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Abstract 
The speckle noise is considered one of the main causes of degradation in ul-
trasound image quality. Many despeckling filters have been proposed, which 
are always making a trade-off between noise suppression and loss of informa-
tion. A class of despeckling methods based Non-Local Means (NLM) algo-
rithm is known to efficiently preserve the edges and all fine details of an im-
age while reducing the noise. The core idea of NLM filter is to estimate the 
denoised pixel by performing a weighted average of similar patches in the 
neighborhood around the noisy pixel. However, the presence of noise de-
grades the similarity measurement process of the NLM and thereby decreases 
its efficiency. In this work, a novel despeckling scheme for ultrasound images 
is proposed, by introducing the kernel principal component analysis (PCA) to 
the NLM and computing the similarity in a high dimension kernel PCA sub-
space. The kernel representation is robust to the presence of noise and it can 
give better performance even under high noisy conditions. And it takes into 
account higher-order statistics of the pixels which can lead to accurate edge 
preservation. In this work, a novel despeckling scheme for ultrasound images 
is proposed using the kernel PCA-NLM extended to speckle noise model. The 
visual inspection and image metrics will show that the proposed filter is very 
competitive with respect to one of state-of-the-art methods, the Optimized 
Bayesian Non Local Means filter (OBNLM), in terms of low contrast object 
detectability, speckle noise suppression, edge’s preservation. 
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1. Introduction 

The US has long been recognized as a powerful tool used in the diagnosis and 
evaluation of different clinical examinations. Speckle is most often considered a 
dominant source of noise in US imaging [1]. In medical ultrasound imaging, the 
speckle noise masks small differences in grey level and spoils its visual observa-
tion quality and diagnostic procedure. Also, the presence of speckle noise limits 
the accuracy of computer-assisted methods such as feature extraction, analysis, 
recognition, and quantitative measurements problematic and unreliable [2]. Ul-
trasound image despeckling is a very challenging task in US images, therefore 
considerable effort has been spent over the last few decades in developing tech-
niques to reduce the noise [3]. The speckle reduction aims to remove speckle noise 
as well as enhance image features and the detectability of small and low-contrast 
objects.  

One of the state-of-the-art denoising methods is the NLM algorithm proposed 
by Buades [4]. The core idea of NLM filter to restore the noisy image is based on 
performing a weighted average of the most similar pixels to the pixel to be de-
noised are given the largest weights incorporating the non-local information [5]. 
Practically, the similarity is computed between equally sized neighborhoods around 
the pixels in consideration. These patches are more capable of capturing the image 
structures (e.g., texture) [6]. However, in the NLM filter as well as many denois-
ing techniques, the suppression of the noise starts to degrade when the noise lev-
el increase. The presence of noise generally increases the dissimilarity between 
image patches and hence degrades the matching performance. This eventually 
leads to decreases in the efficiency of the NLM filter.  

This work proposed modifications to the NLM method to handle the high 
speckle noise level in medical ultrasound imaging. The solution to this challenge 
is to design a robust and efficient NLM filter robust to presence of large noise. The 
question now becomes: how to determine the similarity weights in an optimal 
sense? Our key element is to design a high-performance NLM filter by improving 
the similarity computation between the image pixels, which is the core of the 
NLM algorithm.  

To address this problem, one of the approaches to deal with noisy data is to 
learn the representation of the free noise and the most informative structures of 
the data matrix. Luckily, one of the promising techniques of machine learning is 
the kernel PCA, which can provide a solution to this problem. The kernel PCA 
can come up with a robust representation of the data in the high dimensional 
space. This work concerns the kernel PCA technique and can provide the ability 
to find the best image patch feature containing small noise, then calculate the 
similarities between patches around the pixels in that subspace. In this new space, 
the hidden information of the image patches due to the presence of the noise can 
be obvious. In sense of NLM, representing the image patch more concisely can 
help with their matching. These theoretical advantages of the kernel method 
motivated us to calculate similarity measurement in high dimensional space to 
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improve the efficiency of the NLM in the presence of large noise. This will be a 
super useful method for medical ultrasound images, due to the narrow dynamic 
range of the gray levels and the typically high level of noise which is introduced 
at all stages of image acquisition, especially the speckle noise [7]. To our know-
ledge, no research exists addressing the kernel PCA-NLM framework to derive a 
NLM filter for ultrasound despeckling. 

The initial formulation of the NLM filter relies on the assumption of an addi-
tive white Gaussian noise model (AWGN). However, the noise which degrades 
ultrasound images is signal-dependent and more complex. The distribution of 
noise in ultrasound images has been largely studied in the literature and many 
models have been proposed. A more general speckle noise model was first in-
troduced for ultrasound image denoising by Loupas et al. [8]. This model has 
been considered in many studies. Accordingly, given this model, in this paper we 
introduce a novel restoration scheme for US images, using the kernel PCA mo-
tivation for the NLM filter. The remainder of this paper is structured as follows. 
Section 2 covers the basic idea of the NLM in more detail, in addition to briefly 
reviewing different approaches to optimize the parameters of the NLM to im-
prove its quality or speed in the author’s own terms. Section 3 gives a brief over-
view of the main speckle reducing categories, providing a short description of 
the principle behind each family. Section 4 introduces the common speckle noise 
models. The theory underlying the OBNLM is presented in details in Section 5, 
which adapted to speckle noise and archived best despeckling results among the 
others.  

Section 6 explains the idea behind the learning representation theory. Section 
7 describes the implementation of the kernel PCA-NLM speckle reduction me-
thod. In addition to applications of the proposed de-speckle information about 
artificial phantom data and real ultrasound images and definitions of image 
quality metrics are presented in details. Section 8 shows the experimental prom-
ising results of the proposed method. The theoretical interpretations of the 
findings are due to the superiority of the proposed discussed in Section 9. Finally, 
a conclusion and further works are needed to bring an improvement to perfor-
mance of our speckle filter in Section 10. 

Appendix A contains the important martial, that we do not put in the body of 
the paper which is necessary to understand the data analysis. Appendix A con-
tains all the mathematical background of linear PCA, and procedure to compute 
the PCA. Lastly, the kernel PCA method which has been developed as a 
non-linear version of the PCA to extract feature in higher dimensional space is 
explained. 

2. The Non Local Means Definition and Parameters 

Given a discrete noisy image ( ){ }|v v i i= ∈Ω  the NLM scans the huge space of 
the image to enhance the redundancy, instead of update the pixel value as an av-
erage of its limited local four or eight neighborhood as local image filter. The 
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contribution of the all others pixels is weighted according to their similarities. 
Given these weights the estimated value NL(v)(i) is computed as a weighted av-
erage of all pixels in the image [9]. The noise goes down with square root of the 
number of times of averaging [10].  

( )( ) ( ) ( ),  
j

NL v i w i j v j
∈Ω

= ∑                    (1) 

NLM looks for similar pixels around and average them for denoising the cur-
rent pixel. To find the similar pixels, the Euclidean distance (d(i, j)) between 
pixelsat location i, j is computed. The d(i, j) does not depend only on the pixels 
v(i), and v(j) but also on its surrounding windows xi and xj, respectively. By us-
ing patch-wise representation the pixel is no longer is a single feature, but a 
more informative high dimensional data point. This window size should be large 
enough to be robust to the noise and at the same time to be able to preserve fine 
details. Indeed, the patch size reflects the scale of the “noise” compared to the 
image resolution [11].  

Based on theoretical grounding nonlocal philosophy, the search window (V) 
of radius (t) should be large enough to be robust to noise and at the same time to 
be able to take care of the details and fine structure [11]. In [12], the authors 
have noticed that, choosing locally the best search windows can control the fil-
tering results. Smaller search windows are not robust enough to noise and in 
case of strongly textured images [13]. As search window grows, there are slightly 
differences among the root mean square error (RMSE), but sharply increasing in 
the operation period. Thus, restricting the search of patches to a window is the 
common practice that, besides the speed-up, the result is visually better [5]. 
With a smaller search window size, the small features will be preserved [14].  

In the original NLM the Euclidean distance using a Gaussian weighted func-
tion, is given by: 

( ) ( ) ( ) ( ) 2
, dad i j G v i v jτ τ τ τ

Ω
= + − +∫               (2) 

Normally the dissimilarity of the patches is not a binary thing, and the dissi-
milarity of the patches is transformed into weighting function, that argues which 
patches are considered as a similar or a dissimilar. To achieve this weighting a 
Gaussian weighting function is used, which is defined as: 

( ) ( )
( )

2

,1, exp
d i j

w i j
Z i h

 
= − 

 
                  (3) 

where the parameter h controls the decay of the weighting function and Z(i) is a 
normalizing term defined by:  

( ) ( )
2

,
expj

d i j
Z i

h
 

= − 
 

∑                    (4) 

In the natural images there are some points which are more distinct and 
unique than the others, and do not appear anywhere. On the other hand there 
patches that have more close patches than others. So the normalizing term is 
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needed to count and guarantee the following conditions: 

( )
( )

0 , 1

, 1j

w i j

w i j

≤ ≤

=∑
                         (5) 

The exponential weighting function can be considered as a decreasing func-
tion depending on the similarity of the patches. If a particular local difference 
has a large magnitude, then the value of the w(i, j) will be small and therefore, 
that measurement will have little effect on the output image. The NLM uses ex-
ponential weighting function of the Euclidean distance between their arguments, 
which still assigns positive weights to dissimilar neighbourhoods. When weights 
are very small, the estimated pixel intensities can be severely biased due to many 
small contributions [15].  

The parameter h, namely the width of the exponential function, quantifies 
how fast the weights decay with increasing dissimilarity of respective patches. 
The larger the parameter the smoother the output, and the edges will be blurred, 
and on the other hand, choosing a very small h leads to noisy results identical to 
the input [11]. The h parameter is typically optimized manually in the NLM al-
gorithm [16]. The simplest and most common one is to set a single h for the 
whole image. The h parameter is an important parameter, and best value of h is 
roughly proportional to noise standard deviation [4].  

3. A View on Despeckle Filtering Methods 

Several different despeckle filtering methods are used based upon different ma-
thematical models of the phenomenon [17]. Speckle is considered to be a deter-
ministic process (not random) because when an object is imaged under the same 
operating conditions no changes in the speckle pattern occur. For these reasons, 
speckle cannot be reduced by signal averaging over time. Unlike the additive 
white Gaussian noise model adopted in most denoising methods, ultrasound 
imaging requires specific filters due to the signal dependent nature of the speckle 
intensity. In what follows, we give a brief overview on the main speckle reducing 
methods, providing a short description of the principle behind each family and 
some of its limitations are discussed. Filters that are used widely in both SAR 
and ultrasound imaging include the following categories: adaptive filters, ho-
momorphic, anisotropic diffusion, and wavelet filtering [18]. A number of adap-
tive speckle filters have been proposed, and they are widely used in US image 
restoration because they are easy to implement and control [19]. The most cited 
and applied filters in this category include the Lee [20] [21] [22], Frost [23], 
Kuan [24], and Gamma maximum a posterior (MAP) filters [25]. Many im-
provements of these classical filters have been proposed since [26]. The Lee and 
Frost filters have the same structure, whereas the Kuan filter is a generalization 
of the Lee filter. Both filters form the output image by computing the central 
pixel intensity inside a filter-moving window, which is calculated from the aver-
age intensity values of the pixels and a coefficient of variation inside the moving 
window [1]. In comparison with non-adaptive speckle filters (The best-known 
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non-adaptive filters are those based on the use of the mean or the median), 
adaptive speckle filters are more successful in preserving subtle image informa-
tion. Adaptive filters use weights that are dependent on the degree of speckle in 
the image, whereas non-adaptive filters use the same set of weights over the en-
tire image [19]. A homomorphic filtering is used in ultrasound to sharpen fea-
tures and flatten speckle variations in an image [1]. This form of filtering per-
forms image despeckling by computing the fast Fourier transform (FFT) of the 
logarithmic compressed image, applying a denoising homomorphic filter func-
tion, and then performing the inverse FFT of the image. The homomorphic filter 
function may be constructed either using a band-pass Butterworth or a 
high-boost Butterworth filter [27]. Speckle reduction filtering in the wavelet 
domain is based on the idea of the Daubechies and Symlet wavelet and on 
soft-thresholding denoising [1]. Wavelet filtering exploits the decomposition of 
the image into the wavelet basis where only the useful wavelet coefficients are 
utilized and zeroes out the other wavelet coefficients to despeckle the image. 
Different wavelet thresholding approaches can be used [28]. Diffusion filters fil-
ter perform contrast enhancement and remove noise from an image by modify-
ing the image via solving a PDE. The diffusion coefficient in these filters serves 
as the edge detector, producing high values at features and low values in homo-
geneous regions. So in the region where the edge is high, the diffusion will be 
suppressed and vice versa. Speckle reducing anisotropic diffusion (SRAD) in is 
formulated as an efficient anisotropic diffusion despeckling technique. The SRAD 
not only preserves edges but also enhances edges by inhibiting diffusion across 
edges and allowing diffusion on either side of the edge. SRAD is adaptive and 
does not utilize hard thresholds to alter performance in homogeneous regions or 
in regions near edges and small features. This technique was compared with the 
Frost filter Lee filter and homomorphic filtering and documented that aniso-
tropic diffusion performed better [29]. Unlike the adaptive speckle filters, all the 
considered PDE-based approaches produce a family of resulting images based 
on an iterative diffusion process. However, it has no rational criteria to select the 
optimal stop criteria. So it may has a limitation in retaining subtle features such 
as small cysts and lesions in ultrasound images Nevertheless, meaningful struc-
tural details are unfortunately removed during a large number of iterations [11] 
[19]. The previously mentioned approaches for speckle reduction are based on 
the so-called locally adaptive recovery paradigm [30]. Compared with them, the 
NLM algorithm relies on a L2-norm between two image patches instead of pixel 
comparison and the pattern redundancy is not restricted to be local. This strate-
gy leads to competitive results when compared to most of the state-of-the-art 
methods. However, the noise of ultrasound images cannot be considered as an 
AWGN. To address this problem, considering the Bayesian formulation [31] and 
the Loupas noise model [8] the OBNLM algorithm for speckle reduction in ul-
trasound images was proposed by Coupé et al. [32]. This formulation improve 
the denoising performances of the NLM filter for the speckle noise removing 
while preserving meaningful edges in compared to the compared the original 
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NLM filter, adaptive filter, and SRAD filter where no stop criterion is needed [32] 
[33]. Among the many existing despeckle methods to tackle image despeckle, we 
may quote OBNLM technique, which has provided satisfactory results among 
them.  

4. Noise Models 

The distribution of ultrasonic speckle noise has been largely studied for many 
years. A realistic modeling of noise statistics of ultrasound images cannot be eas-
ily exhibited, considering the complex image formation process. Speckle is de-
scribed as one of the more complex image noise models; unlike thermal and rea-
dout noise, it is non-Gaussian, object dependent, with its variance being propor-
tional to the local field intensity [34]. In the literature there are many models 
have been proposed, what follows is a briefly review of the main three models for 
the amplitude distribution of the backscattered ultrasound.  

4.1. The Additive Noise Model  

Noise reduction filters work under the assumption that the only degradation 
present in an image is additive Gaussian noise (ηa) [35] [36] then 

av u η= +                             (6) 

where:  
v is the recorded noisy image is the sum of the clean image u and ηa is the 

AWGN.  
Consider a discrete description of the, in term of the NLM, the expectation (E) 

of the Gaussian weighted Euclidean distance of the intensity grayscale vectors 
v(xi) and v(xj) can be written as: 

( ) ( ) 2

2,i j a
E v x v x−                        (7) 

The Euclidean distance measure is quite adapted to an additive white noise, 
which alters the distance between image patches, so the above equation can be 
written as: 

( ) ( ) 2 2

2,
2

ai j a
E u x u x ησ− +                     (8) 

where v(xi) and v(xj) are respectively, the original and noisy neighbourhoods and 
2
aη

σ  is the additive noise variance. Here, twice the amount of noise is presented 
assuming that the two neighbourhoods receive the same amount of noise. The 
Gaussian noise assumption is widely prevalent in the context of other noise 
model. Many methods dealing with Poisson noise rely on variance stabilization 
techniques as in [37] [38]. By using the Anscombe transform and treat the processed 
image as if it was corrupted by a Gaussian noise [39].  

4.2. Multiplicative Speckle Noise Model 

Clearly, the signal-dependent nature of the speckle must be taken into account 
to design an efficient speckle reduction filter. Jain et al. [40] [41] [42] have ex-
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plained that the speckle noise model for US signal at the output of the receiver 
demodulation module of the US imaging system may be approximated as mul-
tiplicative as 

m av uη η= +                           (9) 

where:  

mη  is the multiplicative noise. 
Since the effect of additive noise (such as sensor noise) is considerably small 

compared to that of multiplicative noise (coherent interfering), the (9) can be 
approximated by  

mv uη=                            (10) 

Due to the limited dynamic range of commercial display monitors, ultrasound 
imaging systems compress the large echo signal to fit in the display range [1] [2]. 
Using the mathematical logarithmic transformation, the multiplicative speckle 
noise model in (10) can be converted into an additive Gaussian noise [7].  

( ) ( ) ( )log log log mv u η= +                   (11) 

The (11) can also be written as  
l l l

af g η= +                         (12) 

where: 
, ,l l l

av u η  are the observed noisy image, clean image, and noise component 
after the logarithmic transformation, respectively. 

There exists a class of approaches for additive noise reduction that use a mul-
tiplicative model of speckled image formation and take advantage that the loga-
rithm compression of ultrasound images transforms the speckle into an additive 
Gaussian noise, such as the homomorphic despeckling methods in the wavelet 
denoising domain [27] [43] [44] [45] [46]. Furthermore, the assumption that the 
reconstructed positron emission tomography (PET) images are corrupted by the 
Gaussian noise is widely prevalent [47]. Many methods dealing with Poisson 
noise use the Anscombe transform to treat the processed image as if it was cor-
rupted by AWGN noise [39]. 

4.3. Rayleigh Distribution Model 

Wagner et al. [48] [49] [50] [51] have showed that the histogram of amplitudes 
within the resolution cells of the envelope-detected radio frequency (RF) signal 
backscattered from a uniform area with a sufficiently high scatterer density has a 
Rayleigh distribution with mean proportional to the standard deviation.  

( )( ) ( ) ( )2, ,
, exp

2RL

v i j v i j
P v i j

ψ ψ

 −
 =
 
 

               (13) 

where v(i, j) is a pixel intensity at the i, j-th position, and ψ is the shape parame-
ter of PRL related to the mean square scattering amplitude of the tissue in the 
scattering medium [48]. 
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The logarithmical transformation may also modify the characteristics of the 
Rayleigh speckle noise model. As a result, the speckle noise becomes very close 
to white Gaussian noise corresponding the uncompressed Rayleigh [2] [42] [52].  

4.4. General Signal-Dependent Noise Model 

Loupas et al. [8] suggested that the linear relationship between the mean and the 
standard deviation valid for Rayleigh distributed speckle no longer holds for ul-
trasound images. However, the linear relation between the mean and the variance 
ensures that speckle specifications of these images fit the signal-dependent noise 
model of the form: 

av u vη= +                         (14) 

Loupas et al. have shown that their model offered a better fitting to data than 
the multiplicative model or the Rayleigh model and contrary to the white Gaus-
sian noise model. The Loupas noise model is image-dependent. The following 
subsections details the OBNLM algorithm which utilized this speckle noise 
model. 

5. Optimized Bayesian NL-Means Filter (OBNLM) 

In this section, the OBNLM is presented. In [31] [53], a Bayesian formulation of 
the NLM filter is used to derive a new speckle filter. The Kervrann [31] genera-
lized NLM filter is called Bayesian NLM mean (BNL) filter. In [14], an algorithm 
based on maximum likelihood estimation (MLE) which allows one to deal with 
noises other than Gaussian, e.g., speckle noise was introduced. The Bayesian 
NLM framework is based on the probabilistic intensity similarity measure, in 
contrast to the conventional NLM relies on L2 norm distance metrics which have 
a fixed structure [31] [53]. This metrics is formulated as the likelihood that the 
noise distributions of the two intensity observations are the same and corres-
pond to the same scene radiance value. It considers how intensities fluctuate in 
the imaging system by embedding the effect of noise. This approach considered 
the effect the image noise distributions as a source of useful information, rather 
than attempting to remove the noise. Such that the similarity is high when the 
two intensities are both well within the noise distributions of certain true inten-
sities, and become significantly lower otherwise. The optimal Bayesian estimator 
for the v(i) can be written as 

( )
( ) ( ) ( )( ) ( )( )

( ) ( )( ) ( )( )
1

1

|

|

m
j

opt m
j

v j p v i v j p v j
u v i

p v i v j p v j
=

=

=
∑
∑

�              (15) 

Using the Bayes’s and marginalization rules, and p(v(i)|v(j)) and p(v(i)) re-
spectively denote the distribution of v(i)|v(j) and prior distribution of v(i). 

Compared to the classical NLM formulation, the OBNLM introduced the 
blockwise implementation and a new statistical distance for patch comparison 
(Pearson distance) for weight computation [32]. The restoration of a block v(Bi) 
based on a Bayesian NLM scheme is given by 
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( )( )
( ) ( )( ) ( )( ) ( )

( ) ( )( ) ( )( )
1

1

1 |

1 |

i

i

V

i j j j
ji

i V

i j j
ji

p v B v B p v B v B
V

NL v B
p v B v B p v B

V

=

=

=
∑

∑
        (16) 

where:  
Vi is the search window centerd on the pixel i. 
Bi is the block centered on the pixel i. 
v(Bi) is the vector containing the intensities of the block Bi. 
NL(v)(Bi) is the vector containing the restored value of Bi. 
p(v(Bi)|u(Bj)) and p(v(Bj)) respectively denote denotes the distribution of v(Bi) 

conditionally to v(Bj) and the prior distribution of v(Bj). 
In the case of a white Gaussian noise, the likelihood p(u(Bi)|u(Bj)) is propor-

tional to  

( ) ( )( ) ( ) ( )
2| exp ki j

i j

v B v B
p v B v B

h

 −
 ∝ −  
 

           (17) 

The likelihood can be factorized for a block considers the noise model (7) is 
obtained by: 

( ) ( )( ) ( ) ( )
( ) 2

| exp
i j

i j
j

v B v B
p v B v B

v B h

 −
 ∝ −
 
 

          (18) 

So instead of the usual L2-norm, the Pearson distance defined as  

( ) ( )( ) ( ) ( )( )
( )

2
2 i j

P i j
j

v B v B
d v B v B

v B

−
− =              (19) 

This similarity measure is better for US images than the L2-norm because it 
takes into account the impact of the nature of the speckle noise in an ultrasound 
image. 

6. The Representation Learning Theory 

The performance of machine learning methods is heavily influenced by the dif-
ferent forms of data representation on which they are applied [54] [55]. There 
are many applications of representation learning algorithms such as speech rec-
ognition, object recognition, visualization, data compression and natural lan-
guage processing. We refer the reader to [54] for extensive details about these 
learning methods. PCA is the most widely used technique for dimension reduc-
tion. it is an unsupervised linear method used to learn a lower representation of 
the data by a linear projection of the input data features onto a set of new fea-
tures which are a linear function of all of the original features [56] [57] [58]. 
PCA is useful for data visualization tasks, by projecting a very large dimensional 
data (for example gene expression) onto a lower dimensional space that can be 
more readily and quickly visualize how these data are related to each other and 
get better sense of what data looks like [59] [60]. The PCA transform can be 
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used for image compression without losing important properties of the data [61] 
[62]. Lower dimensional framework is used in face recognition to transform the 
image into what is called Eigen-faces. Using fewer Eigen images is computation-
al efficiency and provides better ability to learn and recognize new faces [63]. 
The image (e.g., face photo), can be represented as a linear combination of basis 
images. The number of basis images can be much smaller than the original col-
lection. By using few PC’s, we can capture more than 50% of the variance in the 
image. This presentation is very useful in face recognition algorithm [63]. 

In 1965, G. Golub and W. Kahan introduced the singular value decomposition 
(SVD) as a decomposition technique for calculating the singular values, pseu-
do-inverse and rank of a matrix [64]. PCA can be efficiently computed via the 
SVD of the data matrix. In case of having large matrix, the SVD is an efficient, 
numerically stable and fast technique to solve the eigenvalue problem by matrix 
factorization [65]. Frequently use low-rank approximation of the data matrix is 
considered as noise reduction process. By discarding the later PCs which are 
treated as noise factors and projecting back the dataset into the original observa-
tion space will remove the noise. The latent structure of the data might be 
masked by noisy dimensions. In image denoising, it may be an efficient way to 
transform the local image patches in different representation coefficients. The 
idea behind this strategy is to decompose the local image patches, select the clean 
coefficients, and then reconstruct them. Several authors have shown that to de-
compose an image in wavelet base is superior for image denoising [66] [67] [68] 
[69] [70]. The independent components (ICs) was applied on the on local image 
patches to derive locally basis set [71]. The free noise structures of input data can 
be obtained by preserving the most informative features and removing the out-
liers which are associated with the least important dimensions [72]. The PCA 
can be used to find the less noise pre-image of the image patch in the (Eigen) 
space, and then calculate similarity measurement of the NLM filter in low-
er-dimensional space. It has shown in [73], that PCA combined with patches was 
an efficient filter for images corrupted by Poisson noise and outperformed the 
Poisson-NLM method. Based on PCA-NLM, two authors [16] [74] have pro-
posed simultaneously similar idea for Gaussian noise reduction. They suggested 
firstly projecting the noisy patch to the most important PC’s first and then 
computing the similarity. Their hypothesis has significantly improved the de-
noising effect and the computation cost. Furthermore, computing distances in 
few dimensions and eliminating fraction of patches around the pixel under 
processing using the L2 of the rank-1 approximations has accelerated the NLM 
algorithm [16]. However, the PCA is not always good enough for learning re-
presentation of the data. The PCA is purely second order representation and 
processing of the data, but it is observed that more information in the images is 
in the higher order of the data. In other words, the Eigen space only utilizes the 
gray scale information variance that may weakly related to the properties of the 
natural data. However, presence of noise and distortion affects the calculated 
principal components and hence the overall performance of SVD [75] [76]. Our 
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work [77] [78] have showed, that the SVD dimension reduction is powerful only 
when images are contaminated by small amounts of noise. However, when the 
noise level is particularly high, the treatment relying on linear PCA transform is 
no longer relevant. The kernel method is one of the promising methods, which 
have attracted significant attention in the area of the machine learning. It is like 
opposite way to the dimension reduction approach, that instead of small number 
of PCs the kernel method can get benefit from the more features. It comes up 
with a different idea for similarity measurement in high dimensional space, 
helps in keeping the similar thing together and dissimilar thing apart. Appendix 
A details the theory of the kernel method. It is first appeared in the form of sup-
port vector machine (SVM) which is one of the powerful binary classification 
algorithms. For non-linearly separable data, the kernel method helps researchers 
to build an efficient SVM linear classifier in high-dimensional feature space [79]. 
The data points become linearly separable in the higher dimensional space, 
which is not the case in the lower-dimensional space. In the original space, the 
higher-dimensional data points are not visualized, but they are projected down 
to the lower dimensional space. The kernel technique is not restricted only to 
SVM. However various algorithms in machine learning can be enhanced with 
the use of the kernel method. In face recognition, the kernel technique is usually 
used to transform the image into what is called Eigen-faces in order to enhance 
the matching process and improving the ability to learn to recognize new faces 
[80]. Kernel PCA is a nonlinear version for computing singular vectors in high 
dimensional space [81]. That, the kernel PCA can come with a better encoding 
of the information. Furthermore it is more robust to the presence of the noise 
than the linear PCA [77] [82] [83] [84]. So, the kernel method representation can 
produce a robust subspace to the presence of the noise as well a rich informative 
encoding of the image patches. As it will be shown in the following sections, this 
approach will highlight similarities between different patches, which are the core 
of the NLM algorithm. Therefore, increase the performance of NLM algorithm.  

7. Material and Methods  

This section presents a detailed description of the implementation of the pro-
posed speckle noise reduction scheme. The core of the proposed method con-
centrates on finding the right representation of the patches which will highlight 
the matching process of the noisy image patches. Thus, better denoising perfor-
mance can be obtained when similarity between pixels is computed in free noise 
space. The nonlinear projective approach produced by kernel PCA can remove 
the difficulties faces the NLM in the presence of large noise by using an appro-
priate kernel function and represent image data to a relatively high dimensional 
space. As it will be shown in the result section, this approach removes the 
speckle noise and enhanced the contrast of the input US images. The informa-
tion about the US images used in the experiment, and the quality image metrics 
is presented below. Our main methodology involves the comparison of results 
produced by the OBNLM and kernel PCA-NLM. 
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7.1. Details Kernel PCA-NLM Method 

In this framework, we focus on obtaining the most compact patch representa-
tions in a higher-dimensional manifold. Then calculating the similarity of the 
image patches in that space, which consequently contribute to effective NLM 
denoising effect. The detailed kernel PCA-NLM can be described as follows: 

• All the NLM parameters (f, t, h), in addition to the width of Gaussian kernel 
(hk) are optimized empirically to achieve the best despeckling results.  

• Stack all the pixels of each patch in a single row vector 1 n
ix ×∈ , where 

( ) ( )2 1 2 1n f f= + × +  centered on pixel i. And then construct the database ma-
trix m nX ×∈  from the number (m) of the patches vectors in the search win-
dow. Where numbers of columns in X are the numbers of pixels in the image 
patch and numbers of rows in X are the numbers all patches in the search win-
dow. 

• Construct the kernel matrix m mK R ×∈  by computing the distance between 
all the pairs of features in the X matrix using the RBF which the most popular 
kernel function, andcloses to our work for what is the similarity could be, since it 
decays with L2 norm [85]. The size of the Kij scales with the square of the number 
of patches in the search window [86]. So the kernel SVD can extract a larger 
number of principal components that can exceed the data dimensionality [87].  

• Compute the kernel SVD and get the direction of the singular vectors that 
learn the higher-dimensional space 

• Perform SVD on the Kij matrix using (A-1) to find an adaptive basis in the 
projection data set. See Appendix A which describes the SVD in more details.  

• Project K into that high dimensional space using (19) to get the coordinates 
of rows of Kij in the space of singular vectors. 

z z z zX V U= Σ                        (20) 

• A more general speckle noise model was first introduced for ultrasound im-
age denoising by Loupas et al. [8]. This model and has been considered in many 
studies. This model is particularly suitable for our purpose, since the presented 
despeckle filter works on the images as displayed by the US machine, rather than 
the envelope detected echo signal. In particular, this model employed to imple-
ment the relevant solution scheme, which reflects the nature of noise distribution 
in the ultrasound images. At this stage, given the speckle noise model, it now 
becomes possible to devise the kernel PCA motivation for NLM filter for speckle 
reduction in US imaging. Calculating the weights of image patches based on the 
Euclidean distance in case of the noise is correlated decreases the NLM denoising 
performance as it was proved in [22]. Clearly, the similarity weights should be 
adapted to the image in order to achieve maximal improvement. Accordingly, at 
this stage, we apply the NLM method and calculate distances in high dimension-
al space. By taking the speckle noise statistics into account a robust similarity 
computation can be obtained. We follow exactly the same NLM routine except 
that the Euclidean metric in (7) is replaced by  

https://doi.org/10.4236/oalib.1108618


M. E. Salih et al. 
 

 

DOI: 10.4236/oalib.1108618 14 Open Access Library Journal 
 

( )
( )( ) ( )( )

2

2

1 z zv x i v x j
v j h
−

−                (21) 

• where: v(xz(i)) is the projections of xi onto the higher-dimensional space (z) 
using the kernel PCA. Where: v(xz(i)) is the projections of v(xi)onto the d-di- 
mensional space using the SVD. The weights v(xz(i)) are just the corresponding 
row in U multiplied by diagonal elements of Σ, see the Appendix A. The v(xz(i)) 
representation is insensitive noise and preserve the patch structure as well. Some 
of the patches in the X matrix are similar to v(xz(i)), patch in the center of the 
neighborhood, but a number of different patches as well. The closest match of 
other patches to the v(xz(i)) in the neighborhood will have high weight.  

What follows is information about the US images used in the experiment, and 
definitions of quality metrics to quantifying the performance of the proposed 
despeckle and the OBNLM schemes. 

7.2. Details of the OBNLM Method 

The parameters values of the OBNLM (such as search area size, patch size and 
smoothing parameter) were set as [32].  

7.3. Data Set for Testing the Proposed De-Speckle Method and the  
SRAD 

7.3.1. Synthetic US Image 
A cyst phantom is used in the experiments as it is shown in Figure 1(a). The 
synthetic ultrasound image is simulated by using FIELD II software [88]. The 
cyst contains five high scattering target points, five echoic regions (has white 
color on ultrasound) of six, five, four, three, two mm diameter, and five anechoic 
(i.e., it absorbs all the sound, and it appears black) of six, five, four, three, two 
mm diameter water-filled cysts. The size of the original phantom image is large 
(672 × 504); instead, a smaller size (256 × 256) is used to speed up the denoising 
process.  

 

 
(a) 
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(b) 

 
(c) 

 
(d) 

Figure 1. Despeckling results for Cyst Phantom: (a) The simulated cyst phantom. (b) The 
zoomed rectangular white boxes indicate ROIs used to calculate ENL and CNR. (c) 
De-speckled image Using SRAD; (d) De-speckled image using kernel PCA-NLM. 

7.3.2. Real Ultrasound Images 
Four arbitrary real US images (US001, US002, US003, and US004) are used in 
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the experiments (Figures 2-5). The sizes of the images are: 287 × 259, 290 × 233, 
381 × 301, and 455 × 345, respectively. The US002 is carotid artery cross-sectional 
US image; see Figure 3(a). The US001, US003, US004 are liver US images, as 
they is shown in Figure 2(a), Figure 4(a) and Figure 5(a). 

 

 
(a) 

 
(b) 

 
(c) 
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(d) 

 
(e) 

 
(f) 

Figure 2. The original US001 image and the results of application of the two 
de-speckle filters are given in (a)-(c). The corresponding HOs are given in (d)-(f). 
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(a) 

 
(b) 

 
(c) 
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(d) 

Figure 3. The original US002 image and the results of application of the two de-speckle 
filters are given in (a)-(c). The corresponding LPs are given in (d). 

 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Figure 4. The original US003 image and the results of application of the two de-speckle 
filters are given in (a)-(c). The corresponding LPs are given in (d).  

 

 
(a) 
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(b) 

 
(c) 

 
(d) 

Figure 5. The original US004 image and the results of application of the two de-speckle 
filters are given in (a)-(c). The corresponding LPs are given in (d). 
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7.4. Image Quality Metrics 

Usually speckle reduction methods require a trade-off between noise reduction 
and edge preservation. All the speckle reduction methods are known as edge 
preserving [29]. Since of the edges are important information used to make the 
objects in the ultrasound image accessible for the diagnosis and evaluation pur-
poses. In ultrasound imaging the noise-free reference image is not known, a 
comparison of images before and after processing is often the best way to eva-
luate performance of a filtering algorithm. Here, for the quantitative and the 
visual comparisons, three criteria, including the ENL, the CNR, and the visual 
inspection are used as no-reference metric. Each criterion reflects one aspect of 
the despeckling purpose, and definition of these measures is defined in detail 
below. 

7.4.1. Equivalent Number of Looks  
The smoothness of a homogeneous region of an ultrasound image can be eva-
luated by ENL, which it is computed as:  

2

2ENL H

H

µ
σ
 

=  
 

                       (22) 

where 2
Hµ  and 2

Hσ  are the mean and variance of the uniform region [89]. The 
higher ENL value is corresponding to get lowest 2

Hσ  and to preserve 2
Hµ . In 

other words, ENL usually increases with noise reduction. 

7.4.2. Contrast-to-Noise-Ratio  
The CNR or lesion signal-to-noise-ratio is a quantitative measure of the contrast 
between an image object (for example, lesion or cyst) and an area of background 
speckle noise [89] [90], and it is defined by: 

2 2
CNR o s

o s

µ µ

σ σ

−
=

+
                     (23) 

where: μo and 2
oσ  are the mean and variance of intensities of pixels of the ob-

ject; μs and 2
sσ  are the mean and variance of intensities of pixels in a speckle 

noise surrounding the image object. A larger CNR correlated with the better 
contrast. 

7.4.3. Visual Evaluation 
The visual evaluation is defined as the ability of an expert to extract useful ana-
tomical features from an ultrasound image, and it is subjective to the observer’s 
variability [1]. The evaluation is carried out in terms of a histogram overlap 
(HO) and line profile (LP) of selected pixels. The image histogram shows the 
gray-scale intensity values distribution of pixels of the ultrasound image. Ideally, 
for superior contrast, there is no overlap present between the histogram two re-
gions of different gray scale distributions [91]. The LP is used as a tool to com-
pare the ability of the de-speckle filters to smooth the noise and show the details 
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of the small or large clearly observable regions in the ultrasound images. The re-
gion that shows distinct boundaries (large details) is often looked as being sharp. 
On the other hand, the presence of blur produces images of low contrast [92]. 

8. Experimental Results 

In this section, we evaluate the performance of our speckle reduction and the 
OBNLM filters on the data set, and the reasons for these findings are presented. 
All the experiments and visualization of the results are implemented using 
MATLAB software (Math works). 

8.1. Cyst Phantom Results 

Here, we propose to compare different filters with experiments on synthetic data. 
In addition to the visual observation, the CNR and ENL are chosen for objective 
comparisons. The despeckled cyst images of the two filters are shown in Figures 
1(c)-(d). The visual inspection shows that, the proposed filter remove most 
speckle in the homogenous region and highlight important features of the image, 
and even the small objects like the target points of the cyst phantom. Such details 
are lost (cannot be visualized) in the despeckled image using the OBNLM, see 
Figure 1(c). 

To calculate the ENL, and the CNR the third anechoic cyst from top and its 
three surrounding normal tissue areas in the background are selected as the re-
gion of interests (ROIs), which are indicted by the white boxes as it is shown in 
Figure 1(b). The ENL values are averaged over the three homogeneous ROIs on 
the background. Table 1 shows the ENL and CNR values obtained for each me-
thod. The ENL quantifies the effectiveness of the speckle suppression perfor-
mance. The results demonstrate that the two methods remove the speckle well 
and greatly increased original ENL of original images. But the kernel PCA-NLM 
still holds high ENL values, surpassing the OBNLM method. The CNR is a me-
tric of contrast preservation performances. The CNR increases are obtained after 
filtering using kernel PCA-NLM and OBNLM, which indicates the filtered im-
ages have more contrast with the original one. But the proposed filter has the 
higher CNR value. We can conclude that our method offers better output in 
terms of ENL and CNR. These results collaborate with the visual observation 
mentioned before.  

 
Table 1. The Performance of the two de-speckling filters on the cyst phantom in terms of 
ENL, and CNR. 

Cyst 
ENL CNR 

14.4916 6.3188 

OBNL 32.5983 11.4030 

Kernel PCA-NLM 34.6456 13.6482 
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8.2. Real Ultrasound Images 

Figure 2(a) shows the HO of the two distinct regions (enclosed by a white box) 
of the US001 image. Figure 2(c) and Figure 2(e) show the visual denoising re-
sults of the OBNLM and the kernel PCA-NLM filters on the US001 image, re-
spectively. It is clearly both despeckling methods reduce the histogram overlap-
ping and hence improve the image contrast as it is shown in Figure 2(d) and 
Figure 2(f). However, the kernel PCA-NLM enhances the overall contrast more. 
Figures 3(b)-5(b) show the denoising results of the OBNLM filter on the US002, 
US003 and US004 images, respectively. The despeckle output of these images, 
using the kernel PCA-NLM method, are shown in Figures 3(c)-5(c). It is ob-
viously both despeckling methods reduce the speckle noise and improve the im-
age contrast. In the OBNLM output, only the sharper boundaries are preserved, 
while the weak edges are blurred, that better visual result of the US images details 
are as assessed by our method. On the other hand, much better visualization of 
the US images details is obtained with the proposed method. It is obviously. 
From the top to bottom through the images, a white vertical line indicates the 
position where the intensity profile is taken. The LPs of the original, the des-
peckled ultrasound images applying the OBNLM and the proposed filter are 
plotted using black dashed, and blue and red solid line styles, respectively. The 
kernel PCA-NLM strategy achieved competitive results. The LPs of the US002, 
US003 and US004 US images are given in Figures 3(d)-5(d), respectively. The 
LPs show that the two filters produce smoother gray-value line profiles and pre-
serve the boundaries. But the OBNLM profile is a lesser sharp, in some region 
along the white line, in compare to the corresponding profile using the proposed 
method. In other words, in some areas smallest details are visualized for LPs of 
the OBNLM. In contrast, the LPs associated with the kernel PCA-NLM show 
much greater details. 

9. Discussions 

The above experimental results have proved that the two filters were an efficient 
despeckle way, while it is not surprising, the kernel PCA-NLM essentially achieved 
the best despeckling effect. It was able to reduce noise in a homogenous region 
and enhanced the US the image contrast. The kernel PCA obtained better visual 
inspection as well as higher ENL and CNR values surpassing the OBNLM method 
which it still damaged image details, especially, the tiny boundary. In this section, 
the causes of the finding of all images used in experiments are discussed. 

The OBNLM despeckle algorithm was considered as one of the state-of-the-art 
despeckling methods based on Bayesian estimator framework to derive the NLM 
method. The OBNLM filter is based on clever idea which takes the noise proper-
ties into account to calculate the similarity between the image patches using the 
Bayesian frame. The probabilistic similarity measure implemented in the in the 
OBNLM filter better indicate the confidence of a match than the L2 norm, in a 
meaningful way, that leads to improve performance of NLM filter. Furthermore, 
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it employed a new statistical distance measure which considers the impact of the 
noise as a relevant criterion for patch comparison. The main drawback of the 
NLM filter that it determines the pixel similarity based on the noisy image patches 
thereby leading to inaccurate filtering. This drawback existed in OBNLM filter 
which made a strong assumption that noisy observation itself provides a good 
approximation on the true intensity signal [93]. Since, the weights are computed 
directly based on the observed noisy image patches, which can deviate much 
from the true value, As a result, the weights become sensitive to the noise and 
lessens the efficiency of the OBNLM. 

It is not surprising the kernel PCA-NLM achieved the best despeckling per-
formance, as we have mentioned previously, that minimizing the L2 cost im-
proves NLM algorithm performance. The similarity computation operation in 
the NLM filters is enhanced with the more cleanly and informative representa-
tion of the image patch in the higher dimensional space. The kernel SVD can ex-
tract a larger number of principal components that can exceed the data dimen-
sionality [86] [87]. In term of NLM, the high-dimensional feature induced by 
kernel PCA, the number of dimensions is equal to the number of patches in the 
neighbourhood, which can be quite large than the original patch size. This high-
er dimensional representation helps in keeping the similar thing together and 
dissimilar thing apart in the nonlinear subspaces of produced by the kernel PCA. 
This is similarly to what we mention in section 6 that the kernel method en-
hances the classification performance of the SVM algorithm by creating the ker-
nel based SVM classifier [79].  

The higher representation produced by the kernel PCA is robustness to the 
presence of noise. When adding more PCs using the kernel PCA, more reliable 
feature is reconstructed without getting the noise yet. Since, there are many 
structures choosing from many PCs [94].  

The higher dimensional encoding provided by the kernel concept gives the 
potential of getting clean features and removing some of the eigenvectors where 
the noisy part of data resides [83].  

Since, the kernel space produces more features sitting on their correct posi-
tions and provides less noisy features. This higher-dimensional space provided 
by the kernel PCA is similar to what is called super resolution idea [95], where 
the smear structures like edges or corners within the low resolution image be-
come sharper in the high-resolution image. That, the kernel method scales up of 
the features dimension and lead to produce a high-resolution image from a blurred 
one [86]. This is another interpretation of why the higher dimensional feature 
space since lead to a better denoising. The kernel method is capable of capturing 
part of the higher-order statistics which are particularly important for encoding 
image structure [86] [96] [97]. The polynomial kernel is another popular kernel 
[98], and the high dimensional space by this kernel may contain all possible in-
teractions of among the pixels of different orders as it is shown in (A-24). In 
other words,, the kernel representation also can take into accounts higher-order 
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statistics of the pixels like that the relation between the more than two pixels in 
edges or curves [99]. All that we have mentioned before are our interpretations 
of why the kernel PCA-NLM have provided a better speckle noise reduction and 
enhanced identification of the edges in compare to the OBNLM method. 

10. Conclusions and Future Works 

In this paper, an extension of the NLM is proposed for US images degraded by 
speckle noise. Our novel restoration scheme for US images is guided by learning 
a good encode of the image patches using the kernel PCA-NLM adapted to the 
statistics of speckle noise. The similarity computation operation in the NLM fil-
ters is enhanced with the informative representation of the image using Kernel 
PCA. Experiments were carried out on phantom data and real US images. In 
comparison to the OBNLM technique, the experimental results have shown that 
the proposed filter brought significant improvement in terms of ENL, and CNR 
and visual inspection.  

Although the proposed method performs better than the OBNLM techniques, 
the scope for improvement still exists. What follows are some suggestions to im-
prove the quality of this work. Capturing the higher-order statistics for the image 
processing by the kernel method is more efficient and accurate but has computa-
tional complexity. Since kernel PCA requires storing and manipulating the kernel 
matrix the size of which is the square of the number of training patches in the 
search window. So in future work, modifications may be incorporated to reduce 
the computation time. To make the algorithm faster methods such as the Kernel 
Hebbian Algorithm (KHA) can be used [86] [100]. Enriching our understanding 
of higher-order statistics, using the kernel method, can help in learning a better 
expressive image representation. The same study can be also conducted by inves-
tigating different kernel representations which can give a better representation of 
the pattern of the images, and hence improve the performance of the proposed 
denoising method.  
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Appendix A. Mathematical Background 

The PCA is the main linear technique for dimension reduction, which is used in 
various areas applications such as data visualization and image compression, 
noise reduction [101]. The philosophy of data reduction, given data points in 
n-dimensional space is to project the data point into lower dimensional space 
while preserving as much information as possible. The SVD is an efficient algo-
rithm to perform the PCA. It is different from eigenvector calculating thing, and 
it is available in Matlab. Here, we detail the principles of SVD. Then, we give the 
definition of the kernel method and how to extract the significant dimensions of 
the data set. Finally, we describe how to calculate the kernel SVD high dimen-
sional feature using the kernel theory. 

A.1. Singular Value Decomposition 

In this section, steps of how to calculate the SVD are presented. Each step is ex-
pressed mathematically, in addition to the corresponding Matlab command.  

Given a database { }1, , mX x x= � , consist of m ix  features, (for example, a 
concatenation of 

Given matrix m nX ×∈ , SVD consist of the product of three matrices Σ, U, 
and V:  

TX U V= Σ                         (A-1) 

where: 
n n×Σ∈  is a diagonal matrix with positive singular values iσ  in the diagon-

al, regard that singular values go form largest to smallest: 1 2 nσ σ σ> > >� . 
m nU ×∈  is the left eigenvector matrix, and it has an orthonormal columns. 

T m nV ×∈  is the right eigenvector matrix, and has an orthonormal rows. 
XTX and XXT are symmetric matrices by definition 

( ) TTT T T TXX X X X X= =                    (A-2) 

Computing the eigenvector of XXT and XTX and is the way to estimate U, and 
V matrices using the definition of SVD in, respectively. While Σ is constructed 
by estimating the positive square roots of the of the nonzero eigenvalues of XTX, 
or XXT 

( ) ( )TTT T T T T T T T T 2 TX X U V U V V U U V V U U V V V= Σ Σ = Σ Σ = Σ Σ = Σ  (A-3) 

( ) ( )TTT T T T T T T T T 2 TXX U V U V U V V U U V V U U U= Σ Σ = Σ Σ = Σ Σ = Σ  (A-4) 

We have m singular vectors (instead of eigenvector). The left singular vectors 
have size m, and the right singular vector have size n.  

One of the SVD properties is to produce orthogonal matrices. V is orthogonal, 
i.e. T 1 T,V V VV I−= = , where I is the identity matrix. But, it is not true that 

TUU I= , and so we do not called U an orthogonal matrix. Some code adds 
some extra artificial columns to U matrix and zeroes Σ matrix for dimension 
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match. This it does by a process called (Gram–Schmidt process), then U will 
have orthonormal columns, and UTU is just the identity matrix. Σ is a diagonal 
matrix, thus it has zeroes off diagonal everywhere. It is n × n (where n is the 
original dimension of the data). Each value in Σ is an eigenvalue for one of the 
eigenvectors.  

In summary, the SVD essentially give the PC’s in VT, and it gives you each of 
their eigenvalues in Σ Most of implementation of SVD actually goes to the extra 
step of sorting the rows of the VT and Σ, so the eigenvectors values goes form 
largest to smallest.  

U, Σ, and V matrices are generated in Matlab by: 

[ ] ( ), , svdU V XΣ = . 

The statistical property of the SVD is based on representation of data in sub-
spaces of significant [16]. This is core property to derive the less noise image 
features. The lower dimension representation of the data can be obtained by us-
ing a truncated SVD to get a compressed version of the data matrix. This trunca-
tion can do by keeping the first d singular values. Using form I, the reduction of 
X is given as 

Td d d dX U V= ∑                       (A-5) 

where Xd is referred to as the rank d approximation of X, or the “Reduced SVD” 
of X. for example, If we eliminate dimensions by keeping the three largest singu-
lar values, this is a rank 3 approximation [102]. Now are going to look how to use 
SVD to do some cool stuff in data processing. 

A.2. Kernel Method 
A.2.1. Transformation between Distance and Similarity Measure 
The measure of distance is an important routine in data processing and analysis. 
One of the mostly used dissimilarity measure is the Euclidean distance. It is de-
fined as the L2 norm (square root of the vector inner product) of the difference of 
the two vectors or two points. If the similarity is interpreted as a covariance, then 
is the Euclidean distance could be written as a similarity matrix. 

( ) ( )( )2 T22 T T T
, 2

2i j i j i j i j i j i i j j i jd y y y y y y y y y y y y y y= − = − = − − = + − (A-6) 

If the covariance is of the form: 
T

, ,: ,:

2
, , , ,

2
,

 then

2

0   if  

2   if  

i j i j

i j i i j j i j

i j
i j

i j

k y y

d k k k

y y
d

y y

=

= + −

==  ≠

                    (A-7) 

So a concept called kernel rises up, which it considered as a transformation 
between distance and similarity matrix, and it becomes a basic for a number of 
algorithms in machine learning algorithms. An explanation of the kernel method 
theorem is introduced in the following section.  
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A.2.2. Kernel Similarity Measurement 
Kernel method comes up with a different idea for similarity measurement. And 
the difference is that, the kernel calculates distance in the space of transformed 
feature. Given the transformation (Φ), that maps the data from original feature 
space to some higher dimensional feature space. As shown in the Figure A-1, Φ 
takes points xi and xj mapped them into a Gaussian centered on xi, and xj, respec-
tively.  

Feature map (Φ) ( ): , .,XX x k xΦ → � . 

( ) ( ) ( )
:

, ,i j i j

X H

k x x x x

Φ

= Φ Φ

�
                   (A-8) 

Distance in transformed feature space is computed as the following: 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

2

2
,

, 2 , ,

, 2 , ,

i j i j i j

i i i j j j

i i i j j j

x x x x x x

x x x x x x

k x x k x x k x x

Φ −Φ = Φ −Φ Φ −Φ

= Φ Φ − Φ Φ + Φ Φ

= − +
(A-9) 

The kernel is the same as a dot product of mapped features. And in a sense of 
similarity measurement the kernel function is a symmetric function that maps a 
pair features and give a real number. The kernel gives large number value if the 
two inputs are similar, whereas in contrast low value if the inputs are dissimilar. 

A.2.3. Kernel and Reproducing Kernel Hilbert Space (RKHS) 
Riesz’ representation theorem tells whenever, there is a linear continuous func-
tion (f) it can be represented as a dot product with other some element of Hilbert 
space (H). The H can be defined as an inner product space that is complete and 
separable with respect to the norm defined by the inner product.  

The Riesz’ representation theorem states that, there is an element xr H∈  can 
be written as: 

( ),xr f f x=                         (A-10) 

Using Riesz’ representation theorem the kernel can be defined as a reproduc-
ing kernel Hilbert space (RKHS) if: 

 

 
Figure A1. Graphical illustration of the feature space of the 
Gaussian kernel, reprinted from [79], p. 32. 
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( ){ }( ) ( ) ( )span : . ., : ,i i i i
i

x x X f k x x Xα α Φ ∈ = = ∈ ∈ 
 

∑    (A-11) 

Given kernel :k X X× →  , one can construct the RKHS as the completion 
of the space of functions spanned by the set with an inner product defined as 
follows. 

Consider:  

( ) ( ). .,i i
i

f k xα= ∑                   (A-12) 

( ) ( ). .,j j
j

g k xβ= ∑                   (A-13) 

( ),, ,j i j ii jf g k x xβ α= ∑                (A-14) 

Note that ( ) ( ) ( ), ., ,i i
i

f k x k x x f xα= =∑  (k has the reproducing proper-
ty). 

Testing that ,f g  is an inner product is by checking the following condi-
tions: 

1) Symmetry  

( ) ( ), ,, , , ,i j i j j i j ii j i jf g k x x k x x g fα β β α= = =∑ ∑  

2) Positive definiteness 

, 0f f Kα α= ≥  

( ) ( ) ( )., , ., , 0i i i i i j i j
i i ij

k x k x k x xα α α α= ≥∑ ∑ ∑         (A-15) 

So as long as we define a kernel function and construct the kernel matrix and 
it is positive definite kernel. It means we could find a mapping such that it is 
possible to rewrite the kernel function in term of inner product of the mapped 
features. Conversely, for every RKHS there exists an associated reproducing ker-
nel which is symmetric and positive definite (PD). The mercer kernels is the 
family of kernel functions for which the kernel trick is guaranteed to work inde-
pendent of the data you have looking at. 

A.2.4. Kernel Trick 
if ( )xΦ  is an extremely high dimensional, constructing the kernel need to 
represent the extremely high dimensional feature vector and then computing the 
inner products in the feature space which seem computationally inefficient and 
very expensive. However, by using kernel trick, it is possible to compute the in-
ner product between these two vectors very inexpensively, and easily working in 
feature spaces even if they are very high dimensional. So for computing the dis-
tances, if given a kernel function, the need is just only evaluating the kernel and 
gets a value for the transformed inner product without telling how ( )xΦ  basi-
cally look like. That means there is no need to think about ( )xΦ  and build in-
ner product but just about the kernel. From the computation point of view, the 
evaluation of the kernel function is much easier than the computation of the 
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transformation of the feature followed by the inner product computation which 
is more complex. So just by evaluating the kernel ( ),i jk x x  and knowing that 
there is a map and inner product). An illustration of the computation expense of 
computing dot product in the feature space, and basic idea of kernel trick is giv-
en in the following example. The example shows that the inner products in the 
feature space could be evaluated implicitly in the input space. Assuming there is 
a transformation mapping from original two dimensions features to some higher 
three dimensional set of features 

( ) ( ) ( )
2 3

2 2
1 2 1 2 3 1 1 2 2

:

, , , : 2x x z z z x x x x

Φ →

= + +�

 
           (A-16) 

where ( )xΦ  is represented in term quadratic form (all possible products of 
pairs of the components of the variable x.  

In this case (n = 2) is a dimension of x, the length of ( )xΦ  is 2n  
• ( )2O n  is needed just to compute ( )xΦ  

( )

21 1
1

1 2
1 2

2 1 2
2

2 2

2

x x x
x x

x x x
x x

xx x

       Φ = ≈           

                 (A-17)

 

• Then ( )O n  is needed to compute the kernel which is inner product in the 
feature space. 

( ) ( ) ( ) ( )( )

( ) ( ) ( )

1 2 2 1 1 2 2

1 1 1 2 1 2 2 2

1 1 1 1 2 2 2 2

2 2 2 2
1

2 2 2 2 2

2 2

, , , 2 , , 2 ,

, 2 ,

2

i j i j i i i j j j j

i j i j i i j j i j

i j i j i j i j

k x x x x x x x x x x x x

x x x x x x x x x x

x x x x x x x x

Τ
= Φ Φ =

= = +

= + +

  (A-18)

 

The inner product in the feature space can evaluate in the input space, because 
of the followings: 
• The 

1 1i jx x  and 
2 2i jx x  are the dot product terms taken in the input space.  

• The ( )1 1 2 2

2

i j i jx x x x+  is the dot product term taken in the input space raised 
to power of 2.  

As it is mentioned before that the kernel function has the property that it cor-
respond to dot product in some other representation rather than the input space, 
and here the other representation is simply the representation computing the all 
product of order 2. And that it means the dot product in H can be computed in 
R2. The example showed that the kernel trick is very computationally efficient 
( ),i jk x x  is defined as 

2
,i jx x , i.e. it is just take the inner product between xi 

and xj which is O(n), then square that and the kernel function is computed, and 
implicitly working in an extremely high dimensional computing feature space 
[103]. In the above example examined only the 2D case, but the n dimensional 
case is just generalization of the 2D case. 

( ) ( ) ( ), ,1

,

, ,

n
i j

r rr n
i j i p j p i jp

x x

x x x x x x
=

∈

= = Φ Φ∑


          (A-19)
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So you have n dimensional xi and xj space vectors, then calculate the dot product 
(get a single number) and raise it to power of r. So we get a simple summation 
operation, and it does not matter if the r is big or large, since we get the same 
computation complexity [104]. 

A.2.5. Kernel Function 
The typical kernel functions that can express the similarity between the xi and xj 
are: 
• Linear: (i.e. there is no transformation, but just it is computing the inner 

product of two input vectors) 

( ), ,i j i jk x x x x=                    (A-20) 

• Gaussian radial basis function 

( )
2

2
2, exp

i j
i j

x x
k x x

σ

 − = −  
 

               (A-21) 

It is considered as one of the preferred kernel function, which computes the 
Gaussian with square distance between xi and xj. It takes the points and mapped 
them into a Gaussian function centered on the xi, and xj points as shown in the 
Figure A1. In other words, each point is represented by its similarity to all other 
points [79]. This means that a high dimensional vector can be obtained by eva-
luating the kernel function on these finite set of points.  

A.3. Support Vector Machine 

This section addresses one of the main applications of the kernel method which 
explain why kernel method could be useful. The support vector machine (SVM) 
is one of the powerful classification algorithms, which looking for a decision 
surface that separates between the two groups of the data points. These points 
(for example faces and non faces data points) are referred to as the support vec-
tors. Figure A2(b) shows separable training data sets, it seem to it is impossible 
to use a linear separator. Thus a more complicated (curve instead of line) nonli-
near classifier is needed. Applying the kernel trick is a way to create kernel based 
SVM classifiers, and this allows the algorithm to separate the data points using a 
hyper plane in a transformed feature space.  

Consider a map into a feature space (higher dimensional, 3D) the new coor-
dinates are product of old two coordinate. 

( ) ( ) ( )
2 3

2 2
1 2 1 2 3 1 1 2 2

:

, , , : 2x x z z z x x x x

Φ →

= + +�

 
           (A-22) 

So there is some amount of red data points appear close to the mean in the 2D 
representation Figure A2(a). But they are actually sitting away from the mean in 
3D space. 

This means if the high dimensional data are not visualized, then the some of 
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the data is seem to projecting down to the mean. The cross and circle data points 
are not linearly separable in the original input space, and using kernel they can 
be linearly separable in 3D high-dimensional feature space. See Figure A2(b) 

A.4. Kernel Principal Component Analysis 

As mentioned above, that SVD is a way to do the eigenvalue problem by matrix 
factorization. The kernel method comes up with a different idea, that the kernel 
represents a dot product in higher dimension space using some nonlinear trans-
formation of the input matrix [81]. A description of the kernel SVD algorithm is 
presented in this section.  

Tz z z zX U V= Σ                      (A-23) 

( )zX X= Φ                       (A-24) 
 

 
(a) 

 
(b) 

Figure A2. The idea of kernel based SVM classifier. 
Applying mapping into higher dimensional feature 
space using the kernel trick is a way to construct a 
separating hyperplane there (b). This is equivalent to 
the nonlinear decision boundary in input space (a). 
Adapted from [79], p. 29. 
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So computing the eigenvector of 
Tz zX X  and 

Tz zX X  is the way to esti-
mate 

T
, ,z z zU VΣ  matrices, respectively using the definition of SVD in (A-3) 

and (A-4). The computation of 
Tz zX X  or 

Tz zX X  (the inner product of 
transformed matrix) can be implemented implicitly in the input space using 
kernel trick. 

T 2 Tz z z z zK X X U V= = Σ                    (A-25) 
T 2 Tz z z z zK X X V V= = Σ                    (A-26) 

Kernel SVD does the decomposition in terms of inner product of the trans-
formed feature, which modeled by a kernel function. In other words the inner 
products 

Tz zX X  and 
Tz zX X  are replaced by kernels to yield a nonlinear 

version of SVD. And the decomposition of K will produce the 
T

, ,z z zU VΣ  ma-
trices which have properties similar to the properties of T, ,U VΣ  matrices.  

Th h hK U V= Σ                        (A-27) 
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