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Abstract 
Fault diagnosis based on time-domain signals has become mainstream in re-
cent years. Traditional methods require signal processing to extract fault fea-
tures before feeding them into a neural network for diagnostic classification, 
which is a cumbersome process. This paper proposes an adaptive fault diag-
nosis model based on a one-dimensional convolutional neural network, and 
the structure and parameters of the model are analyzed and designed in de-
tail. The segmented pre-processed vibration signal is fed directly into a con-
volutional neural network, where fault features can be extracted adaptively, 
and finally classify the diagnostic results using a Softmax classifier. This me-
thod directly processes the vibration signals in an end-to-end way, which im-
proves the timeliness of diagnosis. The effectiveness of the method is verified 
through bearing experiments and compared with KNN, SVM, LSTM and 
AlexNet models. The results show that the model is accurate for fault diagno-
sis of bearings. 
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1. Introduction 

With the rapid development of science and technology, machinery and equip-
ment in modern industry is developing in the direction of precision and auto-
mation. If a part of the equipment fails, it will have a series of serious conse-
quences. Bearings are an important part of rotating machinery, in which they 
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play a role in supporting the spindle and transmitting torque. In rotating ma-
chinery with rolling bearings, about 30% of mechanical failures are caused by 
rolling bearings [1]. This is why it is of great significance to carry out fault diag-
nosis on rolling bearings. 

Fault diagnosis of bearings is achieved by analysing and processing the vibra-
tion signal on the bearing and extracting the signal characteristics. Traditional 
fault diagnosis methods are mainly time domain analysis, frequency domain 
analysis and time-frequency domain analysis. The time domain analysis method 
is to display all the information contained in the vibration signal on the time 
axis for analysis, the main method is time domain statistical analysis [2]. Fre-
quency domain analysis is the Fourier transform of the vibration signal to obtain 
a spectrum, commonly used methods are power spectrum analysis [3], cepstrum 
analysis [4] and envelope spectrum analysis [5]. The analysis of time-frequency 
domain is not only to analyse the frequency domain characteristics of the signal, 
but also to analyse the transient information of the signal. The main methods in-
clude Fourier transform [6], Wigner-Ville distribution [7], wavelet transform [8] 
and empirical modal decomposition [9]. 

Nowadays more and more machine learning algorithms are widely used in the 
fault diagnosis, such as K-Nearest Neighbour algorithm (KNN) and Support 
Vector Machine (SVM), both of which possess strong data processing and au-
tomatic fault identification capabilities. Lu Dunli et al. [10] combined KNN with 
Naïve Bayes making and inputting the results of KNN preliminary classification 
to Naïve Bayes for further classification, which effectively improved the fault 
diagnosis rate. Zhao Chunhua et al. [11] automatically extracted fault features 
through deep learning, and then diagnosed them through a fault diagnosis model 
combining the whale optimization algorithm and SVM. Chen Renxiang et al. con-
structed the time-frequency matrix of the signal through wavelet transform and 
then used it as the input of convolutional neural network for classification, which 
has high generalisation performance [12]. Jian Di establishes a CAPSO-DAEN 
fault diagnosis model based on Deep Auto-encoder Network optimized by 
Cloud Adaptive Particle Swarm Optimization. The model uses the randomness 
and stability of CAPSO algorithm to optimize the connection weight of DAEN, 
reduce the constraints on the weights and extract fault features adaptively [13]. 

Although many effective fault diagnosis methods have been proposed, most of 
them need to extract the fault features of the vibration signal first, which greatly 
reduces the timeliness. Based on previous research, a one-dimensional convolu-
tional neural network based method is proposed for fault diagnosis in this paper. 
The method does not require human extraction of fault features and directly 
uses the original vibration signal as the input of the convolutional neural net-
work to complete the classification of faults. 

2. One-Dimensional Convolutional Neural Networks 

The process of convolutional neural networks takes raw data as the input to the 
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algorithm and gradually abstract the raw data into the desired feature represen-
tation through operations such as convolution, pooling and mapping of non- 
linear activation functions. Ends with a feature-to-target task mapping [14]. The 
structure of a convolutional neural network consists of an input layer, a convo-
lutional layer, a pooling layer, a fully connected layer and an output layer. 

As an indispensable part of convolutional neural network, convolutional layer 
serves to enhance the original features of signals and reduce the noises [15]. 
Each element of the convolution kernel has its corresponding weight coefficient 
and bias [16]. During the training process, the weight coefficients and biases are 
constantly modified by back propagation to obtain the best parameters. The 
calculation function of convolution layer is as follows: 

( ) , , , ,
1 1 1

pm n
i i

x y z x y z
x y z

g i a w b
= = =

= × +∑∑∑                   (1) 

where g(i) is the mapping graph obtained from the i th convolution kernel and a 
is the input data. w is the weight factor of the convolution kernel. b is the bias of 
the convolution kernel. If the input data is an image, x and y represent the pixel 
size of the image in the length and width directions respectively, and z is the 
number of channels. If the input data is a one-dimensional time-domain signal, 
y and z are simplified. 

Pooling layers between convolutional layers aim to strengthen the translation-
al invariance and reduce the dimension of the feature maps [17]. The pooling 
mainly includes the average pooling and the maximum pooling. Average pooling 
is to extract the local average value, and the maximum pooling is to extract the 
local maximum value. The function representation of the maximum pool is as 
follows: 
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where ( )1 1,t j W jW∈ − +    and W is the width of the region to be pooled. 
( )l

iq t  represents the value of the tth neuron in the ith feature vector on the l th 
layer. ( )1l

iP j+  represents the value of the neuron on the l + 1 layer. 
The fully-connected layer connects each neuron to all the neurons in the pre-

vious layer. This means that the extracted features are stitched together and the 
Softmax classifier is used to output the multi-classification result. The function 
expression is as follows: 

( )o o vO f b w f= +                        (3) 

where fv represents the eigenvector, and the bo and wo subscales represent the 
deviation vector and the weight matrix. 

The one-dimensional convolutional neural network is also composed of three 
main parts: the convolutional layer, the pooling layer and the fully connected 
layer. A one-dimensional signal is fed into the input layer of the one-dimensional 
convolutional neural network. A one-dimensional signal is convolved with a 
one-dimensional convolution kernel to generate an input feature map. Then the 
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input feature maps are passed through the activation function to generate the 
output feature maps of the convolution layer [18]. 

3. 1D-FDCNN Fault Diagnosis Algorithms 

This paper proposes a fault diagnosis model based on a one-dimensional convo-
lutional neural network (1D-FDCNN), which is divided into three parts, namely 
the input layer, the fault feature extraction layer and the classification layer 
(Figure 1). The input layer mainly accomplishes the pre-processing of the input 
data and cuts the signal to a certain length. The feature extraction layer consists 
of a convolutional layer and a pooling layer. Fault features of the input data are 
first extracted using a convolutional kernel, and then a dimensionality reduction 
operation is performed in the pooling layer. Multiple alternating convolutional 
and pooling layers can extract the non-linear features of the input signal [19]. 
The classification layer then uses the Softmax function to classify the target task. 
The model structure is an input layer, a group of 3 convolutional layers (con-
sisting of alternating convolutional and pooling layers), 2 fully connected layers, 
and an output layer. Since vibration signals are periodic, the final pooling layer 
of the proposed model in this paper should have a sensory field size greater than 
the size of a periodic signal in the input signal so that more comprehensive fault 
information can be obtained. 

The relationship between signal period and sampling frequency and rotational 
speed is as follows: 

60T f
r

= ×                           (4) 

 

 
Figure 1. Architecture of 1D-FDCNN. 
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where T is the period, f is the sampling frequency and r is the speed. A period of 
400 is obtained when f is 12 kHz and r is 1797 r/min, which indicates that the 
last pooling layer cannot have a perceptual field of less than 400 samples in the 
input signal. The perceptual field of the last pooling layer in the input signal 
cannot be less than 400 samples. In a one-dimensional convolutional neural 
network, the relationship between the receptive field F(i) on the ith pooling layer 
and the receptive field F(i-1) on the i-1st pooling layer is as follows: 

( ) ( ) ( ) ( )( ) ( )1 1i i i i iF S P F W− = − +                   (5) 

where W is the width of the convolution kernel on the convolution layer, S is the 
step length on the convolution layer, and P is the size of the pooling layer. In 
1D-FDCNN, when i > 1, W(i) = 3, S(i) = 1 and P(i) = 2, the above function (5) can 
be simplified to function (6): 

( )
( )1

1
2

i
i FF

−

= −                         (6) 

When both i and the number of convolution kernels are 3, F(3) = 1. So the final 
pooling layer has a perceptual field of 10 above the first pooling layer, that is, F(1) 
= 10. Substituting this into function (4) gives the magnitude of the perceptual 
field F(0) of the final pooling layer on the input signal, as shown in the following 
function (7): 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 1 1 1 1 1 1 1 1 11 10 10F S P R W P S S W P S= − + = − + ≈     (7) 

When P(1) is 2, F(0) is 20S(1). According to the principle that T ≤ F(0) ≤ L and S(1) 
should be able to divide L, where L is the length of the input signal. The follow-
ing function (8) can be obtained by substitution (8): 
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According to the above equation, when L is taken as 2048, S(1) can be taken as 
32 or 64, and the step size of the first convolutional layer of 1D-FDCNN in this 
paper is taken as 32. In 1D-CNN, a large convolutional kernel can bring a larger 
perceptual field and does not increase too many parameters and computation 
[20], so a convolutional kernel of size 64 × 1 is used in the first convolutional 
layer of 1D-FDCNN to obtain a more comprehensive fault feature of the input 
signal sequence. And considering that the network framework should not be too 
deep, the step size of the second and third convolution layers is set to 1, and the 
size of the pooling layer is set to 2. 

The specific parameter table is shown in Table 1 below. 

4. Experiments 
4.1. Experimental Data Sets 

The data for this experiment was taken from the Case Western Reserve Univer-
sity (CWRU) open bearing dataset [21], where the bearing type is SKF6205 and 
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the sampling frequency in the system is 12 kHz. 
The data set for this experimental platform was acquired under four loads, 

denoted by 0, 1, 2 and 3, where the different loads correspond to different rota-
tional speeds. The speed of load 0 is 1797 r/min, load 1 is 1772 r/min, load 2 is 
1750 r/min and load 3 is 1730 r/min. There are three types of defective locations 
for bearings with faults, namely, inner and outer rings and rolling elements, with 
diameter sizes of 0.007 inch, 0.014 inch and 0.021 inch. There are nine defective 
states, plus one healthy state, for a total of ten states. In this experiment, the 
length of each sample is 2048, each state contains 1000 samples, and is divided 
into training set, test set and validation set in the ratio of 0.7:0.2:0.1, that is, a 
data set contains 10,000 samples. The experimental data set is shown in Table 2 
below. 

 
Table 1. 1D-FDCNN network parameters 

Layer Kernel size Stride Kernels numbers Outputs size Padding 

Convolutional layer 1 64 × 1 32 16 64 × 16 yes 

Pooling layer 1 2 × 1 2 16 32 × 16 no 

Convolutional layer 2 3 × 1 1 32 32 × 32 yes 

Pooling layer 2 2 × 1 2 32 16 × 32 no 

Convolutional layer 3 3 × 1 1 64 16 × 64 yes 

Pooling layer 2 2 × 1 2 64 8 × 64 no 

Fully-connected layer 200 1 1 200 × 1  

Softmax 10 1 1 10 × 1  

 
Table 2. Experimental data set. 

Fault area 
Diameter of damage 

Normal Inner ring Outer ring Rolling body 
Load 

0 0.007 0.014 0.021 0.007 0.014 0.021 0.007 0.014 0.021 

A 

Training 700 700 700 700 700 700 700 700 700 700 

0 Testing 200 200 200 200 200 200 200 200 200 200 

Validation 100 100 100 100 100 100 100 100 100 100 

B 

Training 700 700 700 700 700 700 700 700 700 700 

1 Testing 200 200 200 200 200 200 200 200 200 200 

Validation 100 100 100 100 100 100 100 100 100 100 

C 

Training 700 700 700 700 700 700 700 700 700 700 

2 Testing 200 200 200 200 200 200 200 200 200 200 

Validation 100 100 100 100 100 100 100 100 100 100 

D 

Training 700 700 700 700 700 700 700 700 700 700 

3 Testing 200 200 200 200 200 200 200 200 200 200 

Validation 100 100 100 100 100 100 100 100 100 100 
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4.2. Optimisation of Model Parameters 

Table 2 above shows that the number of experimental datasets is relatively large. 
If only one sample is input to the model for training at each time, it will not only 
take a lot of time, but also over-fitting will occur, which will greatly reduce the 
robustness of the model. Therefore, it is necessary to find a suitable number of 
batch samples so that the model can achieve a high diagnostic accuracy without 
falling into a local optimum. In this paper, 6 batch sample numbers were set. 
The experiments were conducted in sequence and the diagnostic results ob-
tained are shown in Table 3 below. It can be seen from the table that the accu-
racy of the validation set reaches the highest when the number of batch samples 
is 32, and the average training time is close to the best result. Therefore, the 
number of batch samples in this model is 32. 

4.3. Bearing Fault Diagnosis Experiments 

To validate the effectiveness of the 1D-FDCNN model proposed in Section 2, the 
model is trained and evaluated using the datasets A, B, C and D in Section 3.1, 
respectively, where the accuracy of the validation set and loss are used to eva-
luate the model. 

The 1D-FDCNN model training process is shown in Figure 2 below. 
The epoch was set to 100 times for training, the number of batch samples was 

32, and the loss function was cross-entropy. The model was run on a software 
environment of Python version 3.8 and a hardware environment of AMD Ryzen 
7 4800U with Radeon Graphics 1.80 GHz with 16.0 GB of memory. The training 
results are shown in Figure 3 and Figure 4 below. 

In Figure 3 and Figure 4, it can be seen that after 30 epochs, the model basi-
cally stabilises, with the training loss of the four data sets being basically smooth 
and tending to 0. The accuracy curve shows that the accuracy of data set A is 
higher than that of data sets B, C and D, but the overall accuracy is at 95% and 
above. The experimental results show that the model can achieve high accuracy 
diagnosis of bearing faults and has good robustness. 

In order to verify the performance of the algorithm proposed in this paper  
 

Table 3. The influence of batch sample number on accuracy. 

Batch sample size 
Average diagnostic accuracy × 100% Average training  

time/s Training Validation 

8 97.27 96.65 3.21 

16 98.53 98.16 2.18 

32 98.39 98.39 1.68 

64 98.35 97.97 1.04 

128 97.39 96.73 0.72 

256 96.26 92.03 0.59 

https://doi.org/10.4236/oalib.1108644


J. X. Chen et al. 
 

 

DOI: 10.4236/oalib.1108644 8 Open Access Library Journal 
 

 
Figure 2. 1D-FDCNN model training process. 

 

 
Figure 3. 1D-FDCNN model accuracy curve. 

 
with other algorithms, experiments were conducted on four algorithms, KNN, 
SVM, LSTM and AlexNet, respectively, and the experimental results are shown 
in Table 4 below. From the diagnostic results, the proposed model 1D-FDCNN 
in this paper has improved diagnostic accuracy compared to the classical AlexNet  
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Figure 4. 1D-FDCNN model training loss curve. 

 
Table 4. Experimental results of different algorithms. 

Algorithm Accuracy/% 

KNN 74.45 

SVM 91.85 

LSTM 90.70 

AlexNet 96.53 

1D-FDCNN 99.81 

 
algorithm, indicating that the improved 1D convolutional neural network model 
is suitable for time-domain signal processing. Compared with the traditional 
models KNN, SVM and LSTM algorithms, the improvement in diagnostic accu-
racy is greater, mainly because these three traditional algorithms have a more 
limited learning ability for features, and their learned features do not have strong 
classification characteristics. 

5. Conclusion 

In this paper, 1D-FDCNN is proposed for bearing fault diagnosis, and the model 
is used to diagnose vibration signals in various fault states, with experimental 
results achieving an accuracy rate of up to 99%. The model proposed in this pa-
per has the following advantages: firstly, it can achieve an accurate diagnosis of 
bearing faults with high robustness; secondly, fault features can be extracted di-
rectly from the original vibration signal to realise the end-to-end fault diagnosis 
process; finally, the training time is relatively short and has good timeliness, 
which can be applied in engineering. 
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