagions, fluid and electrolyte correction is 
obligatory [1]. Extraintestinal E. coli contagions are, yet, treated with antibiotics. 
If such procedure of treatment is used, it must be admitted that E. coli reveal in-
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trinsic resistance to benzylpenicillin. E. coli remain usually vulnerable to the an-
tibiotics (ampicillin, tetracycline, aminoglycosides, trimethoprim and the ce-
phalosporins). Nonetheless, due to the broad diffusion proof of antibiotic resis-
tance being acquired by plasmid transfer, there is growing numbers of E. coli re-
sistant to streptomycin and tetracycline. For such cause, antibiograms must be 
realized, mostly for epidemiological objectives. Employing antibiotics in dealing 
with E. coli 0157 remains controversial because of the trouble of growing num-
bers of E. coli 0157 with antibiotic resistance. Most important is the augmenting 
propagation of extended-spectrum β-lactamase (ESBL) producing E. coli [82]. 
ESBL generating E. coli show resistance to the majority of the b-lactam antibio-
tics, comprising penicillins, monobactams and most cephalosporins. The expla-
nation for this stays the occurrence of plasmid-encoded enzymes, which hydro-
lyze the β-lactam antibiotics [1]. Such microbes are more and more involved in 
provoking hospital, as well as community-acquired contagions and when exist-
ing, tend to be treated with carbapenems, since these remain active against many 
ESBL-E. coli [83]. However, resistance of E. coli to carbapenems is as well as 
emerging [84] [85] [86]. 

Antibiotics that have historically been active against E. coli have comprised 
sulfonamides, tetracyclines, aminoglycosides (comprising gentamicin and amika-
cin), chloramphenicol, semi-synthetic penicillins, cephalosporins, β-lactamase- 
inhibitor combinations, carbapenems and fluoroquinolones [87] [88]. Notwith-
standing all such antibiotics being standard therapies for E. coli, there has been 
much worry concerning the fast expansion of resistance [89] [90]. Fundamental 
pathways of resistance against such antibiotics have comprised exclusion and ef-
flux of the agents from the bacterial cell, acquisition of resistance genes com-
prising those that generate enzymes fit to decompose β-lactamas, carbapenemases, 
and aminoglycoside. As aforesaid, extended-spectrum β-lactamases (ESBLs) are 
plasmid-mediated enzymes that may decompose recent analogues of cephalospo-
rins. It has been assessed in the UK that of all 10% of E. coli bacteraemias are 
linked with ESBL strains and 90% of these are CTX-M type [91]. 

Relating to antibiotic resistance amongst environmental isolates, scientists [92] 
fixed the minimum inhibitory concentrations for 241 E. coli isolates recuperated 
from water, sediment and biofilms in an intensive agricultural watershed (Elk 
Creek, British Columbia, Canada) between 2005 and 2007. Such isolates had an 
elevated frequency of resistance to tetracycline, ampicillin, streptomycin and na-
lidixic acid [1]. 

6. Conclusions 

This work firstly defined microbiologically E. coli bacteria and presented a brief 
history relating to their first discovery and following contagions. To understand 
E. coli’s behavior, a short description relating to their metabolism and physiolo-
gy is given. As humankind is concerned by E. coli contagion, their clinical cha-
racteristics are discussed besides their subsistence in nature. A general examina-
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tion concerning different techniques used for controlling such bacteria is finally 
presented. The main points drawn from this work may be listed as below: 

1) In terms of health effects (i.e., the occurrence of disease, degree of morbid-
ity and mortality): a) the pathogenic E. coli serotypes are categorized following 
their route of producing symptoms (The contagious dose of most pathogenic 
E. coli is elevated, ranging from 105 to 1010 organisms) [1]. b) The six groups 
are enteropathogenic (EPEC), enterotoxigenic (ETEC), verocytotoxigenic (VTEC; 
comprising enterohaemorrhagic, EHEC), enteroinvasive (EIEC), enteroaggrega-
tive (EAEC) and diffusely adherent. c) All pathogenic E. coli provoke diarrhea at 
different levels of gravity. d) EPEC: traveler’s diarrhoea, enteritis in infants; ETEC: 
traveler’s diarrhoea, diarrhoea, vomiting and fever; VTEC: Shigella-like dysentery 
(stools with blood and mucus) and haemolytic uremic syndrome (HUS); diffusely 
adherent: diarrhoea in children. e) E. coli induces urinary tract infections (UTIs) 
and may provoke sepsis and meningitis in neonates. f) Pathogenic E. coli strains 
lead to the majority of childhood diarrhoea. g) The level of morbidity and mor-
tality changes following the strain and the host’s properties. In poor countries, 
diarrhoeal illness is much more probably to conduct to the dangerous disease 
and death. In rich countries, even if childhood diarrhoea is less serious, conta-
gion with verocytotoxigenic E. coli may lead to HUS and thrombiotic thrombo- 
cytopaenia purpura. Such circumstances could create acute kidney failure and 
death [1]. 

2) Conventional water treatments employ high energy-intense mercury lamps 
or chlorine injection, which remain neither a feasible nor economically viable 
methods for vulnerable populations in developing areas [78]. Such competitive 
techniques may be overcome by a more affordable and off-grid method like a 
device that is founded on TiO2 photoelectrocatalytic disinfection concepts. Ap-
plying photoelectrocatalytic processes in scaled-down and portable devices au-
thorizes performant water disinfection when using an off-grid point-of-use sys-
tem. Employing LED sources guarantees working with low energy consumption. 
This furnishes interesting alternatives to traditional disinfection treatments [78]. 

3) A pilot-scale ARHCR was tested for water disinfection, and a new probable 
disinfection route of the ARHCR was proposed comprising hydrodynamical and 
sonochemical effects. The ARHCR could be used as an encouraging alternative 
or complementary tool for water disinfection as well as other process intensifica-
tions. More research on the disinfection route, structural optimization, and scale 
up remains required in the future [79]. 
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Abbreviation 

ARB   Antibiotic-Resistant Bacteria 
ARHCR  Advanced Hydrodynamic Cavitation Reactor 
CFU   Colony-Forming Unit 
DAEC   Diffuse adherent E. coli 
DBPs   Disinfection by-Products  
DNA   Deoxyribonucleic Acid 
EAEC   Enteroaggregative E. coli 
ED   Electrochemical Disinfection 
EHEC   Enterohaemorrhagic E. coli O157: H7 
EIEC   Enteroinvasive E. coli 
EPEC   Enteropathogenic E. coli 
ESBL   Extended-spectrum β-Lactamase 
ETEC   Enterotoxigenic E. coli 
HUS   Haemolytic Uremic Syndrome  
k    Demobilization rate (k) 
KIA   Kligler’s Iron Agar 
LEDs   Light Emitting Diodes 
ONPG   Ortho-Nitrophenyl-β-D-Galactoside 
PAA   Peracetic Acid 
PMA   Permaleic Acid  
PPRI   Photo-Produced Reactive Intermediate 
PUV   Pulsed Ultraviolet  
RGOFeNTFS Reduced-Graphene-Oxide/Fe,N-TiO2/Fe3O4@SiO2  
ROSs   Reactive Oxygen Species 
SEM   Scanning Electron Microscopy  
SODIS   Solar Water Disinfection 
TSI   Triple Sugar iron  
US   Ultrasonic  
UTIs   Urinary Tract Infections 
UV   Ultraviolet 
VTEC   Verocytotoxigenic E. coli 
WTW   Water Treatment Works  
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