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Abstract 
The concept of density in quantum theories of an elementary particle is dis-
cussed. Density is, at least implicitly, recognized in contemporary textbooks on 
quantum field theories, where the Noether theorem is utilized for a derivation 
of a conserved 4-current , 0jµµ =  and a conserved energy-momentum tensor 

, 0T µν
ν = . Here the component 0j  is the particle’s density and the compo-

nents 0T µ  are the energy-momentum density. The novelty of this work is 
the analysis of the particle’s density and the energy-momentum density of 
these expressions and their application to several specific quantum theories. 
As of today, these tasks have not been adequately accomplished in contem-
porary textbooks. The results show that the first-order Dirac theory of an el-
ementary massive spin-1/2 particle yields consistent results. In contrast, second- 
order quantum theories, such as the Klein-Gordon theory, the electroweak 
theory of the ,W Z±  particles, and the Higgs boson theory are inherently 
wrong. 
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1. Introduction 

Classical physics fails to explain the behavior of the microscopic world. For ex-
ample, an elementary classical particle is pointlike (see [1], pp. 46, 47). Hence, due 
to its acceleration, a classical electron of the hydrogen atom should radiate until 
it falls into the proton’s center. However, the radius of the hydrogen atom is much 
larger than the proton’s radius. 

Quantum theories are based on concepts that are very different from those of 
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Classical Physics (CPH). In quantum theories, the wave function ( ), tψ x  de-
scribes the electronic state and the quantum equation of motion describes the 
time-evolution of ψ . Furthermore, appropriate operators yield the expectation 
value of physical quantities. Thus, the expectation value of the electron’s energy 
is: 

( ) ( ) ( )* 3, , d ,E t t H t rψ ψ= ∫ x x                   (1) 

where ( )E t  denotes the energy expectation value, and the Hamiltonian H is 
the energy operator. This is an example of a quantum description of the expecta-
tion value of physical quantities (see [2], p. 145). 

The plain meaning of (1) is that at the specific time of the calculation, the elec-
tron exists at all points of a given region and for an infinitesimal region, V∆ , the 
probability of its existence inside it is * Vψ ψ∆ . This outcome manifests the well- 
known uncertainty relation of quantum theories, where the particle’s position is not 
well defined (see [2], p. 20): 

.xx p∆ ∆ ≥                           (2) 

The first experiment of muon decay illustrates the local attributes of an elemen-
tary quantum particle. The emulsion tracks of the muon decay ee µµ ν ν− → + +  
and of the outgoing electron are described in Figure 1 (the original figures are 
shown in [3], p. 4 and in [4], p. 26). The charged particles ionize atoms along with 
their motion, bubbles settle on the ionized atoms, and the figures of [3], p. 4 and 
[4], p. 26 show the lines of bubbles. These lines are depicted in Figure 1 of this 
work. The two neutrinos are unseen in the figures of [3] [4] because they do not 
induce ionization. The lines of Figure 1 illustrate the local existence of a quantum 
particle—namely, the charged particles exist at a quite narrow region along the lines 
and do not exist elsewhere. 

The foregoing discussion points out the significance of the notion of density 
in quantum theories. This paper is dedicated to the theoretical properties of this 
topic. It examines the relativistic form of the Lagrangian density of Quantum Field 
Theories (QFT) and shows several aspects of density that many textbooks do not 
discuss. This is the primary purpose of this work and it illustrates its novelty. 

Units where 1c= =  are used. Therefore, just one dimension is required 
and the dimension of length [L] is used. The Minkowski metric gµν  is diagonal 
and its entries are (1, −1, −1, −1). Relativistic expressions are written in the 
standard notation. The Dirac matrices ,βα , and µγ  take the form that is used 
in [5]. Section 2 describes several principles that are the basis of this work. Sec-
tion 3 proves that the Dirac theory of a massive spin-1/2 quantum particle is 
consistent with the physical principles used herein. Section 4 analyses density  
 

 
Figure 1. An illustration of muon decay (see text). 
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and proves that inconsistencies exist in theories where the quantum differential 
equations of motion are of the second order. Section 5 shows further arguments 
that corroborate the results of Section 4. The last section summarizes the main 
points of this paper. 

2. General Principles 

This work examines the properties of density in physical theories. A description 
of the physical concepts that are used below helps readers see the general struc-
ture of the analysis. 

2.1. The Correspondence Relationships 

An important element of a theory is an adequate definition of its domain of va-
lidity. For example, Non-Relativistic CPH (NRCPH) is a good theory for a de-
scription of processes that take place in the macroscopic world, and the velocity 
of the particles is much smaller than the speed of light. Quantum Mechanics (QM) 
is restricted to cases where relativistic effects can be ignored. Hence, the validity 
domain of NRCPH is a subset of the validity domain of QM. For this reason, 
NRCPH is regarded as a lower rank theory with respect to QM. 

The correspondence principle says that an appropriate limit of quantities of a 
higher rank theory should agree with corresponding quantities of a lower rank 
theory. It means that QM must define particle density, energy density, and mo-
mentum density of the quantum particle, and the classical limit of these quanti-
ties should agree with the corresponding quantities of NRCPH. The need to 
prove the correspondence between QM and NRCPH was recognized in the QM 
early days when the Ehrenfest theorem was published (see [6], pp. 25-27, 137, 
138). 

QM does not explain everything. For example, experiments show that the pro-
ton comprises quark-antiquark pairs of the , ,u d s  flavor [7] [8]. In principle, this 
kind of evidence should be explained by QFT. Hence, the domain of validity of 
QM is a subset of the domain of validity of QFT. It means that analogous constraints 
apply to QFT: QFT must define particle density, energy density, and momentum 
density of the quantum particle, and the QM limit of these quantities should agree 
with the corresponding quantities of QM. This correspondence is clearly stated 
in Weinberg QFT textbook (see [9], p. 49):  

“First, some good news: quantum field theory is based on the same quantum 
mechanics that was invented by Schroedinger, Heisenberg, Pauli, Born, and oth-
ers in 1925-26, and has been used ever since in atomic, molecular, nuclear, and 
condensed matter physics.”   

2.2. The Lagrangian Density 

It is now recognized that a QFT of an elementary particle is based on a Lagrangian 
density whose general form is: 

( ),, ,µψ ψ                              (3) 
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(see e.g. [9], p. 300). The equations of motion of the particle are the Euler-Lagrange 
equations that are derived from a variation of the action S of (3) with respect to 
ψ : 

( )

4
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The integral of the last term of (4) yields the values of 
,µ

δψ
ψ
∂
∂


 at spatial in-

finity. It is assumed that at spatial infinity, , 0µψ ψ δψ= = = . Therefore, the  

form of (3) proves that the last term of (4) can be removed. Equating the varia-
tion Sδ  to zero and remembering that δψ  is an arbitrary variation, one 
finds that the first and second terms on the right-hand side of the last line of (4) 
yield the Euler-Lagrange equations:  

,

0µ
µψ ψ

 ∂ ∂
− ∂ =  ∂ ∂ 

                         (5) 

(see e.g., [9], p. 300). 
In the units used herein, the action S is dimensionless. Therefore, the dimen-

sion of the Lagrangian density is [L−4]. Moreover, if the Lagrangian density is a 
Lorentz scalar then the Euler-Lagrange equations take the required Lorentz in-
variant form (see e.g., [9], p. 300). This is an important feature of the application 
of the Lagrangian density as the basis of the theory: If it is a Lorentz scalar whose 
dimension is [L−4] then the theory abides by Special Relativity (SR). 

Another important property of the Lagrangian density is its mathematically real 
form. Since the integration factor 4d x  is a mathematically real Lorentz scalar then 
the action S of such a Lagrangian density is a mathematically real Lorentz scalar. 
An action that is a mathematically real Lorentz scalar is used for the undulating 
factor of the particle’s function of QM: 

eiSΦ =                            (6) 

(see e.g., [10], pp. 127, 128; [11], pp. 19, 20). Evidently, the power series expan-
sion of the exponent of (6) proves that a coherent action S should be a mathe-
matically real Lorentz scalar. Furthermore, this form of the action is used for prov-
ing the correspondence between QM and NRCPH (see e.g., [10], pp. 127, 128; [11], 
pp. 19, 20). Hence, the correspondence between QFT and QM shows that the ac-
tion S of QFT should be a mathematically real Lorentz scalar. This outcome is con-
sistent with [9], p. 300. 

The Lagrangian density (3) is still an incomplete description of the state of a 
given elementary quantum particle. Indeed, the existence of a physical particle is 
recognized due to a measurement process where the particle affects the time- 
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evolution of a measurement device. Hence, the Lagrangian density requires an in-
teraction term that depends on the particle’s quantum function ψ  and on an in-
teraction carrying external field. For example, the electromagnetic interaction of 
a Dirac electron is: 

,int e Aµ
µψγ ψ= −                           (7) 

where e is the electronic charge and the components of Aµ  are the electromag-
netic potentials ,φ A  (see [12], p. 78). Here (7) is compatible with the classical ex-
pression for the electromagnetic interaction: 

,int ej Aµ
µ= −                            (8) 

where jµ  is the 4-current (see [1], p. 75; [13], p. 596). It is shown later that the 
Quantum Electrodynamics (QED) Lagrangian density comprises the term (7), 
which uses the Dirac 4-current (15). 

2.3. The Noether Theorem 

The Noether theorem is an important element of theories that are derived from 
a Lagrangian density. It shows that if the Lagrangian density is invariant under a 
given transformation then the Euler-Lagrange equations of this theory conserve 
an appropriate quantity (see e.g., [9], p. 307; [14], pp. 17-22). 

This work examines the Noether expressions for the particle’s density and its 
energy-momentum densities. The particle’s density is the 0-component of a 4- 
vector (see [1], pp. 73-75). If the Lagrangian density is independent of the phase 
of the quantum function ψ , then the required 4-vector is (see [15], pp. 314- 
315): 

,

.j aµ

µ

ψ
ψ
∂

=
∂


                         (9) 

where a is an appropriate coefficient. 0j  is the particle’s density, and a is fixed 
so that 0 3d 1j x =∫ . This expression means that the dimension of the 4-current 
is [L−3], which is compatible with the concept of density. Furthermore, the 4-cu- 
rrent (9) is conserved: 

, 0.jµµ =                           (10) 

An important feature of the conserved 4-current (9) holds for a charged parti-
cle. Here the charge Q is used for the definition of the electric 4-current Qjµ . 
Charge conservation is a crucial property of Maxwellian electrodynamics; its mathe- 
matical expression is called the continuity equation; and (10) is the covariant form 
of this equation (see [1], pp. 76-78; [13], p. 549). 

Energy is the 0-component of the energy-momentum 4-vector, and it is men-
tioned above that density is the 0-component of a 4-vector. Therefore, energy den-
sity is the 00-component of a 4-tensor T µν , which is called the energy-momen- 
tum tensor. If the Lagrangian density does not explicitly depend on the space-time 
coordinates ( ),t x , then the Noether theorem provides an expression for this 
tensor that proves energy-momentum conservation. This energy-momentum tensor 
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is: 

,
,

T g gµν αµ µν
α

ν

ψ
ψ
∂

= −
∂


                     (11) 

(see [12], p. 310). The components 0T µ  are energy-momentum density and they 
are conserved: 

, 0.T µν
ν =                            (12) 

The above-mentioned textbook references to (9) and (11) indicate that the fore-
going expressions for conserved density are already known. Moreover, mainstream 
textbooks recognize density as an element of QFT. The novelty of this work is the 
analysis of particle density and energy-momentum density of these expressions and 
their application to several quantum theories. As of today, these tasks have not been 
adequately accomplished in contemporary textbooks. 

3. The Dirac Particles 

Consider the Lagrangian density of a free Dirac particle (see [12], p. 52; [14], p. 
54): 

( ) ,i mµ
µψ γ ψ= ∂ −                       (13) 

where: 
† 0 .ψ ψ γ≡                           (14) 

The Noether expression for the 4-current (9) and the Dirac Lagrangian density 
(13) yield the Dirac 4-current: 

.jµ µψγ ψ=                          (15) 

(see [14], p. 56; [15], p. 315). The Dirac 4-current (15) also holds for the Dirac Lag- 
rangian density that includes the electromagnetic interaction term (see e.g., [12], 
p. 78; [14], p. 84): 

( ) .QED i eA mµ
µ µψ γ ψ = ∂ − −                  (16) 

The interaction term e Aµ
µψγ ψ−  of (16) is derivative-free and the application of 

formula (9) to this term adds a null quantity. 
Using the Noether expression for the energy-momentum tensor (11), one finds 

that the Dirac theory yields: 

.T i g gµν ν µλ µν
λψ γ ψ= ∂ −                    (17) 

As stated above, the 00T  component of this tensor is the energy density. In the 
case of a free Dirac particle, one finds that this component of (17) boils down to:  

( )00 .T i mψ β ψ= − ⋅ +α ∇†                   (18) 

(The calculation depends on these points: (14) is used; in (17), 00 0T µ ν→ = = ; 
for the running index λ  of (17), 0λ =  is the time derivative that is canceled, 
due to the corresponding term in − ; the 1,2,3λ =  terms yield i− ⋅α ∇ ;  

0γ =γ α ; the sign of the mass term of −  is changed.) The expression inside the 
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parentheses of (18) is the Hamiltonian of a free Dirac particle (see [5], pp. 6, 7), 
and the 0-component of the Dirac 4-current (15) is †ψ ψ . Hence, the right- 
hand side of (18) is a coherent expression of the energy density of a free Dirac 
particle. An explicit calculation shows that the previous relativistic calculation 
also yields a coherent expression for the momentum density (see [16], chapters 5, 
6). 

This analysis proves that an application of the Noether theorem to the Dirac 
Lagrangian density yields coherent expressions for the particle density and its en-
ergy-momentum density. The [L−3/2] dimension of the Dirac function ψ  is an im-
portant property of this theory because the dimension of the product †ψ ψ  is [L−3], 
which is the dimension of density. 

4. Second-Order Theories 

There are several QFT of second-order equations, such as the Klein-Gordon (KG) 
equation, the electroweak theory of the ,W Z±  particles, and the Higgs particle 
theory. A typical form of the Lagrangian density of these theories is: 

( )2 ? †
, ,, ,Am F OTµ νφ φ φ φ= + +                   (19) 

where A is a numerical coefficient, F is a Lorentz scalar function of products of 
derivatives of the quantum functions †

, ,µ νφ φ , and OT denotes other terms (see 
e.g., [12], pp. 16, 721; [17], pp. 515, 518). The Noether expression (11) for the 00T  
component is the energy density of the system. This issue proves that the first term 
of the Lagrangian density of second-order theories (19) entails a quadratic mass 
term of 00T . In contrast, energy density depends linearly on the particle’s mass. 
This outcome indicates an inherent contradiction of any second-order quantum 
theory. 

It should be pointed out that the [L−4] dimension of the Lagrangian density 
entails the dimension [L−1] of the quantum function φ  of a second-order theory. 
Hence, the quadratic mass term is used in (19) because the dimension of mass is 
[L−1]. 

5. Discussion 

Any specific mathematical analysis implicitly relies on the assumption that its 
basis comprises coherent expressions. This self-evident issue also holds for the Noe- 
ther theorem, and the previous results of the Dirac Lagrangian density provide 
an example of this issue. In contrast, the incompatible result of the application of 
the Noether theorem to second-order quantum theories of an elementary massive 
quantum particle proves that these theories have an erroneous basis. Further argu-
ments indicate that erroneous elements of second-order quantum theories substan-
tiate this assertion. 

As stated above, the Lagrangian density is a mathematically real quantity whose 
dimension is [L−4]. In order to be mathematically real, it must be a product of the 
quantum functions †φ φ . The same is true for density. Considering density, one 
should note that in the case of a second-order quantum theory, the dimension of 
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the quantum function φ  is [L−1], whereas the dimension of density is [L−3]. There-
fore, dimensional considerations entail that each term of any coherent expression 
of the 4-current of a second-order quantum theory must contain a derivative of the 
quantum functions †

,µφ  or ,µφ . 
This conclusion is unacceptable because the electromagnetic interaction term 

(8) depends on the particle’s 4-current, and the Noether expression for the 4-current 
(9) says that a term that depends on a derivative of the quantum function ,µφ  
yields a new term of the 4-current. It means that the electromagnetic interaction 
term of a second-order quantum theory destroys the compatibility of the 4-current 
upon which it depends. 

Conclusion: A second-order quantum theory of a charged particle cannot have 
a coherent expression for its electromagnetic interaction.   

The following evidence provides strong support for this conclusion. Thus, about 
one month after the publication of the first-order Dirac theory of the electron [18], 
Darwin found an expression for the conserved 4-current of this particle [19]. This 
information is compatible with the coherence of the Dirac theory that is derived 
in Section 3. In contrast, the electroweak theory is about 50 years old, and large 
research centers, like Fermilab and CERN, still use a derivative-dependent “effec-
tive’’ and incoherent expression for the electromagnetic interaction of the W ±  
particles [20] [21]. The derivative dependence of this expression certainly demon-
strates an inherent gross error of the electroweak theory. 

Here is another argument that emphasizes the vital role of density in QFT. 
Consider the experimental detection of the ,µ µ+ −  decay channel of the Z par-
ticle [22] (see Figure 2). In this case, each of the two charged ,µ µ+ −  particles 
hits a detector that measures its energy-momentum, together with the time and 
the position of the measurement. These data enable experimenters to draw the 
path of each particle. If the ,µ µ+ −  emerged from a small space-time region and 
if their invariant energy is included inside the mass region of the Z particle then 
the event is recorded as a ,µ µ+ −  decay of this particle. It means that an expres-
sion for the density is required from a coherent theory of the Z particle. This ex-
periment shows a two-particle creation process. Hence, it belongs to the QFT va-
lidity domain. However, no Standard Model (SM) textbook shows an expression 
for the density of its mathematically real electroweak function of the Z particle. As 
a matter of fact, it is impossible to create a coherent expression for the density of a 
mathematically real quantum function of an elementary massive particle (see 
[16], pp. 44, 45). 

A particular problem arises from the Lagrangian density of the Higgs particle 
(see e.g., [12], p. 721; [17], p. 515). Here the coefficient of the mass term is posi-
tive. Hence, formula (11) for the energy-momentum tensor proves that the mass 
term of the 00T  component of this tensor is negative. It means that the Higgs 
 

 
Figure 2. An illustration of the ,µ µ+ −  decay channel of the Z particle (see text). 
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idea depends on a quantum theory of a particle where its self-mass makes a neg-
ative contribution to its energy! This grave contradiction is inconsistent with fun-
damental principles of physics where energy and mass of a given system are non- 
negative quantities. This outcome refutes the Higgs theory and supports the gen-
eral arguments of the previous section. 

Remark: A second-order quantum theory proves that the dimension of its quan-
tum function φ  is [L−1]. It is shown above that this property is the root of the pro- 
blematic points of these theories—the quadratic dependence on mass and the 
need for a derivative ,µφ  for the density. The inability to change this dimension 
means that the erroneous elements of second-order quantum theories are un-
correctable.   

6. Concluding Remarks 

This work discusses the significance of density in quantum theories. It is proved 
that this quite neglected issue is required for the coherence of any specific quan-
tum theory as well as for its ability to explain experimental data. Particle density 
is the 0-component of the 4-current jµ , and energy-momentum densities are the 

0T µ  components of the energy-momentum tensor. Contemporary QFT textbooks 
show general expressions for these quantities, and their derivation utilizes the 
Noether theorem. 

The novelty of this work is the test of the coherence of specific quantum theo-
ries with respect to the Noether expressions for density. Standard QFT textbooks 
ignore this issue. Section 2 describes well-known principles that are used as the 
basis of the analysis: the correspondence principle, the variational principle, and 
the Noether theorem. These issues are discussed in mainstream textbooks. The 
analysis applies the dimension [Ln] of physical quantities, which is a well-defined 
quantity. Section 3 proves that the first-order Dirac theory of a massive spin-1/2 
particle yields coherent results. In contrast, Sections 4 and 5 prove that errone-
ous elements exist in second-order quantum theories, such as the KG theory, the 
electroweak theory, and the Higgs theory. The errors stem from the [L−1] dimen-
sion of the second-order quantum function φ  of these theories. The inability to 
change the dimension of φ  means that second-order quantum theories are un-
correctable. 

It is interesting to note that the above mentioned inherent problems of the se-
cond-order quantum theories are compatible with the Dirac lifelong objection to 
these theories [23]. 
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