
Open Access Library Journal 
2022, Volume 9, e8461 
ISSN Online: 2333-9721 

ISSN Print: 2333-9705 

 

DOI: 10.4236/oalib.1108461  May 27, 2022 1 Open Access Library Journal 
 

 
 
 

New Models of the Physical Microcosm and 
Their Optimality 

Valentin V. Mdzinarishvili 

Tbilis, Georgia 

 
 
 

Abstract 
A solution to the Schrödinger equation completely mapped to the microlevel 
of the matter is obtained. The solution allows mathematically to ground the 
phenomenon of formation of the elementary antiparticles, emergence of the 
elementary particles from the vacuum at a high electric field intensity, to 
create a model of wave-particle duality and obtain a model of a gravitational 
wave. To obtain a model of antiparticles, a model of the emergence of ele-
mentary particles from a physical vacuum at a high electric field strength, a 
model of wave-particle duality, as well as a model of a gravitational wave, and 
a solution of the non-stationary Schrödinger equation is given. In order to 
obtain a solution to the non-stationary Schrödinger equation, the values that 
are in the real area are transferred to the imaginary area. This is achieved by 
jointly solving the equations of stochastic mechanics and the ARG function 
introduced by the author. A steady-state solution of the Rikkati-type equation 
written for imaginary dispersion is obtained. The steady-state solution of this 
equation at a constant value of the potential field makes it possible to obtain 
the models listed above. 
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1. Introduction 

At the intersection of two sciences, there are always some unexplored areas. The 
priority of the present work is to identify the areas and prove their optimality. 
For us, such an area lies between the theory of optimization and the physical 
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theory of elementary particles. 
E. Schrödinger was the first to express the idea about the existence of the 

optimal properties of the elementary particles, when he was writing his equa-
tion for the particles of the physical microcosm using Hamiltonian function. 
After establishing the adequacy of modeling by means of the equation of statio-
nary processes of the microcosm it became clear that the microcosm is an or-
ganisation on the basis of optimal principles. However, existed solution of the 
Schrödinger equation did not allow for a model of the wave function of the 
elementary particles on the microlevel. The present work solved that problem: 
the results obtained allow to model the wave function of the elementary particles 
existing at the microlevel. 

Let us now define the essence of the optimization principle prevailing in the 
physical microcosm. According to that principle, under the action of conserva-
tive forces, any dynamic system moves in such a way as to minimize the time 
average value of the difference between kinetic and potential energies, i.e. 

( )
2

1

d 0
t

t

T V tδ − =∫                        (1*) 

or taking into account the Equation (1*), we can write 
2

1

d 0
t

t

L tδ =∫ ,                         (2*) 

where ( ),T q p —kinetic energy, 
( )V q —potential energy, 
( ),L q p —Lagrange function, 

q = generalized coordinate, 
p q=   generalized impulse. 

The variation of the Lagrange function in the integrand (2*) is 
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In the last expression, it is assumed that 0qδ =  for 1t t= , and 2t t= . 
Since the number of generalized coordinates q is equal to the number of de-

grees of freedom and as qδ  does not depend on time, the latter equality is sa-
tisfied if the expression in square brackets is equal to zero, i.e. 

d d0 0 ,
d d

L L p H Hp
t q q t q q
∂ ∂ ∂ ∂

= − ≡ + = ⇒ = −
∂ ∂ ∂ ∂





             (1) 
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where H T V= +  is the Hamiltonian function (Hamiltonian). Expressions (1*) 
and (2) show that the Euler-Lagrange equations are equivalent to the Hamilton 
equations, representing the right-hand side (with respect to the equivalence 
signs << ≡ >>) of expressions (1) and (2). Schrödinger used the Hamilton func-
tion H as a basis for the synthesis of his equation. 

2. The Methods of Estimation of State of Systems 

From the point of view of optimality, the concept of the integrity of a dynamic 
system [1], i.e. its indivisibility into separate subsystems is very important. It is 
convenient to interpret the integrity property in terms of observations (mea-
surements). 

Let the observation system be given by scalar equations: 

( ) ,x x tα ξ= − +                         (3) 

( )y x tς= +                           (4) 

of the object (3) and observation channel (4). In expressions (3) and (4) ( )tξ  
and ( )tς  are scalar random processes of the white noise type with the follow-
ing stochastic characteristics: 

( ) ( ) ( ) ( )0,   ,E t E t t t tξ ξ ξ ρδ′ ′= = −        

( ) ( ) ( ) ( ),    0E t t r t t E tς ς δ ς′ ′= − =       , 

where E is the mathematical expectation operator, δ -Dirac function, parame-
ters , , rα ρ  are constant. 

And the following designations: ( )0 0E x =   , ( )2
00E x v  =  ,  

( )2ˆv E x x = −  , where x̂  denotes the conditional variable evaluation x, ob-
tained by the least squares method, and v is the dispersion of the variable x. In 
such a case, the equation for dispersion v will be given by [1]: 

( ) ( )2
02 1 ,   0 .v v r v v vα ρ= − − + =

1               (5) 

Expression (5) is the Riccati equation. The right-hand side of Equation (5) can 
be written as a soliton [2] 

( )2d sech
d
v A t
t

β φ∗= − − .                     (6) 

Soliton solutions of the integrity dynamical systems have an important 
property. The property lies in the optimality of the soliton solution of the Ric-
cati Equation (5). The general solution of Equation (5) has the following form 
[3]: 

( ) ( )
1 2

1 2
0 2 0 1 e 1t

v vv v
v v v v β∗

+
= +

 + − − 
,              (5а) 

where 

 

 

1Equation (5), where the constant term is equal to zero, i.e. 0ρ = , we refer to as the Riccati equa-
tion. 
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2 rβ α ρ∗ = + ,                       (7) 

( )1v r β α∗= − ,                        (8) 

( )2v r β α∗= + ,                        (9) 

( ) 1
ln cφ

−
= , 2 0

1 0

v v
c

v v
+

=
−

, 1 0v v> , A Dβ ∗= , 1 2

2
v vD

c
+

=  and 0v  is the 

dispersion value v at the initial moment of time 0 0t = , i.e. ( )0 0v v= . 

Finally, solution of Equation (6) allows us to determine the dispersion 

( )
0

2
0sech d

t

t

v A t t tβ φ∗ ′ ′= − − − ∫ .               (10) 

Representation of the observation (measurement) system in the form of object 
(3) and observation channel (4) is formal. In natural conditions the observation 
system is an integrity formation; it cannot be divided into an object (3) and an 
observation channel (4). The observation channel (4) is an integral part of the 
observation object (3). Representation of a real observation system in the form 
of expressions (3) and (4) is appropriate for mathematical processing of the re-
sults of indirect observations. The class of integrity dynamic systems includes 
the systems modelled simulated by the following Riccati equations: 

( ) ( )0 0,     ,z mz n z z t z= − =                  (11а) 

( ) ( )0 0,    .z mz n z z t z= − − =                  (11b) 

The solution of Equations (11a) and (11b) is given by: 

( )
0

2 2
0

1 1sech d
4 2

t

t

z n m mn t t t ′ ′= −  ∫ ,              (12а) 

( )
0

2 2
0

1 1sech d
4 2

t

t

z n m mn t t t ′ ′= − −  ∫ .             (12b) 

From the parity property of the soliton it follows that the parameter n can 
have both positive and negative signs in solutions (12a) and (12b). It should be 
noted that Equations (11a) and (11b) are the particular forms of Equation (5). 

Solutions of integrity dynamical systems (10), (12a), (12b) have the dissipative 
property. Dissipative functions are not invertible with respect to the corres-
ponding argument. Conservative functions are invertible, their second derivative 
with respect to the argument does not reverse the sign. 

The t  time derivative of both sides of solution (5a) is the soliton differential 
Equation (6), whose solution (10) satisfies the Euler—Lagrange optimization 
equations. It is easy to verify that the functionals ( )L L v=  and ( )L L z=  (see 
(10), (12a), (12b)) satisfy the Euler—Lagrange Equations (1) and (2). 

The fact that the functional L satisfies the Euler-Lagrange equation means that 
the variance is zero ( )2ˆ 0E x xν  = − =   or x y x= , i.e. the object (3) and the 
observation channel (4) represent one whole: the system (3), (4) is integrity, Thus, 
soliton solutions of integrity dynamical systems have the following important 
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properties: 
1) They satisfy the Euler-Lagrange optimization equations. 
2) They are dissipative in time functions, i.e. these functions are time irreversible. 
3) They do not allow to represent the equations of the object and the observa-

tion channel separately. 
Further, the solution to the problem of mathematical modeling of the disper-

sion of the elementary particle is given at the microlevel of the matter having 
those properties. 

*Denotations p and. r given above are independent from those given below. 

3. The Analysis of Schrödinger’s and the Stochastic  
Mechanic’s Equations 

In the middle of the twenties of the last century, Austrian physicist Erwin Schrödin-
ger using de Broglie’s hypothesis of optico-mechanical analogy for the behavior 
of the micro particles and based on the Hamilton optimization principle, syn-
thesized the key equation of quantum mechanics named after him: 

( )2
2

2

1
2

U x
j

t mx
ε ε

 ∂Ψ ∂ Ψ
= − + Ψ 

∂ ∂  
,                (13) 

where 1j = − , mε =  , 341.05459 10 J s−= × ⋅
 is the Planck constant di-

vided by 2π, Ψ, the wave function of the particle to be found, ( )U x  the poten-
tial energy of the particle with mass m and coordinate x. 

Schrödinger’s equation is extraordinary. The extraordinary nature of the equ-
ation lies in the fact that it simultaneously belongs to two levels of the matter, 
partly to the microlevel (the left-hand side of the equal sign “=”) and to the me-
solevel (the right-hand side); the mesolevel of the matter is between the micro-
level and the macrolevel. 

The solution to the Schrödinger equation can be found in three ways. 
The first way is used to solve the nonstationary Equation (13). The second one 

is used to solve the stationary equation, i.e. for 0Ψ = . This method was used by 
Schrödinger himself. Finally, the third way of solution uses the function close to 
a generalized function.2 The latter method, applied by the author for solution of 
Equation (13), allows obtaining the wave function of an elementary particle at 
the microlevel. In such a case, the Schrödinger equation entirely belongs to the 
left-hand side of the plane with respect to the equal sign “=”. 

Consider the solutions to the Schrödinger equation at three levels of the mat-
ter separately. 

1) Introduce denotations ( ) ( ) ( ),x t x tψ ϕΨ = 3. In such a case, Equation (13) 
can be written as follows 

( )2
2

2

1 1 1
2

U x
j

t mx
ϕ ψε ε

ϕ ψ
∂ ∂

− = −
∂ ∂

.                (14) 

 

 

2The function close to a generalized function will hereafter be referred to as a normalized algorith-
mically realizable generalized function (ARGF). 
3Such an approach is valid if the potential energy of the particle does not depend on time. 
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Since the left-hand side of Equation (14) is the function of time, and the 
right-hand side is the function of coordinates, Equation (14) is satisfied if and 
only if both parts are equal to a constant value [4]. We denote this constant value 
by −W/m, where W is the total energy of the particle. When the above condition 
is satisfied, Equation (14) is divided into two equations 

( )
2

2 2

1 ,

12 0.

Wj
t m

W U
x m

ϕε
ϕ
ψ ψ

ε

∂
=

∂

∂
+ − =

∂

                  (15) 

Thus, the solution of the non-stationary Equation (13) has no practical val-
ue. 

2) Schrödinger solved the stationary Equation (15) ( 0Ψ = ) applied to the 
hydrogen atom (using a spherical coordinate system) and obtained a spectrum 
for the energy eigenvalues that coincides with the well-known experimental data. 
That showed that the stationary Equation (15) correctly describes the motion of 
the electron in the potential electric field. Therefore, Equation (15) was taken as 
the basic equation of stationary states of quantum mechanics; 

3) The entire Schrödinger equation transferred to the microlevel was obtained 
neither by Schrödinger nor other scientists. In this work, the solution of the 
Schrödinger equation is transferred to the microlevel of matter. 

Such an approach to the solution of the Schrödinger equation will make it 
possible to solve number of problems up to now known from heuristic consider-
ations. 

To pass from the solution of the continuous Equation (13) to the solution of 
the equation transferred to the microlevel, it is necessary to use the system of 
equations of stochastic mechanics transferred to the microlevel with the help of 
ARGF. ARGF is considered to translate dispersions and diffusions from real areas 
into emajine areas. 

The system of equations of stochastic mechanics has the following form: 

( ) 0,P Pv
t

∂
+ ∆ ⋅ =

∂
                       (16) 

( ) ( ) 21 ,
2

v Fv v u u u
t m

ε∂
+ ⋅∆ = + ⋅∆ − ∆

∂
               (17) 

1 ,
2

Pu Pε= − ∆                         (18) 

where v and u are unidimensional vectors of real dispersion and diffusion of the 

elementary particle; 
x
∂

∆ =
∂

, unidimensional vector-operator; d
d
UF
x

= , the gra-

dient of the field U, i.e., gradF U= ; of the point “.” denotes scalar product. 

Since in such a case the angle between the vectors equals to 0 degrees, the 
point in Equations (16) and (17) can be omitted, i.e. the scalar product can be 
replaced by the ordinary product. 

Equation (18) can be written as follows: 
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( )1 1ln
2 2x

Pu P
P

ε ε ∆′= − = − ,                 (18а) 

where ( )ln xP ′ , is the rate of change of continuous probability density P of the 

real random process of the diffusion with coefficient 1
2
ε− . 

Further, Equations (16)-(18) already transferred to the microlevel of the mat-
ter are used. And formula (18a) is used to transfer diffusion u to the microlevel 
of the matter. 

4. General Considerations for Transfering the Solution to 
the Schrödinger Equation Mapped to the Microlevel of the 
Matter 

It is well known that the wave function of an elementary particle satisfying the 
Schrödinger Equation (13) can be given by: 

exp djP v x
ε

 Ψ =  
 ∫ .                    (19) 

Substituting the wave function (19) in Equation (13), taking into considera-
tion Equation (18), we will have the differential relation 

( )j v juε− ∆Ψ = + Ψ . 

From that relation we can pass to the wave function which is solution of non- 
stationary Schrödinger equation 

( )
( ) ( )

0 0

1, d , d

, e
j v x t x u x t x

x t

τ τ

τ τε ε
−∫ ∫

Ψ = ,                  (20) 

where 0τ  is the very little time but other than zero, i.e. 0 0τ ≠ . 
The role of ARGF is, together with the equations of stochastic mechanics, to 

transfer the real dispersion function v and diffusion function u into the class of 
imaginary functions. Such a transfer allows to transform the real wave function 
Ψ  into an imaginary wave function and, consequently, to obtain a solution to 
the Schrödinger equation at the microlevel of the matter [5]. 

The Laplace transform from ARGF is given by 01
2
s

th
s

τ 
 
 

, where  

s jσ ω= + , 0 constτ = . 

If we use the symbol of correspondence between the Laplace transform and its 
original, then it will be possible to determine ARGF in the time domain: 

01
2
s

th
s

τ 
 
 

 ( ) 1

0

1 ,   1n tn n
τ

−− − < < ,               (21) 

where t is the current time, 1, 2,n = 
 

Apart from formula (21) ARGF can also be defined by the use of the inverse 
Laplace transform operator 1L− : 

( ) 11 0

0

1 1 ,   1
2

ns tL th n n
s

τ
τ

−−    = − − < <  
  

.             (22) 
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If in formula (22) we take into consideration the equality ( )2 11 e j k+π− = ,  
0,1,2,k =   then the last expression will be written as follows: 

( )( ) ( )02 1 11 0
0 0

1 e ,  1
2

j k ns
L th n t n

s
ττ

τ τ+− π −   = − ≤ <  
  

 for 1n .    (23) 

Introduce designation: 

0n xτ τ= = .                         (24) 

Clearly, 0t =  if 1n = . If ( ) 01n tτ− = , according to (23) for 2,3,n = 
 we 

will have 

( )2 11 01 e
2

j k ts
L th

s
τ +− π   =  
  

.                   (25) 

Let us introduce the distribution function of an imaginary random diffusion 
process defining the function by the right-hand side of expression (25). Then the 
density function ( ), , ,P j x t k  of the probability distribution of an imaginary 
random diffusion process will be found according to the expression 

( ) ( ) ( )2 11 01 2 1 e , , , .
2

j k t

t

s
L th j k P j x t k

s
τ +π−

′    = + ≡   
 

π
 

        (26) 

Further, we use the wave function of just an imaginary random diffusion pro- 
cess, i.e., solution ( ), , ,j x t kΨ , of non-stationary Schrödinger equation, which 
is the mapping of solution (20) to the microlevel of the matter: 

( )
( ) ( )

0 0

0 0

1, , , d , d

, , , e

n nj v j x t k x u j k x

j x t k

τ τ

τ τε ε
−∫ ∫

Ψ = ,               (20a) 

where ( ), , ,v j x t k , dispersion of an imaginary random diffusion process mapped 
to the microlevel. According to formula (20a), it is necessary to substitute diffusion 
( ),u j k  in it. The imaginary diffusion of an elementary particle is determined by 

the formula (18a) transferred to the microlevel of the matter. To that end, we use the 
density function ( ), , ,P j x t k  of distribution of the probability of an imaginary 
random diffusion process (26) taking into consideration the notations (24), (25): 

( ) ( ), 2 1
2

u j k j kε
π= − + .                    (27) 

It can be seen from (27) that the diffusion of an imaginary random process for 
a concrete k is constant. 

5. Obtaining of the Dispersion Equation for the Elementary 
Particles Mapped onto the Microlevel of the Matter 

In what follows, it is assumed everywhere that the system of equations of sto-
chastic mechanics (16)-(18) consists of the functions ( ) ( ), , , , ,P j x t k u j k  and 
( ), , ,v j x t k  mapped4 to the microlevel. It should be noted that ( ), , ,P j x t k  and 
( ),u j k  are already known, they are defined by the formulae (26) and (27). The 

mapped diffusion function ( ),u j k  and the dispersion ( ), , ,v j x t k  function 

 

 

4Further, instead of the words “transfer to”, their synonym “mapping to” will be used. 
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are used to substitute them in the mapped wave function formula (20a). 
Below given sequence of mathematical operations allows determining the eq-

uation satisfying the mapped dispersion ( ), , ,v j x t k . 
To find the equation of the dispersion v mapped to the microlevel, we substi-

tute the density ( ), , ,P j x t k  determined according to (26) into Equation (16) 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 22 1 2 12 2

2 1 2 1

2 1 e 2 1 e

2 1 e : 2 1 e .

j k t j k t

j k t j k t

k v k
vj k j k
x

+ +π π

π π+ +

− + − +

∂
= − +π+

∂

π π

π
 

The latter gives the differential equation 

( )( )2 1 1v j k v
x
∂

= − +π +
∂

.                    (28) 

If we put the diffusion value (27) into the Nelson Equation (17) mapped to the 
microlevel, we will have 

( )F xv vv
t x m
∂ ∂

+ =
∂ ∂

.                      (29) 

The joint solution of equations (28) and (29) leads to ( )2 1 0,1,2,k k+ = 
 

number of Riccati-type equations mapped to the microlevel 

( ) ( ) ( )22 1 2 1v j k v j k v F x m
t
∂

= + + + +π π
∂

.            (30) 

For a certain k the expression (30) is the mapped scalar Riccati equation 
with constant coefficients. 

Consider Equation (30) as Equation (5) mapped to the microlevel of the mat-

ter. In this reflection, the parameters 12 ,
r

α− −  and ρ  of equations (5) are 

mapped to the parameter of Equation (30), respectively. The mapping process 
can be schematically represented as follows: 

2  α−  is mapped to ( )2 1j kπ + ,                (31) 

1
r

−  is mapped to ( )2 1j kπ + ,                 (32) 

ρ  is mapped to ( )F x m .                  (33) 

Thus, the joint solution of the equations of stochastic mechanics mapped to 
the microlevel (16)-(18) allows to obtain the Riccati Equation (30) mapped to 
the microlevel, satisfying the dispersion ( ), , ,v j x t k  of elementary particle at 
the microlevel of the matter. 

6. Solution of the Equation Determining the Dispersion of 
Elementary Particle at the Microlevel in a Steady State 

If instead of parameters 12 ,
r

α− −  and ρ  we take into consideration their  

mapped values (31)-(33), then the structure of the solution to Equation (30) will 
be the same (see (5a)) as it was in solution of Equation (5). In such a case, the 
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parameters 1 2, ,v vβ  are determined by taking into consideration the mappings 
(31)-(33), in accordance to formulae (7)-(9): 

( ) ( ) ( ) ( ) ( )2
2, , 2 1 2 1 ,

4
F x

x j x k k j k
m

β β≡ = − + − +
π

π        (34) 

( ) ( ) ( ) ( ) ( )1
1 1 , , 2 1 2 1 ,

2
v x v j x k j k x j kβ

− π
π   ≡ = − + + +         (35) 

( ) ( ) ( ) ( ) ( )1
2 2 , , 2 1 2 1 .

2
v x v j x k j k x j kβ

− π
π   ≡ = − + − +         (36) 

Taking the above parameters into consideration, the solution of the mapped 
dispersion Equation (30) for a certain k will be written as follows: 

( ) ( ) ( ) ( )
( ) ( )
( ) ( )

( )

1 2
1

20 2

0 1

, , , ,
e 1x t

v x v x
v j x t v j x

v x v x
v x v x

β

+
= +

+
−

−

           (37) 

where ( ) ( )0 , ,0v x v j x≡  is the imaginary dispersion for 0t = . 
Without losing generality, in solution of Equation (30), we can assume that 

0 0v = . In such a case, the soliton solution of Equation (30) will be given by 

( ) ( ) ( ) ( ) ( )2

0

, sech dv x t D x x x t x tβ β φ
∞

= − −  ∫            (38) 

where ( ) ( ) ( )1 2

2
v x v x

D x
c

+
= , ( )

( )
2

1

v x
c

v x
= , ( ) ( ) 1

lnx cφ
−

= . 

The functional determining the dispersion ( ),v x t  in the time interval  
( )0,t∈ ∞  depends on the coordinates of the particle in a complex way; there-

fore, the substitution of the mapped dispersion ( ),v x t  in formula of wave 
function (20a) greatly complicates the calculation of the function, making calcu-
lation practically impossible. However, to determine the dispersion ( ),v x t  in 
the stationary case, i.e. when t = ∞  and at the initial moment when 0t = , the 
calculation of the dispersion is possible. 

Indeed, for t = ∞ , according to formula (37), we have ( ) ( )1v x v x= , and for 
0t = , then from (37) we receive ( )0 0v x = . Consequently, calculation of 

integral (38) in the stationary state and at the initial moment will be given by 

( ) ( ) ( ) ( )0 1 1, 0v x t v x v x v x∞= ≡ − = − = .               (39) 

According to formula (35), expression (39) will be written as 

( ) ( ) ( ) ( )1
1

12 1
2

v x v x j k xβ
−

= = − +   −π .             (40) 

If in formula (34) we take out the term ( )
2

22 1
4

k− +
π  for the radical sign, 

then we will have 

( ) ( ) ( ) ( )42 1 1
2 2 1

x j k j F x
m k

β = + +
+

π
π

.            (41) 
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If in expression (40) we take into consideration (41), then we get5 

( ) ( ) ( )1 1 1 11 1
2 2 2 2

v x j F x j xχ= + ℵ + = + − ,         (42) 

where, 
( )

4
2 1m k

ℵ
π

=
+

, ( ) ( )x F xχ =ℵ . 

With account of the formula 

1 11
2 2

r rj jχ
 + −

+ = ± + 
 

, 21r χ= + ,           (43) 

expression (41) will be written as 

( ) ( ) ( )x j x xβ η γ= ± −   , 

where, ( ) ( ) 12 1
2 2

rx kη +
+

π
= , ( ) ( ) 12 1

2 2
rx kγ −

+
π

= . 

7. Obtaining a Mathematical Model of an Antiparticle 

In 1930, guided by physical considerations, P. Dirac predicted the existence of 
antiparticles: each elementary particle corresponds to its antiparticle; the posi-
tron is the antiparticle for the electron. All predictions on the existence of anti-
particles were confirmed experimentally and the antiprotons, antineutrons, etc. 
were discovered. 

The mathematical substantiation of this phenomenon is of interest. For ma-
thematical confirmation of this phenomenon, it is reasonable to consider the 
wave function of the particle and antiparticle at the microlevel of the matter. 
According to formula (20a), mathematical operations are performed in expo-
nential order; the exponential order will be obtained, if we take into considera-
tion the expressions (27) and (42) in formula (20а): 

( ) ( )
0 0 0

0 0 0

11 d d 2 1 d
2 2 2

n n nj jj x x x j k x
τ τ τ

τ τ τ

χ
ε ε

π+ + + +∫ ∫ ∫ .        (44) 

Represent the expression ( )1 j xχ+  separately according to formula (43): 
the terms with the positive sign and with the negative sign will be considered 
separately. 

First, we take into consideration the plus sign (+) and then the minus sign (−). 
In such a case, expression (44) will be written in two variants: 

( )1 1 1 2 1
2 2 2 2
jt r r jtj k
ε

  + − + + + + + π 
   

,           (45) 

 

 

5If both sides of the formula (42) are multiplied by the expressions conjugate to that formula, respec-

tively, i.e. to the ( )1 1 1
2

v j xχ∗  = + −  ,we get the square of the dispersion of an elementary par-

ticle at the microlevel ( ) ( ) ( )2 1 1 1
4 2 1

jv j x F x
m k

χ= + − =   π +
. Hence, ( ) 24x vχ =  and, conse-

quently, 2 41 1 16r χ ν= + = + . 
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( )1 1 1 2 1
2 2 2 2
jt r r jtj k
ε

  + − − + + + + π 
   

.           (46) 

Further, it is assumed that the particle and the antiparticle are in a constant 
potential field, i.e. U const=  and, consequently, 1r = . 

According to expressions (45) and (46), the wave function can be written as 
follows: 

( )1 2 1
2

1,2 e
t

j k
ε
 + +  

π  Ψ =  
  

,                      (47) 

( )2 1
2

0 e
t

j k+π 
Ψ =  

 
.                     (48) 

It should be noted that the wave function (47) does not contain the mass of 
the elementary particle, therefore, further, it will not be taken into consideration. 
The wave function (48) contains both the wave function of the particle and the 
wave function of the antiparticle. If we take into consideration Euler’s formula 

( )e cos sinjg g j g= + , then for obtaining the wave function of the antiparticle it  

is necessary to open the brackets of expression ( )2 1
2

kπ
+ . In such a case, the 

arguments of the sinusoidal and cosinusoidal functions will consist of three 

summands 1, ,
2

kε − π
π : 

( ) ( )

1
2

1 e

cos sin

t
j k

t
A B C j A B C

ε
 
 
 

π
+π+ 

Ψ =  
  

= + + + + +  

.            (49) 

To obtain the wave function of the particle it is not necessary to open the 

brackets of expression ( )2 1
2

kπ
+ ; in such a case, the arguments of the sinusoid-

al and cosinusoidal functions will consist of two summands ( )1, 2 1
2

kε − π
+ : 

( )
( ) ( )

1 2 1
2

2 e cos sin
t

j k t
a b j a bε

 + +
π

 
  Ψ = = + + +    
  

,         (50) 

where 1A a
ε

= = , B k= π , 
2

C =
π , ( )2 1

2
b k=

π
+ , 1,3,5,k =  , for particle 

and 0,2,4,k =  , for antiparticle. 
For the antiparticle we will have 

( )cos cos cos cos sin sin cos
sin cos sin cos sin sin

1sin ,

A B C A B C A B C
A B C A B C

ε

+ + = −

− −

 = −  
 

        (51) 
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( )sin sin cos cos cos sin cos
cos cos sin sin sin sin

1cos .

A B C A B C A B C
A B C A B C

ε

+ + = +

+ −

 =  
 

        (52) 

For the particle we will have 

( ) 1cos cos cos sin sin sina b a b a b
ε

 + = − =  
 

,           (53) 

( ) 1sin sin cos cos sin cosa b a b a b
ε

 + = + = −  
 

.          (54) 

Consequently, the difference between the particle and the antiparticle is re-

duced to the group or the absence of group of summands kπ  and 
2
π . 

If we take the results (53) and (54) into consideration in formula (50), taking 
de Moivre formula ( )cos sin cos sintg j g tg j tg+ = +  into consideration, then 
we get the wave function of the particle 

2 sin cost tj
ε ε

   Ψ = −   
   

. 

If we take the results (51) and (52) into consideration in formula (49) there we 
get the wave function of the antiparticle 

1 sin cost tj
ε ε

   Ψ = − +   
   

. 

Only the real parts of a complex function have physical meaning; therefore the 
wave functions of the particle and the antiparticle will be written as follows: 

2 sin t
ε

 Ψ =  
 

, 

1 sin t
ε

 Ψ = −  
 

. 

Consequently, we have the annihilation 

1 2 0Ψ +Ψ = . 

8. Model of Emergence of Elementary Particles  
from the Vacuum 

The physical vacuum is teeming with virtual particles; it contains various kinds 
of virtual elementary particles. Physical vacuum exerts comprehensive pressure 
on any elementary particle both on the scale of the Universe and in laboratory 
conditions. It is considered that for any type of vacuum, there is a resonant wa-
velength. The data presented in [6] show how sharply the concentration of ele-
mentary particles decreases with the change of the vacuum type. The present 
work shows how significantly the free path of neutrinos changes depending on 
the resonance wave of a certain type of vacuum. Below, a model is constructed 
based on the results of this work, which shows how elementary particles emerge 
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from “nothing” in a strong electric field [1]. 
To determine the gradient of the electric field, where the real particles emerge 

from virtual particles, we use formula (43) instead of the first term of the expres-

sion (44); and without taking into consideration the coefficient 1
2

, we obtain 

( )
0

0

1 1 1 1 2 1 d
2 2

n r rj j k x
τ

τ ε ε

  + − ± + + − +π  
   

∫ .          (55) 

After multiplying (55) by j− , in formula (55), we will have imaginary and 
non-imaginary parts separately 

( )
0

0

1 1 1 2 1 d
2 2

n r j r j j k x
τ

τ ε ε ε

    − + − ± + ± + − +    
    

π


∫ .        (56) 

If virtual particles are absent, in expression (56) the sum of the coefficients for 
imaginary terms will be equal to zero, 

( )1 1 1 2 1 0
2

r k
ε ε
 +
± + − + =  π
 

.                (57) 

When the virtual particles are absent, we have only real particles. As  
2 21r F= +ℵ , from equality (57) it follows that 

( )2 21 F G k+ℵ = ,                      (58) 

where ( ) ( ) ( )22 21 4 2 1 2 2 1G k k kε ε= − π+ + +π . 
From equality (58) we find the gradient of the electric field, where the real 

particles emerge 

( ) ( ) ( )21 1F k G k
k

= ± −
ℵ

.                  (59) 

The sign of the absolute value in formula (59) follows from the fact that the 

expression 
( )
4
2 1
F

m k
χ

π
=

+
 is positive and, consequently, 0F > . 

If we take into consideration (57) in expression (56) and also consider the 
formulae (20а), (27), (42) and the denotation ( )0 1n tτ − =  we obtain the final 
result of emergence of real particles from “nothing” 

( )
( ) 1

2 2, e , .
r kt

k t t constε
−

Ψ = =  
The parameter k, where the elementary particles begin to emerge from the 

vacuum, is determined from the following inequality 

( )
0

1
2 1

2

r k
τ

ε

−

> . 

9. Model of Corpuscular-Wave Dualism 

After Planck’s postulate about the discrete nature of energy radiation by atoms- 
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oscillators (1900), the idea of quantization was developed by A. Einstein (1905). 
He suggested that quantum properties are inherent in light in general. It follows 
from Einstein’s hypothesis that light must be considered not as a wave, but as a 
stream of quanta (photons) with the energy 0 0E hν= 6 and impulse 0p cω=  7 
each. In terms of cognition, this hypothesis did not accept the position in clas-
sical physics about the essential difference between the matter and radiation; it 
affirmed the fundamental principle of the physics of the microcosm of wave—a 
model of corpuscular-wave dualism is given. To obtain a mathematical model of 
corpuscular-wave dualism. The hypothesis of the great thinker was of considera-
ble theoretical value. 

In this section, one of the main problems of this work is solved—a model of 
corpuscular-wave dualism is given. To obtain a mathematical model of corpus-
cular-wave dualism, consider the wave function of an elementary particle taking  

into consideration expresion (55) and coefficient 1
2

 writing it as 

( )
( )

0

0

1 1 1 1 2 1 d
2 2 2

, e

n r j r j j k x

k t

τ

τ ε ε ε
    − + ± − ± + − +    
     

π∫
Ψ = ,            (60) 

where 1,3,5,k =   
The potential field in which the elementary particle is located is constant, i.e. 

U const= . This means that 1r =  and the content in the first square brackets 
goes to zero. 

To avoid annihilation of number 1ε −  consider the plus sign before the second 
square brackets; as a result, the wave function (60) takes the form 

( )
( ) 2 1

2, e
tj t k

k t ε
 + +  

π

Ψ = .                    (61) 

We introduce the notation 

( )1 ,  2 1 .
2

a b k
ε

= = +
π                      (62) 

Taking these designations into consideration, the wave function (61) will be 
written as 

( ) ( ), e
tj a bk t + Ψ =   .                     (63) 

Using the Euler formula in the square brackets, the wave function (63) will be 
given by 

( ) ( ) ( ), cos sin
t

k t a b j a bΨ = + − +   .              (64) 

Transformation of trigonometric functions and taking into consideration no-
tation (62) gives 

( )cos cos cos sin sin sina b a b a b a+ = − = ,            (65) 

( )sin sin cos cos sin cosa b a b a b a+ = + = − .           (66) 

 

 

6h is the Planck constant, 0ν —the frequency of electromagnetic radiation. 
7c—the speed of light in emptiness, 0ω —the angular frequency of electromagnetic radiation. 
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Taking into consideration expressions (65) and (66) in formula (64), we ob-
tain 

( ) [ ], sin cos tm t a j aΨ = + .                  (67) 

Since time is discrete ( ) 01t n τ= − , the Moivre formula can be used; as a re-
sult, formula (67) will be written as 

( ) ( ) ( ), sin cosm t at j atΨ = + .                 (68) 

Taking into consideration the fact that only the real part of the complex func-
tion has physical meaning, with account of designation (62) formula (68) will be 
given by 

( ) 1, sinm t t
ε

 Ψ =  
 

.                     (69) 

To pass from formula (69) to the wave-particle duality, it is necessary to use 
the de Broglie formula 

h h
p mV

λ = = .8                       (70) 

Using formulas (70) and (69), the mass of an elementary particle can be elim-
inated. Replacing it with the speed of that particle and determining the mass 

hm
Vλ

=  from (70) and substituting it in formula (69) we will have 

( ) 02, sin sinV t t t
V V

ω
λ

  π
Ψ = =      

,                (71) 

where 0
2ω
λ

=
π  is the angular frequency. 

Since for small values   we have sin ≈ 
, formula (71) can be given in two 

expressions 

( ) 0, sinV t t
V
ω Ψ =  
 

,                     (71a) 

( ) 0,V t t
V
ω

Ψ = .                       (72) 

Formula (71a) corresponds to the wave motion of the particle, and formula 
(72) to corpuscular motion. So, the motion of an elementary particle can be 
viewed from two positions: corpuscles and waves. 

10. Gravitational Wave Model 

Although the existence of gravitational waves was predicted by the general 
theory of relativity, their detection was possible only after a hundred years. 

In the mid-seventies of the last century, the problem of indirect detection of 
gravitational waves was solved in [7]. In the article, the probabilistic (correla-
tion) relationship between the earthquakes and flares passing through the solar 

 

 

8 λ —is the wavelength of the elementary particle; V—the velocity of an elementary particle; p—the 
impulse of an elementary particle. 
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chromosphere was proved. The studies presented in this work allows: 
1) To ascertain that gravitational waves as such exist; 
2) To ascertain that the gravitational waves consist of neutrinos as neutrinos 

freely pass through the Earth; 
3) To ascertain that the flares in the solar chromosphere show that gravita-

tional waves are composed of the matter, i.e. from neutrinos that have rest mass; 
4) To determine the velosity of gravitational wave υ ; since the distance from 

the earth to the sunis well known ( 715 10 kml = × ), the time t of flight of the 
neutrino cluster from the moment of the earthquake to the moment of the flares 

in the chromosphere, consequently, l
t

υ = . 

Thus, it becomes clear that the gravitational wave is associated with the trans-
fer of the matter in the form of a large aggregate of elementary particles of neu-
trino of the same type. 

The necessity for introduction of neutrinos was determined by the law of 
conservation of energy in the process of the β ÷ -decay of the atomic nuclei. W. 
Pauli suggested a hypothesis (in 1931-1932) about the existence of neutrinos. E. 
Fermi gave the name “neutrino” to the particle due to lack of charge and its very 
small dimensions. He also expressed the idea that the neutrino is not in a 
“ready-made form” in the nucleus of an atom, but in some way, it is instantly 
formed from the energy of the nucleus. 

Researchers of the composition of the cosmic rays reached the conclusion that 
all the ordinary matters in the Universe consist of two lightest leptons, an elec-
tron e and an electron neutrino ev 9 [3]. 

For 30 years after the discovery of neutrino, it was believed that this particle 
had zero rest mass. The papers published at that time considered that gravita-
tional waves carried energy and impulse, but they had nothing to do with the 
transfer of the matter [8] [9]. 

It became known to cosmology that the total mass of neutrinos in the Cosmos 
many times prevails the total mass of luminous objects and therefore the neu-
trino makes the main contribution to cosmic gravity [3]. 

Such an abundance of neutrinos in the Universe has created the prerequisites 
for creation of a new science—neutrino astronomy. Consequently, the detection 
of gravitational waves belongs to that science. 

Finally, the time came for direct detection of the gravitational wave: it oc-
curred on February 11, 2016, when two highly sensitive detectors of the LiGO 
gravitational observatory, located in Washington and state of Louisiana, simul-
taneously recorded the signal GW150914, lasting about 0.2 seconds. 

The above model of the wave function of an elementary particle located at the 
microlevel, can be used (formula (69)) for modeling the gravitational wave, since 
neutrino belongs to the class of elementary particles. Therefore, the gravitational 

 

 

9Further, the index e by ve will be omitted. In addition to the electron neutrino v, there exist τ-neutrinos 
and μ-neutrinos, but they are rare. We consider all neutrinos as three states of one particle. This is 
possible in the case when the laws of conservation of the lepton charges are violated. 
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wave model is given by the formula: 

( ), sin MM t t Ψ =  
 

,                     (73) 

where M, is the relativistic mass of the neutrino beam. The neutrino beam con-
sists of N-number of neutrinos of the same type; therefore, the relativistic mass 
of the neutrino beam is determined as follows 

1

N

i
i

M m Nm
=

= =∑ ,                      (74) 

where im , is the relativistic mass of one neutrino particle. The relativistic mass 
of one neutrino particle is determined according to the Lorentz transformation 

0
02

1

m
m m

c

µ
υ

= =
 −  
 

,                    (75) 

where 
2

1

1
c

µ
υ

=
 −  
 

 is a constant parameter depending on the neutrino ve-

locity, υ  is the velocity of neutrinos; 0m , the rest mass of the neutrino. 

Thus, the relativistic mass M of the neutrino beam is determined according to 
(74), taking into consideration the relativistic mass of the i-th particle (75): 

0M N mµ= . 

Since for a small value   we have sin ≈ 
, then for the detected signal, ac-

cording to formula (73), we obtain 

0.2M
=



. 

From this relation, only the relativistic mass of the neutrino beam can be de-
termined 

0.2M = 
. 

11. Result and Conclusions 

There is no lacky of the estimates about the difficulty of solving the Schrödinger 
equation. One of the estimates is that: “In most cases, solution of an equation is a 
difficult mathematical problem that cannot be solved using functions studied in 
mathematics [10].” However, it is never mentioned what the difficult problem of 
the solution consists in, and how it can be solved. Therefore, the author consid-
ers it priority to clarify the problem of solving the Schrödinger equation and 
eliminate it. 

Thus, the Schrödinger equation, mapped onto the microlevel of the matter, 
allows solving the problems known from the heuristic considerations or expe-
rimental results. And in regard to gravitational waves as L. Brillouin’s expres-
sion is prophetic: “Nothing confirms that gravitational waves cannot represent 
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Ψ-waves of quantum mechanics. Each particle has its own Ψ-wave and, thanks 
to its mass, is a source of gravitational waves; then why we cannot suggest that 
Ψ-waves transmit gravitational interactions?” 

In present work following results were obtained: 
1) Was solved non-stationary Schrödinger equation. 
2) On the base of solving of non-statyonary Schrödinger equation obtained 

model of antiparticle. 
3) On the basis of solving of Schrödinger equation is onstructed mathematical 

model electric field at which appear real elementary particle. 
4) On the basis of solving of non-stationary Sredinger equation mathematical 

model of corpuscular-wave dualism was obtained. 
5) On the base of solving of non-stationary Schrödinger equation mathemati-

cal model of gravitation wave was received. 
In addition to obtaining new models, it is shown that these models are integral 

systems, since the implementation of the constancy of the potential field (U = 
const) entails the condition r = 1 (see page 10) which takes place (see footnote 5 
on page 9), if the variance is zero, i.e. 

This means that these models are integrity formations and are in a medium 
without dispersion. 

In the case of four-dimensional space, the constancy of the potential field is 
equivalent to its homogeneity and isotropy in all directions. 

This position takes place by determining the constancy of the potential field 
by creating a model of a gravitational wave. 
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