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Abstract 
We define a generalized Hardy-Morrey space and give an atomic characteri-
zation whenever we are in some appropriate range of index. This atomic de-
composition helps us to give a control of some intrinsic square functions and 
their commutators in the above mentioned spaces. 
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1. Introduction 

For 0 ,p q< ≤ ∞ , the Hardy-amalgam space ( ),q p  was defined by Ablé and 
Feuto in [1] by taking in the maximal characterizations of classical Hardy spaces 
the Wiener amalgam quasi-norm ,q p⋅  instead of the Lebesgue one. The au-
thors gave an atomic decomposition theorem of resultant spaces and norm in-
equalities for some classical operators. But it seems difficult to establish, as is the 
case in the spaces of Lebesgue and Fofana, inequalities in norm for the commu-
tators associated with these operators. We think that this is due to the fact that 
Hardy-amalgam space is too big. 

We recall that a locally integrable function f belongs to the amalgam space 

( ),q pL L  if ( ),1B y q p
y f χ < ∞ , where q⋅  stands for the classical Lebesgue 

quasi-norm and ( ),B y rχ  the characteristic function of the ball centered at y with 
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radius 0r > . We put 

( ),1, .B yq p q p
f y f χ=                     (1) 

Notice that for ( ),q pf L L∈ , 0α >  and 0r > , the dilated function 

( )
rSt fα  defined by ( )( )( ) ( )1

d

rSt f x r f r xα α
− −= , belongs to ( ),q pL L  and 

( )
,r q p

St fα  is equivalent to ,q pf , but with the equivalence constants depend-

ing on r and α . These operators are linear and bounded on ( ),q pL L . 

An important subspace of ( ),q pL L  space when dealing with classical opera-
tors such as Riesz potential and the fractional maximal operators (see in [2] [3] 
[4]), is the Fofana space ( ),q pL L

α
 which is a subspace of ( ),q pL L  defined for 

0 , ,q p α< ≤ ∞  by 

( ) ( ){ }, ,, , / ,q p q p
q pL L f L L f

α

α
= ∈ < ∞               (2) 

where 
( )

, , ,0
sup .rq p q pr

f St fα
α

>
=                     (3) 

These sub-spaces, introduced by Fofana in [5], are non-trivial only if 
q pα≤ ≤ . Thus, we will always assume that this condition is fulfilled. They can 
be viewed as some generalized Morrey spaces, since for q α< , the space  

( ) ( ),q dL L
α∞   is exactly the classical Morrey space ( ), qq d dL α  . 

In this work, we consider the subspace of Hardy-amalgam space defined by 
taking in the maximal characterization of classical Hardy space, the quasi-norm 

, ,. q p α  instead of the one of Lebesgue and we prove that the resulting space has 
an atomic decomposition once 0 q pα< ≤ ≤ < ∞  with 0 1q< ≤ . We also give 
norm inequalities for Wilson intrinsic square functions [6], and their commuta-
tors. This paper is organized as follows. 

The next section is devoted to some properties of Fofana’s spaces. In Section 
3, we give the definition of our generalized Hardy-Morrey space and some rela-
tionships between this space and some existing one. In Section 4, we deal with 
the atomic decomposition of our spaces, and we give a norm inequality for Wil-
son intrinsic square functions and their commutators in the last section. 

In this work,   will denote the Schwartz class of rapidly decreasing smooth 
functions equipped with its usual topology. The dual space of   is the space of 
tempered distributions denoted by ′ . The pairing between ′  and   is 
denoted by ,⋅ ⋅ . 

The letter C will be used for non-negative constants independent of the rele-
vant variables that may change from one occurrence to another. When a con-
stant depends on some important parameters , ,α γ  , we denote it by 
( ), ,C α γ  . Constants with subscript such as , ,Cα γ  , do not change in different 

occurrences and depend on the parameters mentioned in them. We adopt the 
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following abbreviation A B  for the inequalities C≤A B , where C is a 
non-negative constant independent of the main parameters, and , ,α γ≤



A B  for 
the inequalities , ,Cα γ≤



A B . If A B  and B A , then we write A B≈ . 
For a real number 0λ >  and a cube dQ ⊂   (by cube we mean a bounded 

cube whose edges are parallel to the coordinate axes), we write Qλ  for the cube 
with same center as Q and side-length λ  times side-length of Q, while λ    
stands for the greatest integer less than or equal to λ . Also, for dx∈  and a 
real number 0> , ( ),Q x   will denote the cube centered at x and side-length 
 . We use the same notations for balls. For a measurable set dE ⊂  , we de-
note by Eχ  its characteristic function and by E  its Lebesgue measure. We 
adopt the notation suppf , to designate the support of a complex-valued func-
tion f defined in d . 

2. Basic Facts about Fofana’s Spaces 

Fofana’s spaces have among others, the following properties (see for example [5] 
and [3]): 

1) Let 0 , ,q p α< ≤ ∞ . The space ( ) ( )( ), ,, ,q p d
q pL L

α

α
⋅  is a Banach space 

if 1 q pα≤ ≤ ≤  and a quasi-Banach space if 0 1q< < . 

2) If { },p qα ∈  then ( ) ( ) ( ),q p d dL L L
α α=   with equivalent qua-

si-norms. 
3) If q pα< <  then ( ) ( ) ( ) ( ) ( )( ), , ,d d q p d q p dL L L L L L

αα α ∞       , 
where ( ), dLα ∞   is the weak Lebesgue space on d  defined by 

( ) ( ){ }, 1
,/ ,d d

locL f L fα
α

∗∞
∞

= ∈ < ∞ 
 

with ( ){ }
1

0, : /sup df x f x α
λα

λ∗
>∞

= ∈ > . 

4) Let f and g be two measurable functions on d . If f g≤ , then 

, , , ,q p q pf g
α α
≤ . 

5) For every measurable complex-valued function f on d , we have 

( )

1

,, ,
0

sup dd

d d d
p pq p

B y rq p qr
f r f yα

α
χ

− −

>

 ≈   ∫
  

with the usual modification when p = ∞ . 
It is proved in ([7], Proposition 4.2) that the Hardy-Littlewood maximal oper-

ator is bounded in ( ) ( ),q p dL L
α
  whenever 1 q pα< ≤ ≤ ≤ ∞ . We recall that 

for a locally integrable function f, the Hardy-Littlewood maximal function 
( )fM  is defined by 

( )( ) ( ) ( ) ( )1

,0
: sup , d , .d

B x rr
f x B x r f y y x

−

>
= ∀ ∈∫ M

 
The following result which is more general than the above, is just an adapta-

tion of ([8], Proposition 11.12). The proof is given just for the sake of complete-
ness. 

Proposition 1. Let 1 q pα< ≤ ≤ < ∞  and 1 u< ≤ ∞ . For all sequences 
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{ } 0n n
f

≥  of measurable functions, we have 

( )
1 1

0 0
, , , ,

,
u uu u

n n
n n

q p q p

f f

α α
≥ ≥

   ≈   
   
∑ ∑M

 
with the equivalence constants not depending on the sequence { } 0n n

f
≥ . 

Proof. Let 0r > , 1 u< < ∞ , 1 q pα< ≤ ≤ < ∞  and { } 0n n
f

≥  be a sequence 
of measurable functions. It is well known that 

( )
1 1

0 0
.

u uu u
n n

n n
p p

f f
≥ ≥

   ≈   
   
∑ ∑M                 (4) 

It is also easy to see that for dy∈  and ( ),x B y r∈  we have  
( ) ( ), , 2B x r B y r⊂  so that 

( )( ) ( )( )f x f yM M                      (5) 

for all measurable functions f. It follows that 

( ) ( ) ( ) ( )

1
1

,
0 0

1

0

d

 .

p pd
u uu uq

dn nB y r
n n

q p

d
uuq

n
n

p

f r f y y

r f

χ
≥ ≥

≥

 
    
         

 
 
 

∑ ∑∫

∑






M M

 
But then, 

( ) ( ) ( )

( ) ( ) ( )

( )

1

1

,
0 0

1

1

,
0

1

,
0

 d d

 d d

 .

d d

d d

p p
q qd

u uuuq
n n B x r

n n
p

p p
q q

uu
n B x r

n

uu
n B x r

n
q p

r f f x y y x

f y y y x

f

χ

χ

χ

≥ ≥

≥

≥

 
                
   

 
   
    

          
 

 
 
 

∑ ∑∫ ∫

∑∫ ∫

∑

 

 







M

M

 

So, for 0r > , we have 

( ) ( ) ( )

1 1

, ,
0 0

 .
u uu u

n nB y r B y r
n n

q qp p

f fχ χ
≥ ≥

   
   
   
∑ ∑M M

 
Multiplying both sides of the above inequality by 

1 1 1
p qrα

− −
 and taking the su-

premum over all 0r >  yields 
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( )
1 1

0 0
, , , ,

 .
u uu u

n n
n n

q p q p

f f

α α
≥ ≥

   
   
   
∑ ∑M M

 
Hence 

( ) ( )
1 1 1

0 0 0
, , , , , ,

u u uu uu
n n n

n n n
q p q p q p

f f f

α α α
≥ ≥ ≥

     
     
     
∑ ∑ ∑ M M

 
thanks to ([7], Proposition 4.2) and the fact that 1u >  and ( ) uu

n nf f≤ M  
for all 0n ≥ . 

The case u = ∞  follows immediately from the fact that 

( )sup sup
d d

n n
p p

f f≈
 
M

 
for 1p > .                                                        

3. Generalized Hardy-Morrey Spaces 

Let 0 q< < ∞ . The classical Hardy space q  is defined as the space of all 
tempered distributions f satisfying ( ): dq d

q
f f x x= < ∞∫




 , where 

( ) ( ) ( )( )
0

: sup ,t
t

f x f x f xϕ ϕ
>

= = ∗                 (6) 

with ϕ  in the Schwartz class   having non vanish integral, and  
( ) ( )1d

t x t t xϕ ϕ− −=  for all 0t > . 
It is well known that the space q  doesn’t depend on the function ϕ . 

Hence we will consider through this paper, ϕ ∈  having its support in the 
unit ball and such that ( )d 1d x xϕ =∫ . The associate maximal function will be 
denoted 0  or ϕ  while   or φ  will be used for an arbitrary φ ∈  
having non vanishing integral. 

Let 0 , ,q p α< ≤ ∞ . We define the space ( ) ( ) ( ), , , ,:q p q p dα α=    of Hardy 
type, by 

( ) { }, ,
, ,: : .q p

q pf fα
α

′= ∈ < ∞                   (7) 

We accordingly define the local version of these spaces by replacing in (7) the 
maximal function f  by its local version loc f . We recall that loc f  is 
defined as f , but with the supremum taken only on the interval ( ]0,1 . We 
will refer to ( ), ,q p α  spaces as generalized Hardy-Morrey spaces; in fact for 
p = ∞  and q α< , we recovered the Hardy-Morrey space defined by Jia and 

Wang in [9]. We can also call these spaces Hardy-Fofana spaces given their defi-
nition. 

It is clear that 
( ) ( ), , , ,

loc .q p q pα α⊂                         (8) 

Hardy spaces are translations and dilations invariant, in the sense that for 
pf ∈ , 0p > , 
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( )and ,p pp p

p
x rf f St f fτ = =

    
where for dx∈ , 0r >  and f ′∈ , x fτ  and ( )

rSt fα  are defined as tem-
pered distributions whose actions on Schwartz function ϕ  are given respec-
tively by 

( ) ( )
1, , and , , .x x r r

f f St f f St αατ ϕ τ ϕ ϕ ϕ−
′

−= =
 

These are immediate consequences of the invariance properties of Lebesgue 
spaces for translation and dilation, and the fact that these operators commutes 
with the maximal operator define by (6). It follows that 

( )
( )

( )
( )

, , ,

, ,

0
sup , for all ,q p q p

q p
r

r
f St f fα

α α

>
= ∈

 
            (9) 

where ( ), ,:q p q pf f=


 . 
The following relationship between our spaces and the classical Hardy, Har-

dy-amalgam and the weak Hardy spaces as defined by Grafakos and He in [10], 
are immediate consequences of Fofana’s spaces properties. The proofs are omit-
ted. 

Proposition 2. Let 0 q pα< ≤ ≤ < ∞ . 
( ) ( ), , , .q p q pαα ⊂ ⊂                       (10) 

Furthermore, we have 
( ) { }, , if , ,q p p qα α α= ∈                    (11) 

and 
( ), ,

weak if .q p q pαα α⊂ < <                   (12) 

The Proposition is still valid if we replace all the spaces by their local versions. 
For the relation between these Hardy type spaces and Fofana’s spaces, we have 

the following proposition which is an extension of a well-known result in clas-
sical Hardy spaces. 

Proposition 3 Let 1 q pα≤ ≤ ≤ < ∞ . 
1) If 1 q<  then the spaces ( ), ,q p α , ( ), ,

loc
q p α  and ( ),q pL L

α
 are equal with 

equivalence norms. 
2) The space ( )1, ,p α  is continuously embedded in ( )1, pL

α
 . 

Proof Let 1 q pα≤ ≤ ≤ < ∞ . For ( ) ( ), , ,q p q pf α∈ ⊂  , we have ( ),q pf L L∈  
with ( ) ( )0limt tf x f xϕ→ ∗ =  for almost every dx∈ , according to ([11], 
Theorem 3.2). Now, for all dx∈ , we have 

( ) ( )( )tf x f xϕϕ∗ ≤  

so that letting t tends to 0, yields ( ) ( )( )f x f xϕ≤  for almost every dx∈ . 
Hence 

( ) ( ), ,, , , ,
.q pq p q p

f f f αϕα α
≤ =


  

We suppose now that 1 q pα< ≤ ≤ < ∞  and ( ),q pf L L
α

∈ . We have 

( ) ( )( ) , ,df x f x xϕ ∈ M  

https://doi.org/10.4236/oalib.1108463
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where ( )fM  is the classical Hardy-Littlewood maximal function. It follows that 

( ), ,
locloc , ,, ,, ,

,q p q pq pq p
f f f fα ϕ ϕ ααα

= ≤ 


 
 

thanks to ([7], Proposition 2.4).                                        
Just like classical Hardy and Hardy-amalgam spaces, the spaces ( ), ,q p α  

are quasi-Banach once we have 1q < . More precisely, we have the following 
result. 

Proposition 4 Let 0 q pα< ≤ ≤ ≤ ∞  with 1q < . 
1) For ( ), ,, q pf g α∈ , 

( ) ( ) ( ), , , , , ,q p q p q p
q q qf g f gα α α+ ≤ +
  

               (13) 

2) The space ( ), ,q p α  is a quasi-Banach space, when it is equipped with the 
quasi-norm ( ), ,q p α⋅

 . 
Proof The Relation (13) follows immediately from the fact that qL  and q

  
are completed quasi-normed spaces for 0 1q< < , with 

.q q q
q q qf g f g+ ≤ +

 
For the second assertion, we adapt the proof of ([1], Proposition 3.8). Let 

( ) 0n n
f

≥  be a sequence in ( ), ,q p α  satisfying 

( ), ,

0
.q p

q
k

k
f α

≥

< ∞∑ 
 

The sequence { }0
n

kk n
f

= ∈
∑


 is a Cauchy sequence in ( ), ,q p α  and conse-

quently in ( ),q p . Hence it converges in ( ),q p  and consequently in ′ . Let f 
be its limit. Since 

( ) ( )
0 0

k k
k k

f f fϕ ϕ ϕ
≥ ≥

 = ≤ 
 
∑ ∑  

 
and 

( )
( ), ,

, ,0 1
q p

q p

qn q
k k

k k n
f f f α

α

+∞

= = +

− ≤∑ ∑ 
  

tends to zero as n goes to infinity, the series 
0 kk f

≥∑  converges to f in ( ), ,q p α  
so that ( )

( )( ), ,
, , , q p

q p
α

α ⋅


  is completed.                                
The space ( ), ,q p α  doesn’t depend on the test function φ  use in its defini-

tion. In fact, we can replace the maximal function by grand-maximal function. 
Let N be a positive integer and ( ){ }: 1N Nψ ψ= ∈ ≤  N , where 

( ) ( ) ( )
1

1 d ,d

N
N

N
x x xβ

β
ψ ψ

≤ +

 
= + ∂  

 
∑∫N

 
with 1 dβ β β= + +  for a multi-index ( )1, , dβ β β=  . We recall that the 
radial grand-maximal function 0

N
f  and its non-tangential version 

N
f  

are defined respectively by 

( ) ( ) ( ) ( ) ( ){ }0

10
sup and sup sup max ,

N N
N N

tx yt
f x f x f x f yψ

ψ ψ
ψ

− ≤∈ ∈ >
= = ∗ 
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for all dx∈ . An immediate consequence of the relation (9) is that for 

1dN
q
 

≥ + 
 

 and 0a >  we have 

0
,, , , ,, , , ,

,
N N aq p q pq p q p

f f f fϕα αα α

∗≈ ≈ ≈            (14) 

with the equivalence constants depending only on , ,q p α  and ϕ . The max-
imal function ,a fϕ

∗  is defined by 

( ) ( )( ),
0

sup sup .a t
t x y at

f x f yϕ ϕ∗

> − ≤

 
= ∗ 

 


 
Relation (14) follows from ([1], Theorem 3.7) and the fact that the operators 

0
N

 , 
N

  and   commute with rStα  for , 0rα > . We can also take in 
the definition of ( ), ,q p α  the Poisson kernel instead of Schwartz function. 
More precisely, we have 

( )
( )

, ,
, ,

0 , ,
sup , .q p

q p
t

t q p
f f P fα

α

α>
≈ ∗ ∈


             (15) 

4. Atomic Decomposition of ( )q p, ,α  Spaces 
Throughout this paragraph, we assume that 0 q pα< ≤ ≤ < ∞ , 1q r≤ < ≤ ∞  

and rα ≤ . We also assume that s is an integer greater or equal to 
1 1d
q

  
−  

  
. 

A function : d → a  is called ( ), , ,q r sα -atom if it satisfies the following 
conditions: 

1) There exists a cube Q such that ( )supp Q⊂a , 

2) 
1 1

| |rra Q α
−

≤ ; 

3) ( )d 0d x x xβ =∫


a , for all multi-index β  such that sβ ≤ . 
We denote by ( ), , ,q r sα , the set of all couples ( ),Qa  such that a  and Q 

satisfy conditions (1)-(3). 
Notice that the generalized Hölder inequality can be stated as follows. Let 

1 , ,p q r≤ ≤ ∞  such that 1 1 1
p q r
+ = . If pf L∈  and qg L∈  then Łrfg ∈ . 

Moreover, we have 

.r p qfg f g≤
 

Proposition 5. For all ( ), , ,q r sα -atoms 

( ), ,q p Cα ≤a
  

where C is a constant not depending on a . 
Proof. Let a be a ( ), , ,q r sα -atom. We have 

( ) ( )0 0, ,q p α α
≤a a                     (16) 

according to Relation (3). We assume that 1α > , since otherwise, the result 
follows from the classical case and (16). Thanks to the definition of ( ), , ,q r sα

https://doi.org/10.4236/oalib.1108463
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-atom and Hölder’s inequality, we have 1a
α
≤ . The result is just a conse-

quence of the size condition on the atom and the boundedness of the Har-
dy-Littlewood maximal operator on Lα .                                

Notice that ( ), , ,q q r s -atom is exactly the atom for classical Hardy space q  
denoted ( ), ,q r s -atom. It is also the atom for the Hardy-amalgam space ( ),q p  
and in this case, the collection of ( ),Qa  satisfying conditions (1)-(3) is denoted 

( ), ,q r s  as we can see in [1]. 
It is easy to see that ( ) ( ), , , ,Q q r sα∈a   if and only if  

( )
1 1

, , ,qQ Q q r sα
− ∈ 

 
a  . As a consequence of this relation, we have the fol-

lowing result. 
Theorem 6. Let 0 1η< ≤ . For all sequences ( ){ } 0

,n n n
Q

≥
a  in ( ), , ,q sα ∞  

and all sequences of scalars { } 0n n
λ

≥  such that 

0
, ,

,
n

n

n
Q

n Q q p

η

α α
η η η

λ
χ

χ≥

 
  < ∞
 
 

∑                   (17) 

the series 
0: n nnf λ

≥
= ∑ a  converges in the sense of distribution and in 

( ), ,q p α . Moreover, we have 

( , , )

1

, , , ,
0

, ,

.q p n

n

n
d q p s Q

n Q q p

f α

η η

ϕ

α α
η η η

λ
χ

χ≥

 
 
 
 

∑
             (18) 

Proof. Fix a sequence ( ){ } 0
,n n n
Q

≥
a  in ( ), , ,q sα ∞  and a sequence of sca-

lars { } 0n n
λ

≥  satisfying (17). Since 
1 1

1 10 0
n qn n n nn n

qn

Q
Q

α

α

λ
λ −

≥ ≥ −

 =  
 

∑ ∑a a  and 

1 1
,qn n nQ Qα

−  
  
  

a  is a sequence of elements of ( ), ,q s∞  such that 

1 1
1 1

0 0
,,

1

0
, ,

,

n n

n n

n

n

qn n n
Q Q

n nQ Qq q pq p

n
Q

n Q q p

Q
η η η η

α

α
η ηη η

η η

α α
η η η

λ λ
χ χ

χ χ

λ
χ

χ

−

≥ ≥

≥

   
   =       

 
 ≤ < ∞
 
 

∑ ∑

∑

 
the series 

0: n nnf λ
≥

= ∑ a  converges in the sense of ′  and ( ),q p  according 
to ([1], Theorem 4.3). It Remains to prove that ( ), ,q pf α∈ . The series 

0: n nnf λ
≥

= ∑ a  converges in the sense of ′ , implies that 

( ) ( )0 0 0
0 0

 .n n n n
n n

f λ λ
≥ ≥

 =  
 
∑ ∑a a  
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Since 

( )( ) ( )( )( )
1

1

0 , , ,
n n

d s
d

n d s Q Qx xϕ α
χ χ

+ +
−

a M
 

it comes that 

( ), ,

1

, ,
0

, ,

,q p n

n

n
d s Q

n Q q p

f α

η η

ϕ

α α
η η η

λ
χ

χ≥

 
  < ∞
 
 

∑


 
thanks to Proposition 1.                                             

The next result is an immediate consequence of Proposition 3.4 [11] and the 
relation between amalgam space and that of Fofana. The proof is omitted. 

Proposition 7. Let 0 q pα< ≤ ≤ < ∞ . Then ( ), ,q pL α∞ ∩  is a dense 
sub-space of ( ), ,q p α . 

Theorem 8. Let 1 1s d
q

  
≥ −  

  
 be an integer. For all ( ), ,q pf L α∞∈ ∩ , 

there exists a sequence ( ){ } 0
,n n n
Q

≥
a  in ( ), , ,q sα ∞  and a sequence of sca-

lars { } 0n n
λ

≥  such that 

( ), ,

0
in the sense of and ,q p

n n
n

f αλ
≥

′= ∑ a  
 

and for all 0η > , 

( ), ,

1

, , , , ,
0

, ,

.q pn

n

n
Q d s q p

n Q q p

f α

η η

ϕ η

α α
η η η

λ
χ

χ≥

 
 
 
 

∑ 
             (19) 

Proof. Let ( ) ( ), , ,1q p q p
locf L Lα∞∈ ∩ ⊂ ∩  . According to ([11], Theorem 

3.1.14) there exists a sequence of functions { }, ,j k j k
A

∈ ∈ 
 and a sequence of 

closed cubes { }*
, ,j k j k

Q
∈ ∈ 

 such that: 

1) For all j∈ , we have *
,0 1

j k
dk Q

χ
≥∑   and  

( )( ){ }0 *
,0

: : 2j d j
j kk

x f x Q
≥

= ∈ > =



  . 

2) If * *
, 1,j k jQ Q +∩ ≠ ∅



 there exist 0 1C C> >  such that:  
* *

1, ,diam diam ,j j kQ C Q+ ≤


 and * *
1, 0 ,j j kQ C Q+ ⊂


. 

3) ( ) *
, , 0 ,supp :j k j k j kA Q C Q⊂ = , , 1 2 j

j kA C≤ , a.e. and ( ) ( ), d 0d j kA x x x =∫ p


 
for all polynomials p  of degree less or equal to s. The positive constant 1C  is 
independent of ,f j  and k. 

4) ,0 j kj kf A+∞

=−∞ ≥
= ∑ ∑  almost everywhere and in ′ . 

Let us put 
1

1
, 1 , , , ,: 2 and : .j

j k j k j k j k j kC Q Aαλ λ−= = a
 

It comes that 
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( ) ( )
1

, , , , ,supp , and d 0,dj k j k j k j k j kQ Q x x xβα
−

∞
⊂ ≤ =∫ 


a a a

 
for all dβ ∈  such that sβ ≤ . It follows that, ( ) ( ), ,, , , ,j k j kQ q sα∈ ∞ a  
and 

, ,
0

j k j k
j k

f λ
+∞

=−∞ ≥

= ∑ ∑ a                       (20) 

almost everywhere and in ′ . It remains to prove that this series converges in 
the sense of ( ), ,q p α  and that Relation (19) is satisfied. 

Notice that for all non negative integers j and all integers k, we have 



( ) ( ) ( )
0, ,

, , , 0,
j k j k

d CQ Q
x x

γ

γχ χ γ∗
  >  

 M                 (21) 

for all dx∈ ; with 0:Q C Q∗= . It comes from Relation (21) and Proposition 1 
that for 0η > , we have 

( )*, ,

,

*
,

1

1

,

0 0 , ,

, ,

1

0

, ,

2

2

j k j k

j k

j k

j k j
Q Q q pj k j k

Q
q p

j

Q
j k

q p

A

A

η η
γ η

η

α
η η ηα α

η η η

γ
η

γ γη
γ

γ γ γα
η η η

λ
χ χ

χ

χ

+∞ +∞

=−∞ ≥ =−∞ ≥

+∞

=−∞ ≥

 
   ≤     
 

  
 ≤      

∑ ∑ ∑ ∑

∑ ∑





M

 

with : 1
q
ηγ = + , and 

1 0, , , , , ,C q p d CA C α η= . But then, 

( )*
,

1
1

0
, , ,0 , ,

, ,

2 2 j Nj k

j
j

d dQ q pq pj k j

q p

f

γ
η

γ γη η
ηγ

η αα
η η ηγ γ γα

η η η

χ χ
+∞ +∞

=−∞ ≥ =−∞

  
      
∑ ∑ ∑  



 
thanks to the estimation ( ) ( )02 j N

j
j C f

ηη χ η+∞

=−∞
 ≤  ∑ 
  given in ([11], Re-

lation (4.18)). It follows that 

( ), ,1 0,

,

1

,
, , , , ,

0

, ,

.q p
j k

j k

j k
C q p CQ

j k
Q

q p

f α

η η

α η

α α
η η η

λ
χ

χ

+∞

=−∞ ≥

 
 
 
 
 

∑ ∑ 




         (22) 

Hence the series , ,0 j k j kj k λ+∞ +∞

=−∞ =∑ ∑ a  converges in ( ), ,q p α , thanks to 
Theorem 6.                                                        

Theorem 9. For all ( ), ,q pf α∈ , there exists a sequence ( ){ } 0
,n n n
Q

≥
a  in 

( ), , ,q sα ∞  and a sequence { } 0n n
λ

≥  of scalars such that 
( ), ,

0
in the sense of and q p

n n
n

f αλ
≥

′= ∑ a  
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and, for all 0η > , 

( ), ,

1

, , , , ,
0

, ,

.q pn

n

n
Q d s q p

n Q q p

f α

η η

η α

α α
η η η

λ
χ

χ≥

 
 
 
 

∑ 


 

Proof. Let ( ), ,q pf α∈ . There exists a sequence { } 0n n
f

≥  in ( ), ,q pL α∞ ∩  
which converges to f in ( ), ,q p α  and such that: 

( ) ( ), ,, ,1
1 , 1.
2

q pq p

n
q q

n nf f f nαα−
 − ≤ ≥ 
  

             (23) 

We put 

0 0 1: and : , 1.n n ng f g f f n−= = − ≥                (24) 

Let 0n ≥ . Since ng  belongs to ( ), ,q pL α∞ ∩ , it comes from Theorem 8 
that there exists a sequence ( ){ } ( ), , ,

, , , ,n n
j k j k j k

Q q sα
∈ ∈

⊂ ∞ a
 

, such that 

( ), ,
, ,

0
in the sense of and q pn n

n j k j k
j k

g αλ
+∞

=−∞ ≥

′= ∑ ∑ a  
 

and 

( ), ,
,

,

1

,
, , , , ,

0

, ,

, 0.q pn
j k

n
j k

n
j k

d s q p nQ
j k

Q
q p

g α

η η

α η

α α
η η η

λ
χ η

χ

+∞

=−∞ ≥

 
 
  >
 
 
 

∑ ∑





      (25) 

From Relation (24) we have 

( )
( ), ,

, ,0
lim lim 0,q p

q p

n

m nn nm
f g f f α

α→+∞ →+∞=

− = − =∑ 
  

which allows us to say that 

( ), ,
, ,

0 0 0
in the sense of and .q pn n

n j k j k
n n j k

f g αλ
+∞

≥ ≥ =−∞ ≥

′= =∑ ∑ ∑ ∑ a  
 

Let 0η > . If qη >  we have 

( )

( )

, ,

, ,

, ,

, ,

, ,

0 0 0 0

, ,, ,

, , , , ,
0

, , , , ,
1

1
2

n n
j k j k

n n
j k j k

q p

q p

q q

n n
j k j k

Q Q
n j k n j k

Q Q
q pq p

q
d s q p n

n
n

q
d s q p

n

g

f

α

α

η ηη η

α α αα
η η ηη η η

α η

α η

λ λ
χ χ

χ χ

+∞ +∞

≥ =−∞ ≥ ≥ =−∞ ≥

≥

≥

        
    ≤
    

        

 
 
 

∑ ∑ ∑ ∑ ∑ ∑

∑

∑

 

 








 

thanks to Relations (23), (24) and (25). If qη ≤ , then 
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( )

, ,

, ,

, ,

, ,

0 0 0 0

, ,, ,

, , , , ,
0

, , , , ,
1

1
2

n n
j k j k

n n
j k j k

q p

q
q

n n
j k j k

Q Q
n j k n j k

Q Q
q pq p

q

d s q p n
n

d s q p
n

g α

η
η ηη

α α αα
η η ηη η η

ηη
α η

α η

λ λ
χ χ

χ χ

+∞ +∞

≥ =−∞ ≥ ≥ =−∞ ≥

≥

≥

 
      
      
      ≤
      

             

 
  

 



∑ ∑ ∑ ∑ ∑ ∑

∑

∑

 

 







( ), ,

1

q p

n
qf α

η η        


 
once according to Relations (24) and (25). Thus, 

( ), ,
,

,

1

,
, , , , ,

0 0

, ,

,q pn
j k

n
j k

n
j k

q p d sQ
n j k

Q
q p

f α

η η

ϕ η

α α
η η η

λ
χ

χ

+∞

≥ =−∞ ≥

 
 
 
 
 
 

∑ ∑ ∑







 
which ends the proof.                                               

Notice that Theorem 9 stills valid if we replace the family ( ), , ,q sα ∞  by 
( ), , ,q r sα  since ( ) ( ), , , , , ,q s q r sα α∞ ⊂  . To prove the converse of 

Theorem 9, we need the following result which is an adaptation of ([11], Propo-
sition 3.1.4). We omit the proof. 

Proposition 10. Let 1 u w v s< ≤ ≤ < ≤ ∞  and 0r > . 
If { } 0n n

δ
≥  is a sequence of scalars and { } 0n n

b
≥  a sequence of elements of sL  

such that for 0n ≥ , there exists a cube nQ  satisfying: 
1) ( )supp n nb Q⊂  

2) 
1 1
s wn nsb Q −≤ , 

then 

( ) ( )

0 0,
,

, , 0
n

n

n
n r n r Q

n nu v Q w u v

St b St rα αδ
δ χ α

χ≥ ≥

>∑ ∑

 
where the implicit constant doesn’t depend on r, { }nδ  and { }nQ . 

Theorem 11. Let { }max ;1p r< < +∞ , 0 qη< <  and 1 1s d
q

  
≥ −  

  
 be 

an integer. For all sequences ( ){ } 0
,n n n
Q

≥
a  in ( ), , ,q r sα  and all sequences 

{ } 0n n
λ

≥  of scalars such that 

0
, ,

,
n

n

n
Q

n Q q p

η

α α
η η η

λ
χ

χ≥

 
  < ∞
 
 

∑                   (26) 

the series 
0: n nnf λ

≥
= ∑ a  converges in the sense of ′  and ( ), ,q p α , with 
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( ), ,

1

, , , ,
0

, ,

q p n

n

n
d q p s Q

n Q q p

f α

η η

ϕ

α α
η η η

λ
χ

χ≥

 
 
 
 

∑
             (27) 

Proof. The proof is just an adaptation of the one of ([1], Theorem 4.6). 
Let ( ){ } 0

,n n n
Q

≥
a  be a sequence of elements of ( ), , ,q r sα  and { } 0n n

λ
≥  a 

sequence of scalars such that relation (26) is satisfied. Put  

0

, ,

n

n

n
Qn

Q q p

A

η

α α
η η η

λ
χ

χ≥

 
  =
 
 

∑ . For 0ρ > , we have 

1 1

0 0
,,

|
.

n n

n n

qn n n
Q Q

n nQ Qq q pq p

Q
St A

η η
α

α
η

ρ ρ
ρ α

η ηη η

λ ρ λ
χ χ

χ χ

−

≥ ≥

   
   = ≤       

∑ ∑

 

Since ( ){ } ( )
0

, , , ,n n n
Q q r sα

≥
⊂ a  implies that  

( ){ } ( )
0

, , , ,n n n
St Q q r sα

ρ ρ α
≥
⊂ a  which is equivalent to  

( )
1 1

0

, , ,qn n n
n

St Q Q q r sα αρ ρ ρ−

≥

   ⊂  
  

a , we have that : n ng Stαρλ= ∑ a  con-

verges in the sense of ′  and ( ),q p , and 

( ),

0
,

,q p n

n

n
Q

n Q q p

g St

η
α
η
ρ

α
η η

λ
χ

χ≥

 
 
 
 

∑


 

thanks to ([1], Theorem 4.6). Let ( )1f St gα
ρ−

= . We have : n nf λ= ∑ a  in the 
sense of ( ),q p , and 

( ),
0

,

.q p n

n

n
Q

n Q q p

St f St

η
α

α η
ρ ρ

α
η η

λ
χ

χ≥

 
 
 
 

∑


 

Estimate (27) follows from the definition of ( ), ,q p α  and the convergence of 
the series : n nf λ= ∑ a  in ( ), ,q p α  is obtained as in the proof of Theorem 6.  

Remark 12. Let 1 r< ≤ +∞ , 1 1s d
q

  
≥ −  

  
 an integer and rα ≤ . 

1) If { }max ,1p r< ≤ ∞  then for ( ), ,q pf α∈  

( ), ,

1

0 0
, ,

inf : ,q p n

n

n
Q n n

n nQ q p

f fα

η η

α α
η η η

λ
χ λ

χ≥ ≥

 
    ≈ =    
  

∑ ∑ a


 
where the infimum is taken over all atomic decompositions of f using ( ), , ,q r sα
-atoms, 0 1η< ≤  if r = ∞  and 0 qη< <  if not. 
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2) Let ( ), ,
fin, ,

q p
r s
α  consist of finite linear combinations of ( ), , ,q r sα -atoms of 

d . The space ( ), ,
fin, ,

q p
s
α

∞ ∩   is a dense subspace of ( ), ,q p α , where   stands 
for the space of continuous functions on d . 

Proof. These are immediate consequences of ([1], Proposition 4.9 and Lemma 
4.10), Relation (9) and the fact that if f is a finite linear combinations of ( ), ,q r s
-atoms, then 

( ),
fin , ,

1

0 0 0
, ,

sup inf : ,q p n
r s

n

N N
n

Q n n
n nQ q p

St f f

η η

α
ρ

ρ
α α

η η η

λ
χ λ

χ> = =

 
    = =    
  

∑ ∑ a


 
where the infimum is taken over all finite atomic decompositions of f using 
( ), , ,q r sα -atoms and 

( ),
fin , ,

1

0 0

,

: inf : ,q p
nr s

n

N N
n

Q n n
n nQ q q p

f f

η η

η η

λ
χ λ

χ= =

 
  
  = =       

∑ ∑ a


 
where the infimum is taken over all finite atomic decompositions of f using 
( ), ,q r s -atoms and 0 1η< ≤  if r = ∞  and 0 qη< ≤  if { }max ,1p r< < ∞ . 

                

5. Intrinsic Square Function and Its Commutator 

Let 0 1γ< ≤ . We denote by Cγ  the family of functions ψ  defined on d  

such that ( ) ( )supp 0,1Bψ ⊂ , ( )d 0d x xψ =∫


 and 

( ) ( ), , ,dx x x x x x γψ ψ′ ′ ′∀ ∈ − ≤ −
 

where ( ) ( )1d
t x t t xψ ψ− −=  and ] [1 0,d d+

+ = × +∞  . The notation B  stands 
for the closure set of B. 

Let f be a measurable function. The intrinsic square function S fγ  (of order 
γ ) of f is defined by: 

( )( ) ( ) ( )

1
2 2

1

d dsup t dx C

y tS f x f y
tγ

γ
ψ

ψ +Γ ∈

  
 = ∗ 
   
∫

 
for all dx∈ , where ( ) ( ){ }1, :dx y t y x t+

+Γ = ∈ − <  is the cone of aperture 

1. We have the following result. 
Proposition 13. Let 0 1γ< ≤ , 0 1q< <  and q pα≤ ≤ < ∞ . The operator 

Sγ  can be extended into a bounded operator from ( ), ,q p α  to ( ),q pL
α

 . 

Proof. Let 
1 1s d
q

  
≥ −  

  
 be an integer, ( )dφ ∈   such that  

( )d 1d x xφ =∫


. We consider ( ) ( ), ,
fin, ,0

j q p d
n n snf Cαλ ∞=

= ∈ ∩∑ a , where 

( ){ } 0
,

j
n n n

Q
=

a  is a sequence of elements of ( ), , ,q sα ∞  and { } 0

j
n n
λ

=
 a se-
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quence of scalars. We put : 2n nQ dQ=  for all { }0,1, ,n j∈   and denote by 

nx  and n  respectively the center and the side-length of nQ . We have 

( ) ( ) ( ) \, ,
0 0, , , ,

dn n

q qj jq
n n n nQ Qq p

n nq p q p

S f S Sγ γ γα
α α

λ χ λ χ
= =

≤ +∑ ∑


a a   (28) 

For the first term on the right hand side of (28), we notice that for 0 qη< < , 

( )( ) ( ) ( )

1 1

, , , , ,

r

nn n nQ rr
S a C r a C r d Q

α
η ηη η

γ

η

χ γ η γ η

−

≤ ≤


  

since ( ) ( ), , , , , ,q s q r sα α∞ ⊂   and Sγ  is bounded on ( )r dL  , for 1r >  
(see [12]). Therefore 

( )( ) ( )

1
1

0 0, ,
, ,

, , ,
nn

n

j j
n

n n QQ q pn n Q q p

S a C r d

η η
ηηη

γ
α

α αη η η
η η η

λ
λ χ η γ χ

χ= =

 
 ≤
 
 

∑ ∑

 

thanks to Proposition 10, since 1 q p rα
η η η η

< ≤ ≤ ≤ < ∞ . It remains to estimate 

the second term. Let \d
nx Q∈   and Cγψ ∈ . We have 

( )( ) ( ) ( ) ( )( )
1

2 2

3 1,

d d .
n

n n dx Q B y t

y tS a x a z
tγ γ +Γ ∩

 
 
 
∫ ∫

 
Let ( ) ( ),y t x∈Γ . We assume that ( ),nQ B y t∩ ≠ ∅  since otherwise 

( )( ) 0nS a xγ = . It is easy to see that ( ) ( ), , 2B y t B x t⊂  and 
4 n
dt ≥  . Since 

( ) ( )n na z a zφ≤  and ( ) ( )*
,2n na z a xφ φ≤   for ( ), 2z B x t∈ , we have 

( )( ) ( ) ( ) ( )( )

( ) ( ) ( )( )
( ) ( )

( )

1
2 2

3 1, ,
4

1
2 2*

,2 3 1, ,
4

1
2*

,2 3 1,
4

*
, ,2

d dd

d dd

d d

.

n n

n n

n

dn n dB x t Q B y t

d n dB x t Q B y t

d
dn n dB x t

d n

y tS a x a z z
t

y ta x z
t

y ta x
t

a x

γ γ φ

γ φ

γ φ

γ φ

+∞

+∩

+∞

+∩

+∞

+

 
 
 

 
 
 

 
 
 

∫ ∫ ∫

∫ ∫ ∫

∫ ∫























  
Additionally, we have the following estimate 

( ) ( )
( )( )( )*

,2 , , ,n

n

v

Q
n

Q

x
a x C d sφ

α

χ
φ

χ
≤

M
              (29) 

where 
1d sv

d
+ +

= . This allows us to say that 

( )( ) ( ) ( )
( )( )( )

\
, , , n

d
n

n

v

Q
n Q

Q

x
S a x x C d sγ

α

χ
χ φ γ

χ
≤



M
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for all { }0,1, ,n j∈  , so that 

( )
( )( )

\
0 0, ,

, ,

1
1

0

, ,

1
1

0

, ,

0
,

n
d

n
n

n

n

n

n

n

n

v
j j Q

n n nQ
n nq p Q

q p

v
v v

vj
n

Q
n Q

qv pv v

v
v v

vj
n

Q
n Q

qv pv v

j
n

Q
n Q q p

S a D

D

D

D

γ
α α

α

α

α

α

α

η

α
η

χ
λ χ λ

χ

λ
χ

χ

λ
χ

χ

λ
χ

χ

= =

=

=

=

≤

  
   
  ≤  
        

  
   
  ≤  
        

 
 ≤
 
 

∑ ∑

∑

∑

∑





M

M

1

,

,
η

α
η η  

where ( ), , , ,D C d s φ γ η= . Finally we have 

( ) ( ) ( ), , , ,
fin , ,

, , , , , , , , , ,, ,
.q p q p

s
r d s r d sq p

S f f fα αγ η γ φ η γ φα ∞
 

   
The density of ( ) ( ), ,

fin, ,
q p d

s Cα
∞ ∩   in ( ), ,q p α  gives the result.            

This result generalized the analogue established in the context of Fofana’s 
spaces in [13] when 1 q< . 

Our next result deals with the boundedness of the commutator operator asso-
ciated to this intrinsic square function. Let b be a locally integrable function. The 
commutator of b and Sγ  is defined by 

( )( ) ( ) ( ) ( )( ) ( ) ( )
1
22

1

d d, sup d .d t dx

y tb S f x b x b z y z f z z
tγ

γ
ψ

ψ +Γ ∈

 
  = − −  

 
∫ ∫  

For the case of Lebesgue spaces and Fofana spaces, the boundedness of the 
commutator has been obtained under the assumption that b belongs to BMO. 

We recall that the space BMO consists of functions 1
locf L∈  satisfying 

BMOf < ∞  where 

( )
:

1sup dBBMO BB ball
f f x f x

B
= −∫

 

with Bf  denoting the average over B of f, i.e. ( )1 dB B
f f x x

B
= ∫ . 

We say that a locally integrable function b belongs to ( ):d d dBMO BMO=   
if there exists 0 b dµ< <  such that for all cubes ( ): ,Q QQ Q x=   of d , 

( ) ( )1 b

Q Q Qx C x x
µ−− ≤ −b b                   (30) 
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for all x Q∉  (C is a positive constant which does not depend on Q and x). 

Proposition 14. Let 0 1γ< ≤ , 0 1q< < , q pα≤ ≤ < ∞ , 1 1s d
q

  
≥ −  

  
 

be an integer and dBMO∈b . Then , Sγ  b  is extended to a bounded operator 

from ( ), ,q p α  to ( ),q pL
α

 . 

Proof. Let ( )dφ ∈   such that ( )d 1d x xφ =∫


. Let  

( ) ( ), ,
fin, ,0

j q p d
n n snf a Cαλ ∞=

= ∈ ∩∑  , with ( ){ } 0
,

j
n n n

a Q
=

 a sequence of elements 

of ( ), , ,q sα ∞  and { } 0

j
n n
λ

=
 a sequence of scalars. We put : 2n nQ dQ=  for 

all { }0,1, ,n j∈   and denote by nx  and n  respectively the center and the 

side-length of nQ . We have: 

( ) ( ) ( ) \, , 0 0, , , ,

, , , dn n

q qj jq

n n n nQ Qq p n nq p q p

S f S a S aγ γ γα
α α

λ χ λ χ
= =

     ≤ +     ∑ ∑


b b b

(31) 

Fix 0 qη< < . Since , Sγ  b  is bounded on rL  for { }max 1,r p> , we have 

( )( ) ( )

1
1

0 0, ,
, ,

, , , , , ,
nn

n

j j
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η η
ηηη

γ
α

α αη η η
η η η

λ
λ χ γ η χ

χ= =

 
   ≤   
 

∑ ∑

b b

 

thanks to Proposition 10. 
Let us now estimate the second term on the right hand side of (5). Let 

\d
nx Q∈  . Using the same arguments as in the proof of Proposition 13, we ob-

tain 

( )( ) ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
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,2 3 1, ,
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d dd
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n n
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dn n dB x t Q B y t

d Q n dB x t Q B y t
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y tS a x x z a x z
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t

E F

γ γ φ

γ φ

φ

+∞
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+∩

+∞

+∩
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+ − 
 

= +

∫ ∫ ∫

∫ ∫ ∫

∫ ∫ ∫











b b b

b b

b b







 

Since b dµ < , dBMO∈b  and 
4 n
dt ≥  , it comes that 1 14n n nx x t− −− <   

and then 

( ) ( ) ( )( )

( ) ( )
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1221 * 2
,2 3 1,

4
1
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,2 2 2 1
4
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µ
φ µ
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µ
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+∞ −
+
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∫ ∫ ∫
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With regard to the term F, we have 

( ) ( )

( ) ( )

1
2*

,2 2 1
4

*
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d0,1

.

n

d
dn n dBMO
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tF B a x
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≤

∫


b
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Therefore, 

( )( ) ( ) ( )*
,2, , , , .n b nBMOS a x C d a xγ φγ µ  ≤ b b 

 
Now 
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n

v

Q
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Q

x
a x C d sφ
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χ
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M


 

where 
1d sv

d
+ +

=  according to relation (29); so 
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Q
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χ µ φ γ
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M
b b

 
for all { }0,1, ,n j∈  . Hence there exists ( ): , , , , ,b BMOC d sµ φ γ=c b , such that 
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thanks to Proposition 1. It comes that 
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Finally 
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j
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b Qq p n Q q p
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η η
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The result follows from the density of ( ) ( ), ,

fin, ,
q p d

s Cα
∞ ∩   in ( ), ,q p α .       

6. Conclusion 

In this article, we have defined Fofana spaces of Hardy type and given their 
atomic decompositions. These decompositions allowed us to control some in-
trinsic square functions as well as their commutators with functions in BMOd, a 
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proper subspace of BMO. We are certain that this subspace can be improved if 
we do not consider the BMO space. Moreover, we assert that a similar control 
can be given for the commutators of the Calderon-zygmund operators and the 
elements of BMOd. This is a work in progress and will be the subject of a forth-
coming article. 
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