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Abstract 
A critical look at living organisms, devices, socio-economic units, and social 
units reveals that at any point in time of their survival, there will be a 
well-defined continuum of states: good ⇌ bad; healthy ⇌ unhealthy; and 
functional ⇌ dysfunctional. Recent studies have shown that, the hazard func-
tion plays a crucial role in depicting the aging process. It is in trying to inves-
tigate the underlying processes of the probability distributions of survival 
functions, and an attempt to understand intuitively the concept of hazard rate 
functions that informed the conduct of this study. Simulation design and 
real-life tertiary data were employed in this study. The plot for the cumulative 
hazard function for the Weibull model gave us an intercept on the Y-axis as 
−3.314 and the intercept on the time-axis as 1.397. The curve was approx-
imately linear, this meant that the data used for the study fitted the model. 
The plot of the cumulative hazard function against time for the exponential 
model passed through the origin, implicitly, the data fitted the model. Further 
results revealed that as the hazard rates decreased from 0.061 ⇒ 0.051, sur-
vival probabilities increased from 0.941 ⇒ 0.950 respectively; and as the ha-
zard rates increased from 1.098 ⇒ 1.609, survival probabilities decreased from 
0.333 ⇒ 0.200 respectively. We noted again that, the risk of death was distri-
buted among all four BMI groupings, the effect of the BMI was not readily 
seen. Gender and age appeared not to contribute significantly towards death 
due to heart attack. We also saw that the hazard rate for the first few days for all 
the four categories of BMIs was about constant, on the 3rd and 4th days there 
was a significant increase in the hazard rates especially for the female obese 
category. For the male category, we noted that there were stepwise increases in 
the hazards of three of the BMI categories; underweight, obese and healthy 
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weights. This study has intuitively demonstrated, theorized, modelled, dis-
cussed and explored the relevance of the hazard model in assessing risk. 
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1. Introduction 

A critical look at organisms like human beings and animals; devices like phones 
and computer sets; socio-economic units like organizations and labor unions; 
and social units like families and churches, reveals that at any point in time of 
their survival, there will be a well-defined state. A patient, may be alive or dead 
after some medical treatment, a workforce may be out of work due to injuries, 
and machinery may either be down or functioning. We notice that risk is in-
evitable to all these entities. One of the topics which are of great importance in 
biostatistics is the hazard rate function which assumes its importance in the cal-
culation of risk rates. Over the years, researchers have been estimating the ha-
zard rate function using the Kaplan-Meier and Nelson-Aalen. Hazard rate func-
tion is an important concept that can be used to postulate life distributions in 
the presence of several competing risk factors, it is perhaps the most popular of 
the techniques used in modeling and analyzing survival data. The most common 
use of the function is to model an entity’s chance of death as a function of their 
age. It can also be used to model any other time-dependent event of interest. The 
function models the occurrence of only one event, namely the first event, whe-
reas the intensity function models the occurrence of a sequence of events over 
time. This is due to its intuitive interpretation as the amount of risk associated 
with a unit at age t. Another reason for its popularity is that it is a special case of 
the intensity function for a non-homogeneous Poisson process. Intuitively, if we 
have data with discrete times in weeks, months, or years, we could get an intui-
tive idea of the hazard rate. The hazard rate is the unobserved rate at which 
events occur. For instance, if the hazard rate was constant over time and it was 
equal to 2, this would mean that one should expect 2 events to occur in a unit 
time interval. Again, if one entity had a hazard rate of 1.5 at time t and a second 
entity had a hazard rate of 3.0 at time t, then we could say that the second enti-
ty’s risk of an event would be twice as much as the first one at time. The most 
common use of the function is to model an entity’s chance of death as a function 
of their age. It can also be used to model any other time-dependent event of in-
terest. It is important to note that though the hazard rate is an un-observed va-
riable, it controls both the occurrence and the timing of the events. It is the fun-
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damental dependent variable in survival analysis. The derivative of the survi-
vorship function which is the hazard function is the instantaneous risk of death. 
The function measures the conditional probability of a failure, given that the 
entity has worked past a time point t, apparently, the function measures the in-
stantaneous risk of having an event at time t given that the entity has survived 
up to t. In perspective, the hazard rate function is more informative about the 
underlying mechanism of failure than the other techniques used in analyzing 
lifetime distributions. The hazard function assumes other aliases in other fields: 
Force of mortality or force of decrement in demography and actuarial sciences; 
intensity function in stochastic processes; in vital statistics and in the life 
sciences, it is known as age-specific failure rate; inverse of the Mill’s ratio in 
economics; in point process and extreme value theory it is known as the rate 
function or intensity function; in the engineering sciences, it is known as the 
failure rate and in reliability analysis, it is known as conditional failure rate. 
The failure density (pdf) measures the overall speed of failures whiles the ha-
zard rate measures the dynamic speed of failures. The hazard rate for the oc-
currence of events may be increasing, decreasing, constant, bathtub-shaped or 
hump-shaped. Events where there are wear and tear or which are connected to 
aging normally produce increasing hazards with time, events like death of a 
child at age five and beyond normally produces decreasing hazards of deaths 
with time. Bathtub hazards normally occur in populations followed from birth to 
death. If the hazard for an event increases steadily and starts declining with time 
then the hazard curve is called the hump-shaped, this type of hazard is asso-
ciated with hazards of death after surgery. For discrete hazard rates ( )h t : 

( )0 1h t≤ ≤ . In other words, the hazard rate or function cannot be negative. 
Cox-Oakes (1984) as contained in Wu, [1] provided reasons why considera-

tion of the hazard rate function may be a good idea than other methods used in 
summarizing survival analysis: 
• it is instructive to consider the risk attached to an entity which is alive at age 

t; 
• useful in the comparison of groups of individuals; 
• convenient when there is censoring or several types of failures; 
• simple to compare with an exponential distribution; and 
• It is the special form for the single failure system of the complete intensity. 

Another key feature of the hazard function has to do with how the shape of 
the hazard function could influence other functions of interest such as the sur-
vival function. Figure 1, illustrates a hazard function with a ‘bathtub shape’ (ob-
served failure rate). This graph is depicting the hazard function for the survival 
of a patient. At time 0t = , the patient was having a surgery (heart surgery), the 
risk of dying was high, therefore, the patient would have a very high hazard. Af-
ter a successful surgery, the hazard function decreases. At another point in time, 
the patient’s condition might remain stable for some time, the next time you ob-
serve, you might see the patient experiencing deterioration and the chances of 
dying increases again, thus, the hazard function starts increasing. Besides, the 
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Figure 1. Graph showing “Bathtub shape”; increasing hazard rate; decreasing hazard rate; and constant 
hazard rate. 

 
bathtub shape, Figure 1 also presents the shapes of the three other curves; in-
creasing hazard rate (wear out failure); decreasing hazard rate (early infant mor-
tality failure); and constant hazard rate. The hazard function may not seem ex-
citing to model compared with some other functions, but it is of interest to note 
that functions such as the cumulative hazard function and survival function are 
derived from the hazard rate function [Equation (7) and Equation (8) respec-
tively]. Once we model the hazard rate function, we could easily obtain these 
other functions. When we graph the Nelson-Aalen cumulative hazard function 
on the vertical axis and the Cox Snell residuals on the horizontal axis, it gives us 
the opportunity to compare the hazard function to the diagonal line. If the ha-
zard function follows the 45-degree line, then, we could say that the function has 
approximately an exponential distribution with a hazard rate of one (1), again, 
the model fits the data well as in UCLA [2]. 

In survival analysis, some researchers, Clark et al. [3] and Park et al. [4] who 
study the timing and occurrence of event, often analyze the probability distribu-
tions of the time preceding the occurrence of the event. They focus mostly on 
the end result of the process, rather than the processes that generated the end 
results, but in real life, apart from chance events, most events do not just hap-
pen, there may be some underlying developments preceding the events. When 
researchers consider the underlying processes leading to the end result, it might 
improve the understanding of the concept generating the end result, some stu-
dies have revealed that the hazard function plays a crucial role in characterizing 
the aging process. It is in trying to find the underlying concepts which generate 
the end result, and an attempt to understand intuitively the concept of hazard 
rate functions that this study was conducted. The study was carried out as fol-
lows: Looked at some concepts underlying the hazard rate function; provided 
theoretical and mathematical definitions; established some theorems and prop-
erties and provided proofs; identified real-life situations that generated the vari-
ous shapes of the hazard rate function; formulated the hazard rate function and 
hazard rate models; undertook some computations with intuitive interpretation; 
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simulated some studies using the R software; and finally, applied the principle 
governing the hazard rate function to real-life data. 

2. Conceptual Framework 

Eiser et al. [5], underscored the fact that understanding how people interpret 
risks and choose actions based on their interpretations was vital to any strategy 
for disaster reduction. Kurniasari et al. [6] have maintained that in studying sur-
vival analysis, one of the key points worthy of investigation was hazard rate. 
They averred that the hazard function was an alternative characterization of the 
distribution of T (T being a continuous random variable with probability density 
function (pdf) ( )f t  and cumulative distribution function ( ) ( )F t tPr T= < , 
giving the probability that the event has occurred by time t). Zhang and Peng [7] 
established that crossing hazard functions had extensive applications in model-
ing survival data and maintained that existing studies in the literature mainly 
focused on comparing crossed hazard functions and estimating the time at 
which the hazard functions crossed, and that there was little theoretical work on 
conditions under which hazard functions from a model will have a crossing. 
Blackstone [8] has noted that the hazard function was the instantaneous rate of 
occurrence of a time-related event, such as death and indicated that there were 
methods, we could use to determine the hazard function from clinical outcome 
data, to identifying risk factors for higher hazard, and to generating pa-
tient-specific predictions. 

Read and Vogel [9] have maintained that the field of hazard function analysis 
(HFA) involved a probabilistic assessment of the time to failure T of an event of 
interest. They intimated that the hazard function ( )h t , was central to HFA, and 
averred that for a stationary process, the probability distribution function (pdf) 
of the return period always followed an exponential distribution, the same could 
not be said for nonstationary processes. Similar views were espoused by Upad-
hyay [10] who noted that hazard rate function (HRF) was an important concept 
for researchers and practitioners working in areas such as engineering statistics, 
and biomedical sciences. He stated that hazard rate function had the tendency to 
provide an alternative characterization for the distribution of a random variable, 
especially when dealing with the lifetime data. Boland et al. [11] has adjudicated 
that hazard rate ordering was an ordering for random variables which compared 
lifetimes with their hazard rate functions. They maintained that the hazard rate 
ordering was particularly useful in reliability theory and survival analysis, owing 
to the importance of the hazard rate function in those areas. The research con-
ducted by Greenwich [12] culminated in the use of a unimodal hazard rate func-
tion in modeling failure rate that had a relatively high rate of failure in the mid-
dle of expected life time. 

2.1. Definition of Hazard Function 

The hazard rate measures the propensity of an item to fail or die depending on 
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the age it has reached. It is part of a wider branch of statistics called survival 
analysis. Hazard rate is part of a larger equation called the hazard function. The 
hazard function can be defined as the instantaneous risk that the event of inter-
est happens, within a small time period. The hazard function is a conditional 
failure rate, in that, it is conditioned on the premises that a person has actually 
survived until time t as in Hinchliffe [13]. In other words, the function at year 
ten (10) only applies to those who were actually alive in year 10; it does not take 
into consideration those who died in previous years. The hazard function is used 
to model the distribution of data in survival analysis. It is used to model a sub-
jects’ chances of death as a function of age, again, it models periods with the 
highest or lowest chances of an event. It can also be used to model any other 
time-dependent variable. The Kaplan Meier (KM) method uses rates for the ha-
zard function with no upper limit, this is preferred in clinical trials. In actuarial 
method, the hazard function is stated as a proportion as stated in Glen [14]. The 
hazard function ( )|h t z  or simply h(t) is defined mathematically as: 

( ) { }
0

1| lim | ,
t

h t z P t T t t T t Z z
t∆ → +

= ≤ < + ∆ ≥ =
∆

.           (1) 

where, 
Z = m-dimensional vector of covariates; 
h(t|z) = h(t) = Hazard function; 
P = Conditional probability of failure; 
t = survived up to time t; 
T= random variable representing the survival time, which is nothing but the 

time-to-event; 
∆t = given small time period; 
(t + ∆) = Time interval. 

2.2. Formulation of the Hazard Function 

The numerator of the expression in Equation (1) is the conditional probability 
that the event will occur in the interval ( ),t t t+ ∆  given that it has not occurred 
earlier; the denominator ∆t is the width of the interval. Dividing the numerator 
by the denominator gives us a rate of event occurrence per unit of time. The lim-
it as the width approaches zero, gives us the instantaneous rate of occurrence. 
The conditional probability in the numerator may be written as the ratio of the 
joint probability that T is in the interval ( ),t t t+ ∆  and T t≥  to the probability 
of the condition T t≥ . The former may be written as ( )  f t t∆  for small ∆t 
while the latter is ( )S t . We must note that the hazard function is not a proba-
bility value but a rate value because we are finding the ratio of the probability to 
a time interval. The units of ( )h t  is probability/probability/time which is 
1/time. It is counts per time (which gives us rate). Estimating the hazard func-
tion ( )h t  is not straight forward. We must first estimate the cumulative hazard 
function ( )H t  which is used as an intermediary to estimating ( )h t . We can 
use the Nelson-Aalen estimator to first estimate ( )H t  and then proceed from 
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there to calculate the hazard function. To find an expression for ( )h t , we 
should realize that ( )h t  must be a conditional probability; it is conditional on 
not having the event up to time t (or conditional on surviving to time t). 

From probability theory, the conditional probability is given by: 

( ) ( )
( )
and

\
Pr A B

Pr A B
Pr B

= .                    (2) 

where A = having the event at time t; 
B = not having the event by time t. 

Here ( ) dand
d

F FP A B
t t

∆
= =
∆

. That is, the delta probability of the event per 

unit time of ∆t and we cannot compute the probability at exactly time t is zero. 

( ) ( )P B S t= , as defined earlier. 

( )
( )

( ) ( )

d
dd

F t
fth t

S t S t
= =                       (3) 

where, 
( )f t  = the probability density function of survival time, 
( )S t  = the survivor function (the probability of surviving beyond a certain 

point in time). 
If T is a continuous random variable then, 

( ) ( ) ( )
( ) ( )| d ln

f t
h t z h t S t

S t
= = = −    .               (4) 

To prove that ( ) ( )ln S t h t= −                   (5) 

We proceed using this rule of calculus ( ){ }d 1 dln
d d

uu
t u t

=        (6) 

Equation (4), Equation (5) and Equation (6) gives 

( ) ( )
( )

( )
( )

( )
( )

( )
( ) ( )

d 1 dd ln 1d d d
d d

F t tS t S t S t t f t
h t

t S t t S t S t S t
−  − = = = = = − . 

The cumulative hazard function ( )H t  is also defined as, 

( ) ( ) ( )
0

d ln
t

H t h u u S t= = −   ∫ .                  (7) 

Thus, for a continuous random variable, 

( ) ( ) ( )
0

exp exp d
t

S t H t h u u = − = −     ∫ .              (8) 

The results from Equation (3) to Equation (8) show that the hazard and sur-
vival functions provide alternative but equivalent characterizations of the distri-
bution of T. Given the survival function we can either differentiate to obtain the 
density function, and then calculate the hazard rate using Equation (4). Given 
the hazard function, we can always integrate to obtain the cumulative hazard 
and then proceed to obtain the survival function using Equation (5). 
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Deriving the Functions f(t),s(t) and h(t) for the Exponential Function 
Let ( )F t  denote the cumulative distribution function (cdf). ( )F t  is the cu-
mulative probability of an event up to time t. 

Let ( ) ( )1s t F t= − , ( )s t  is the survival probability. 
If we take the first derivative of a cumulative distribution function, we get the 

probability density function (pdf) ( )f t . That is,  

( ) ( )d
d
FF t f t
t

′ = = .                      (9) 

( ) d e
d

tFf t
t

λλ −= = . 

( ) e ts t λ−= . 

( ) ( )
( )

e
e

t

t

f t
h t

S t

λ

λ

λ λ
−

−= = = . 

When we want to predict the chances of failure at age t for a newly born or 
produced unit having ( )F t  as its cdf we have to use ( )f t , i.e., ( )f t , is an 
unconditional predictor for risk to fail at t. When we know that a unit has sur-
vived up to t, we have to use ( )h t  which is a conditional predictor. Comparing 
numerically ( )f t  to ( )h t  we notice that: 
• ( ) ( )0 0f h= ; and 
• ( ) ( )0f t h≥  0t∀ > ; ( ) 1S t ≤  0t∀ > . 

There is a fundamental difference between the hazard rate function ( )h t  
and the conditional failure density ( )|f y T t> . 

1) ( )h t  is a function of t, the age reached, whereas ( )|f y T t>  is a func-
tion of the future lifetime Y following a given age t. 

2) Both, ( )h t  and ( )|f y T t>  are non-negative, but ( )h t  is not a density 
function as it is not normalized, instead we have ( )

0
dh t t

∞
= ∞∫ . 

2.3. Properties of the Hazard Rate Function 

Theorem 1: Any function ( )h t  is a hazard rate if and only if it satisfies the 
following properties: 

1) For all t positive, ( ) 0h t ≥ . 
2) It has no upper bound, ( )h t  can be greater than 1 and can go up to ∞, 

that is, ( )
0

dh t t
∞

= ∞∫ . 
3) ( )h t  is increasing and then decreasing or vice versa with time. 
Proof 
1) ( ) 0f t ≥ ; ( ) 0s t > , thus ( ) ( ) ( ) 0h t f t s t= ≥ . 
2) ( ) ( ) ( ) ( ) ( )

00 0
d d ln ln ln 0 ln ln1 ln 0h t t s t s t s s

∞ ∞ ∞
= − = − = − ∞ = − = ∞  ∫ ∫ . 

3) ( ) 0h t ≥  and ( ) ( )0 0lim limt tf t h t→ →= ; ( ) ( )f t h t≥  0t∀ > . thus, there 
is at least an interval such that h is increasing or decreasing, or vice versa. We 
distinguish between: 
• monotone hazard rates: which increases, when the unit is wearing out with 

age, or decreases, when the unit is improving with age; and 
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• non-monotone hazard rates: which is either bathtub-shaped as with the case 
of age-specific death rate or as an inverted bathtub-shape as mentioned in 
Rinne [15]. 

2.4. Expressing the Hazard rate Function in Terms of pdf, cdf 

( ) ( )
( )

( )
( )

( )
( )

( )d ln
1 dd

t

f t F t S t S t
h t

F t S t tf u u
∞

′ ′
= = = − = −

−∫
         (10) 

Integrating Equation (10), we shall get 

( ) ( ) ( ) ( ) ( ) ( )
00 0

d ln
d ln ln ln 0 ln

d
t t ts t
h u u s t s t s s t

t
= − = − = − − = −  ∫ ∫   (11) 

Exponentiating Equation (11), we shall obtain 

( ) ( ){ }0
exp d

t
s t h u u= −∫                     (12) 

so 

( ) ( ){ }0
1 exp d

t
F t h u u= − −∫                   (13) 

Finally, differentiating Equation (12) yields ( )f t  in terms of ( )h t : 

( ) ( ) ( ){ }( )
( ) ( ){ }0

0

d 1 exp dd
exp d

d d

t

t
h u uF t

f t h t h u u
t t

− −
= = = −

∫
∫     (14) 

2.5. Defining Distributions by Their Hazard Rate Functions 

We formulate the hazard rate models from Equations (12), (13) and (14). 

2.5.1. The Constant Hazard Model: Exponential Distribution 

( )h t λ=  0t∀ ≥ , 0λ > . 

( ) ( ) ( ){ }
( )

0

0

exp d

exp d e

t

t t

f t h t h u u

u λλ λ λ −

= −

= − =

∫

∫
.                (15) 

( ) ( ){ }
{ }

0

0

1 exp d

1 exp d 1 e

t

t t

F t h u u

u λλ λ −

= − −

= − − = −

∫

∫
.               (16) 

( ) ( ){ } { }0 0
exp d exp d e

t t tS t h u u u λλ −= − = − =∫ ∫ .          (17) 

Implications of the Constant Hazard Model 

Let us suppose that 0β >  is a constant and 
1λ
β

= . A constant hazard 

model is usually proposed where the risk of failure does not change with time. 
The constant hazard model is given by ( )h t λ=  for 0t > , The survival func-
tion associated to this is given by; 
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( ) ( )( )0 0 0

1 1 1exp d exp d exp 1d exp
t t t

S t h u u u u
β β β

     
= − = − = − = −     

     
∫ ∫ ∫ . 

The probability density function associated with it is given by 

( ) ( ) 1 exp tf t S t
β β

 ′= − = − 
 

, 

the mean ( )E T β=  and the variance ( ) 2Var T β= . 
Definition 1: The survival of lifetime variable T follows an exponential prob-

ability model with mean 0β > , we can write ( )expT β≈  when the hazard is 

constant with ( ) 1h t
β

= . 

The Constant hazard model is one of the frequently used models for modeling 
lifetimes of components; the exponential model often fits survival models well; 
possible reasons may include the fact that the time between events in a Poisson 
process are exponentially distributed. 

Theorem 1: If ( )expT β≈ , then for any 0T >  and 0s > , it follows that 

( ) ( ) |P T t s T s P T s> + > = >  

Proof: The probability ( ) |P T t s T s> + > , may be interpreted as a conditional 

probability, ( ) ( ) ( ) 1|P A B P A B P B −= ∩ , with the identification of the events A 

and B as { }A T t s= > +  and { }B T s= > . Since 0t >  in order that a survival 
time be longer than both t and t s+ , it must exceed t s+ . Therefore, the event 

A B∩  may be written as { }T t s> + . Again since ( ) exp rP T r
β

 
> = − 

 
, for any 

positive value of r: 

( )
( ) ( ){ }

( )
( ) ( ){ }

( )

( )

|

exp
exp

exp

P T t s T s
P T t s T s

P T s
P T t s T s

P T s
t s

t S t
s
β

β
β

> + >
> + > =

>
> + >

=
>

 +
−    = = − =    − 
 





 

Theorem 1 says in effect that for a component with an exponentially distri-
buted survival time, the probability that a 4-month-old component lasts 5 more 
weeks in operation is the same as the probability that a 7-month-old component 
lasts 5 more weeks in operation. This means that the components survival time 
do not pass through a period of old age, where there is an increased risk of fail-
ure. In this case an exponential survival time is different from a human survival 
time where the survival distributions shrink with age Blossfeld et al. and Lawless 
[17] [18]. 

Theorem 2: If ( )expT β≈ , then ( )  exp 1T
β
≈ . 
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This theorem suggests that if we multiply or divide exponential lifetimes or 
survival times by a constant, then the mean time to failure correspondingly mul-
tiplies or divides by the same constant. 

2.5.2. The Linear Hazard Rate Model 

( )h t a bt= +  0, 0, 0t a b∀ ≥ ≥ >  

( ) ( ) ( ){ }
( ) ( )( )
( )

0

0

2

exp d

exp d

exp
2

t

t

f t h t h u u

a bt a bt t

bta bt at

= −

= + − +

=
 
 


+ −


−

∫

∫                 (18) 

( ) ( ){ } { }
2

0 0
1 exp d 1 exp d 1 exp

2
t t btF t h u u u atλ= − − = − − = −

 
 


−


−∫ ∫   (19) 

( ) ( ){ } { }
2

0 0
exp d exp d exp

2
t t btS t h u u u atλ

 
= − = − = − − 

 
∫ ∫       (20) 

For 0a = , this expression is referred to as Rayleigh distribution. 

2.5.3. The Power Hazard Rate Model 

( ) 1ch t ct −=  0, 0t c∀ ≥ >  

( ) ( ) ( ){ } ( ) { }1
0 0

exp d exp d exp
t t c cf t h t h u u u ct tλ λ −= − = − = −∫ ∫      (21) 

( ) ( ){ } { } { }0 0
1 exp d 1 exp d 1 exp

t t cF t h u u u tλ= − − = − − = − −∫ ∫      (22) 

( ) ( ){ } { } { }0 0
exp d exp d exp

t t cS t h u u u tλ= − = − = −∫ ∫          (23) 

This is the reduced Weibull distribution. 
Let us suppose that 0c >  and 0β >  are constants. A power hazard model 

is usually proposed where imminent risk of failure is rapidly increasing with 
time. 

The power hazard model can be rewritten as: ( ) 1cch t t
β

−= , for 0t > . 

The corresponding survival function is given by; 

( ) ( )( ) 1
0 0

1
0

exp d exp d

1exp d exp

t t c
c

c
t c

c

cS t h u u u u

tcu u

β

ββ

−

−

 
= − = − 

 

   
= − = −   

  

∫ ∫

∫
 

Therefore, the survival function for a variable with power hazard function has 
a particularly simple form where the power is translated to the exponent; 

( ) exp
c

tS t
β

 
= − 

  . 
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Probability density function ( ) ( )f t S t′= − , is given by; 

( ) 1e

ct
c

c

cf t t β

β

 
− 

−  = , 0t > . 

Definition 2: The lifetime or survival time random variable T follows a Wei-
bul distribution model with parameter 0c >  and 0β > , and we write 

( )  Weibull ,T c β≈ , when T has a power hazard of the form; ( ) 1cch t t
β

−= , for 

0t > . The parameter β  is a scale parameter. 

Theorem 3: If ( )Weibull ,T c β≈ , then ( )Weibull ,1T c
β
≈ . 

The Weibull model has a very simple hazard function and a simple closed 
form survival function, these along with its two-parameter flexibility; makes it a 
very useful model in many engineering contexts. 

Definition 3: The gamma function ( )αΓ  is defined for all 0α > , by the 

integral ( ) 1

0

e dtt t
α

αα − −Γ = ∫ . 

Some properties of the gamma function are listed below for later discussion 
and use 

a) ( )1 1Γ = . 

b) 
1
2

 Γ = π 
 

. 

c) ( ) ( )1x x xΓ + = Γ , for any real positive number x. 
d) ( )1 !n nΓ + = , 1,2n =  , a positive integer. 
We will use the properties of gamma listed above to find the mean and va-

riance of the Weibull. 
Theorem 4: Using the distribution ( )Weibull ,1X α≈ , the moments about 0 

are given by 

( ) 1

0 0

e d e d 1
rr r x u rE X x x x u u

α
ααα

α

∞ ∞
− − −  = = = Γ + 

 ∫ ∫ .         (24) 

We achieve the above expression by substituting u xα= . 
Theorem 5: If ( )Wiebull ,Y Xβ α β= ≈ , then the rth moment about 0 is 

given by; 

( ) ( ) ( ) 1r r r r r r rE Y E X E Xβ β β
α

 = = = Γ + 
 

,           (25) 

The first and second moments about 0 are used to write the mean ( )E Y  and 
the variance ( ) ( )22E Y E Y−  of Y. 

Theorem 6: If ( )Weibull ,Y α β≈ , then 1 rβ
α

 Γ + 
 

, and variance of Y is 

given by:  

( )
2

2 2 11 1Var Y β
α α

    = Γ + −Γ +    
     

.              (26) 
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We note from the Theorem 6, the following, when 1α = , the Weibull model 
reduces to an exponential model with constant hazards, that is  

( ) ( )Weibull 1, expβ β≡ . When 1α > , the Weibull model is increasing, when 
1α < , the Weibull hazard function is decreasing. These results make the Weibul 

model very flexible in a variety of situations; that is, increasing hazards, decreas-
ing hazards and constant hazards as in Geskus [19]. 

2.5.4. The Exponential Hazard Rate Model 

( ) eth t = , 0t ≥ . 

( ) ( ) ( ){ } ( ) { }0 0
exp d exp d e exp e 1

t t t tf t h t h u u uλ λ= − = − = − +∫ ∫ .   (27) 

( ) ( ){ } { } { }0 0
1 exp d 1 exp d 1 exp e

t t tF t h u u uλ= − − = − − = − −∫ ∫ .     (28) 

( ) ( ){ } { } { }0 0
exp d exp d exp e

t t tS t h u u uλ= − = − = −∫ ∫ .        (29) 

This is recognized as a Gompertz distribution. 

3. Materials and Methods 

A mixture of various methods and materials were employed in this study: A 
framework of concepts were systematically reviewed and put together; computa-
tional discourses of data meant to illustrate the exponential model and the Wei-
bull models were done using the R Software, along with the use of the software, a 
manual computation of the hazard rate was also done. A tertiary data was ob-
tained from the Worcestor Heart attack study as contained in Hosmer and Le-
meshow [20]. 

3.1. Estimates of the Hazard Using Nelson-Aalen Estimate 

An alternative to the Kaplan-Meier curve is the Nelson-Aalen estimator, which 
is based on using a counting process approach to estimate the cumulative hazard 
function ( )H t . The estimate of ( )H t  can then be used to estimate ( )S t . Es-
timates of ( )S t  derived using this method will always be greater than the K-M 
estimate, but the difference will be small between the two methods in large sam-
ples. 

( )

( ) 2

,

ˆ

i

i

i

t t i

i

t t i

d
H t

n
d

Var H t
n

≤

≤

=

  = 

∑

∑





 
The Nelson-Aalen estimate is the first order Taylor approximation of 
( )log 1 x−  about 0x = , where i ix d n= . 

3.2. Intuitive Explanations 

With reference to Table 1, for an entity who died (obtained the event of interest) 
at the 8th month they should have to be alive at the 7th month. Therefore, the  
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Table 1. Estimation of Survival probabilities ( )Ŝ t  and the Nelson-Aalen Hazard Rates 

( )H t  using a Hypothetical data showing the time in months that it took an entity to fail 

(obtain the event of interest). 

Time 
(months) 

it  

Frequency 

if  

Number of 
Failures 

id  

Number 
Censored 

iC  

Risk Set 

in  

Survival 
Probabilities 

( )Ŝ t
 

Nelson-Aalen 
Hazard Rates 

( )H t
 

0 0 0 0 50 1.00 0.00 

1 8 6 2 50 0.88 0.12 

2 6 3 3 42 0.82 0.19 

3 5 3 2 36 0.75 0.27 

4 4 3 1 31 0.68 0.37 

5 4 3 1 27 0.60 0.48 

6 3 2 1 23 0.55 0.57 

7 3 2 1 20 0.50 0.67 

8 2 2 0 17 0.44 0.79 

9 2 2 0 15 0.38 0.92 

10 2 2 0 13 0.32 1.07 

11 2 1 1 11 0.29 1.17 

12 1 1 0 9 0.26 1.28 

13 1 1 0 8 0.23 1.40 

14 2 2 0 7 0.16 1.69 

15 2 2 0 5 0.10 2.09 

19 1 0* 1 3 ̶ ̶ 

22 1 1 0 2 0.05 2.57 

24 1 0* 1 1 ̶ ̶ 

 
hazard at the 8th month (0.79) was the failure rate per that month, conditioned 
on the fact that the entity survived to the 7th month. As the months progressed, 
the hazard for an entity who obtained the event of interest also increased. There 
is a sharp contrast between the survival probability and the Hazard rate; whereas 
the survival probability focused on the probability that an entity was not failing 
(not obtaining the event of interest), the hazard rate focuses on failing, that is, it 
focuses on the fact that the event of interest occurs. Thus, in some sense the ha-
zard rate function could be considered as giving the opposite side of the infor-
mation giving by the survival probabilities. For instance, the probability that an 
entity will survive for 12 months or more was 0.26, whereas the hazard rate or 
the risk that the entity will fail (die) at the 12th month given that they survived to 
the 11th month was 1.28. 

NB: Table 1 was arrived at using the formula below: 
i

i

t t i

d
H

n≤

= ∑

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Month 0; ( ) 0 0.00H t = =  
Month 1; ( ) 6 50 0.12H t = =  
Month 2; ( ) 0.12 3 42 0.19H t = + =  
Month 3; ( ) 0.19 3 36 0.27H t = + =  
Month 4; ( ) 0.27 3 31 0.37H t = + =  
Month 5; ( ) 0.37 3 27 0.48H t = + =  
Month 6; ( ) 0.48 2 23 0.57H t = + =  
Month 7; ( ) 0.57 2 20 0.67H t = + =  

Month 8; ( ) 0.67 2 17 0.79H t = + =  

Month 9; ( ) 0.79 2 15 0.92H t = + =  

Month 10; ( ) 0.92 2 13 1.07H t = + =  

Month 11; ( ) 0.92 2 13 1.07H t = + =  
Month 12; ( ) 1.17 1 9 1.28H t = + =  
Month 13; ( ) 1.28 1 8 1.40H t = + =  
Month 14; ( ) 1.40 2 7 1.69H t = + =  
Month 15; ( ) 1.69 2 5 2.09H t = + =  
Month 22; ( ) 2.09 1 2 2.59H t = + =  
We note that months 19 and 24 are left out because in these two months no 

person failed. 

3.3. Intuitive Interpretation of f(t), F(t), S(t), h(t) and H(t) 

( )f t : This is the unconditional predictor for risk to occur at time t. Beginning 
from the point of commencement. This gives us the probability distribution of 
time an entity is at risk of dying. 

( )F t  This is the cumulative distribution. This function gives us the percen-
tage of the entities that will be dead at time T. 

( ) ( )S t I F t= − : This is the survival function; it gives us the percentage of the 
species that will be alive at time T. 

( )h t : This is the hazard function. The function measures the conditional 
probability of a failure, given that the entity has worked past a time point t. 

( )H t : This is the cumulative hazard function. It is the sum of all the hazard 
values for failed units with ranks up to and including that failed unit. it measures 
the total amount of risk that has been accumulated up to time t as explained in 
NIST/SEMATECH and Allison [21] [22]. 

3.4. Calculation of Cumulative Hazards 

The steps needed to arrive at the cumulative hazards is shown clearly in Table 2. 
Using data from Table 2, a plot of the cumulative hazard for the exponential 
distribution ( )H t tα=  was done by plotting figures in column seven on the 
ordinate axis against figures in column two on the abscissa axis, a linear plot was 
obtained with the gradient equal to the value of α . If the data fits the model, 
the plot would be a straight line passing through the origin with slope equal to. 
The plot for the cumulative hazard function for the exponential model is shown  
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Table 2. Display of the calculation of the cumulative hazard rates of thirteen light bulbs 
tested for 380 hours, within the period, seven failures were observed at times 40, 57, 120, 
135, 150, 178, 290 and 380 hours. Five bulbs could not survive the testing process; they 
were therefore censored at various times as follows: 55, 60, and 70, 240 and 350 hours. 

Items 
Survival  
time T 

Censoring Status 
(3) 

Increasing  
order of  
Ranking 

Decreasing  
order of  

Ranking (5) 

Hazard 
(3)/(5) 

Cum.  
Hazard 

1 40 1 1 13 1/13 = 0.08 0.08 

2 55 0 2 12 0 0.00 

3 57 1 3 11 1/11 = 0.09 0.17 

4 60 0 4 10 0 0.00 

5 70 0 5 9 0 0.00 

6 120 1 6 8 1/8 = 0.13 0.30 

7 135 1 7 7 1/7 = 0.14 0.44 

8 150 1 8 6 1/6 = 0.17 0.61 

9 178 1 9 5 1/5 = 0.20 0.81 

10 240 0 10 4 0 0.00 

11 290 1 11 3 1/3 = 0.33 1.14 

12 350 0 12 2 0 0.00 

13 380 1 13 1 1/1 = 1.00 2.14 

 
in Figure 2. We can see from the plot that the plot passed through the origin. 
From Table 2, a plot of the cumulative hazard for the Weibull distribution  

( ) tH t
γ

α
 =  
 

 was also done by plotting figures in column seven on the ordinate  

axis against figures in column two on the abscissa axis. This plot was done on a 
log-log scale. If the data fits the Weibull model, then a linear plot will be ob-
tained with the gradient equal to the value of γ . The plot for the cumulative 
hazard function for the Weibull model is shown in Figure 3. The intercept on 
the Y-axis was −3.314 while that on the time-axis (x-axis) was 1.397. 

3.5. Simulation Design 

Simulation studies are essential for appreciating and appraising statistical mod-
els. In simulating survival times, we often assume an exponential or Weibull dis-
tribution for the baseline hazard function. Based on this, a simulation-based 
comparison of the exponential model and the Weibull model was done. The 
graphs of the simulation results are plotted as in Figure 2 and Figure 3. 

3.6. Applications of the Hazard Rate Function to Real Data 

The importance of the hazard rate function is demonstrated. In this demonstra-
tion, hundred (100) subjects of Worcestor heart attack study from [18] was used.  

https://doi.org/10.4236/oalib.1108275


A. J. Turkson 
 

 

DOI: 10.4236/oalib.1108275 17 Open Access Library Journal 
 

 

 
Figure 2. Plot of the cumulative hazard rates against Survival time for the Exponential 
model. 

 

 
Figure 3. Plot of the cumulative hazard rates against Survival time for the Weibull model. 

 
The data examined several factors including age at hospitalization, gender, and 
Body Mass Index that may influence survival times after heart attack. The fol-
low-up time for all subjects begun after hospital admission and ends with death 
or loss to follow-up. The data was keyed into IBM SPSS version 21 and the sur-
vival analysis function, specifically, the Kaplan-Meier Operator was used to ob-
tain both the hazard function rates and the plots, the results of the first forty (40) 
subjects were shown in this paper in Table 5. 

4. Results and Discussion 

Table 3 gives us the shape and application of the various types of hazards ap-
plied in survival analysis. Table 4 gives us the percentage contribution of each of 
the variables used to do the analysis. With the age variable, a greater percentage 
of them were in the 81 - 90 years bracket, with the gender, majority of the sub-
jects were males, with respect to the BMI, a greater percentage of the subjects 
were within the healthy weight bracket, finally, about the same percentage ob-
tained the event of interest. A cursory look at Table 5 reveals the following: As 
the hazard rate decreases (0.061), (0.051) survival probabilities increase (0.941), 
(0.950) respectively; as the hazard rate increases (1.098), (1.609), survival proba-
bilities decrease (0.333), (0.200) respectively. We note again that, the risk of 
death was distributed among all four BMI groupings, this goes to tell us that the  
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Table 3. Various Shapes of Hazard Functions and their Applications Aalen and Gjessing [14] [16]. 

S/N Shapes Applications Aging Factor 

1. Constant (Random) Failure 
Rate 

• Applied to entities who have the propensity to fail 
randomly or by chance 

• unpredictable failures 
• Third-party damage 
• Material defects 

• Random 

2. Increasing failure Rate • In most situations this is the hazard we experience 
• Machinery, organism, 
• Consumer products 
• Corrosion 
• Fatigue 

• Time dependent 

3. Decreasing failure Rate • Not very common 
• New typist employed in a company 

• Time dependent 

4. Bathtub-shape failure rate • Patients who undergo surgery 
• infant mortality 

• Time dependent 

 
Table 4. Demographic Display of Variables and their Percentages in the Hazard Rate 
Function. 

Variable Frequency Percentage 

Age   

31 - 40 4 4.0 

41 - 50 11 11.0 

51 - 60 13 13.0 

61 - 70 23 23.0 

71 - 80 24 24.0 

81 - 90 25 25.0 

Total 100 100.0 

Gender   

Males 65 65.0 

Females 35 35.0 

Total 100 100.0 

Body Mass Index   

Underweight 8 8.0 

Healthy Weight 33 33.0 

Overweight 31 31.0 

Obese 28 28.0 

Total 100 100.0 

Censoring Status   

Censored 49 49.0 

Uncensored 51 51.0 

Total 100 100.0 
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Table 5. Display of the first forty (40) subjects from the Worcestor Heart attack study obtained from [18] 
showcasing the survival function and corresponding Hazard rate functions. 

S/N 
Survival 

Time(days) 

Status 
1 = Death 

0 = Censored 
Age(years) 

Gender 
F = Female 
M = Male 

Body 
Mass 
Index 

Survival 
Function 

S(t) 

Hazard 
Function 

h(t) 

1 4 1 61 - 70 M Obese 0.850 0.163 

2 4 1 71 - 80 M Overweight 0.816 0.204 

3 11 1 61 - 70 F Underweight 0.000  

4 3 1 71 - 80 M Underweight 0.667 0.405 

5 8 1 81 - 90 F Underweight 0.400 0.916 

6 3 1 81 - 90 F Underweight 0.800 0.223 

7 9 1 81 - 90 F Healthy weight 0.381 0.965 

8 4 1 81 - 90 F Obese 0.500 0.693 

9 6 1 81 - 90 M Healthy weight 0.542 0.613 

10 7 1 71 - 80 M Obese 0.468 0.760 

11 6 1 81 - 90 M Underweight 0.333 10.098 

12 7 1 51 - 60 F Underweight 0.600 0.511 

13 6 1 81 - 90 F Healthy weight 0.635 0.454 

14 5 1 51 - 60 M Healthy weight 0.650 0.431 

15 10 1 71 - 80 F Underweight 0.200 1.609 

16 5 1 71 - 80 M Overweight 0.742 0.299 

17 7 1 71 - 80 M Overweight 0.494 0.705 

18 5 1 81 - 90 M Healthy weight 0.650 0.431 

19 6 1 61 - 70 F Overweight 0.589 0.529 

20 5 1 81 - 90 F Overweight 0.707 0.347 

21 5 1 81 - 90 F Healthy weight 0.741 0.300 

22 4 1 81 - 90 M Healthy weight 0.950 0.051 

23 8 1 81 - 90 F Healthy weight 0.508 0.677 

24 11 1 81 - 90 M Healthy weight 0.385 0.954 

25 5 1 51 - 60 M Healthy weight 0.650 0.431 

26 4 1 51 - 60 M Overweight 0.816 0.204 

27 4 1 81 - 90 F Healthy weight 0.833 0.182 

28 3 1 81 - 90 M Overweight 0.941 0.061 

29 3 1 61 - 70 F Obese 0.667 0.405 

30 5 1 51 - 60 F Overweight 0.707 0.347 

31 5 1 41 - 50 M Obese 0.789 0.237 
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Continued 

32 7 1 71 - 80 M Obese 0.468 0.760 

33 4 1 41 - 50 F Overweight 0.909 0.095 

34 4 1 71 - 80 M Obese 0.850 0.162 

35 5 1 51 - 60 M Healthy weight 0.650 0.431 

36 5 1 41 - 50 M Healthy weight 0.650 0.431 

37 6 1 81 - 90 M Healthy weight 0.542 0.613 

38 7 1 71 - 80 M Healthy weight 0.481 0.731 

39 3 1 31 - 40 F Obese 0.667 0.405 

40 4 1 71 - 80 M Obese 0.850 0.162 

 

 
Figure 4. Display of the Kaplan-Meier Hazard rate curve for females who participated in the Worcestor 
Heart attack study. 

 
risk of death was dependent mostly on the identified disease, that is, heart attack, 
the effect of the BMI was not readily seen. Gender and age appear not to contri-
bute significantly towards death due to heart attack. In Figure 4, we see that the 
hazard rate for the first few days for all the four categories of the BMI were about 
constant, on the 3rd and 4th days there was a significant increase in the hazard 
rates especially for the female obese category. For the male category (Figure 5), 
we note that there were stepwise increases in the Hazards of three of the BMI 
categories; underweight, obese and healthy weights. With the overweight cate-
gory, there was a stepwise increase in the first few days after which the hazard 
rate became constant. 
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Figure 5. Display of the Kaplan-Meier Hazard rate curve for males who participated in the Worcestor 
Heart attack study. 

5. Conclusion 

In this study, it was conjectured that, in survival analysis, researchers studying 
the timing and occurrence of events, often analyze the probability distributions 
of the time preceding the occurrence of the event. They focus mostly on the end 
result of the process, rather than the processes that generated the end results. 
Research has it that, the hazard function plays a key role in characterizing the 
process of aging. It is in trying to investigate the underlying processes that lead 
to the end result, and an attempt to understand intuitively the concept of hazard 
rate functions which this study was conducted. The study was undertaken by 
conceptualizing the hazard function, providing a working definition of hazard 
rates and for the matter hazard functions, exploring the properties of the func-
tion with proofs, formulating the hazard function; appreciating the hazard mod-
els; computing and intuitively interpreting some principles governing the func-
tion, conducting simulation studies using the R software; and finally, application 
of the function to real-life data. It is concluded that this study has intuitively 
demonstrated, theorized, discussed and explored the relevance of the hazard 
model in assessing risk. 
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