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Abstract

In this paper, we provide a rigorous, derivation of asymptotic formula for the

largest eigenvalues usin convefgence estimation of the eigenvalues of a
j erators based on the polarisation tensors

g from the presence of small inhomogeneities re-

all Inhomogeneities, Laplace Operator

1. Introduction

In the past decades, the Laplacian spectrum has attracted wide attention and be-
come an area of great interest. It had been widely applied to solve problems in
fields, such as: randomized algorithms, combinational optimization problem and
machine learning.

One of the fields that paid particular attention to Laplacian spectrum is the
so-called the largest eigenvalue [1] [2]. It plays an important role in many tech-
niques of multivariate statistics including the Principal Component Analysis
(PCA). Furthermore, considering the study of sample covariance matrices in
fundamental multivariate analysis as an example, it possibly works as a test sta-

tistic used in statistical hypothesis testing [3]. But still little is known about the
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distribution of the largest eigenvalue [4] [5] [6], and Principal Component
Analysis (PCA) is a known technique of multivariate data analysis. The origins
of PCA lie in multivariate data analysis; however, it has a wide range of other
applications, one of eigenvalues of the covariance matrix. It is a linear dimen-
sionality reduction procedure, which can also be thought of as a model selection
technique. Inspired by this notion, we consider recovering as much of the total
variance in the data as possible while reducing the dimensionality of the problem
from p to k. In genetic studies, for example, it is not uncommon to have p (the
number of genes in this context) of the order of 1000 and n (the number of pa-
tients) of order 100.

In other parts, eigenvalues and eigenvectors of se

e polynomial optimization techniques, this

negative tensors and examine the maximum ei-

ires (SOS) polynomial optimization problem, which, in turn,

ently rewritten as a semi-definite programming problem.

bout the largest eigenvalues in [2] [7] [8] [9] [10]. We have presented the

aplace-Neumann eigenvalue problem in domain contains a finite number of
inclusion using the convergence estimation of eigenvalues of a sequence of
self-adjoint compact operators of perturbation resulting from the presence of
small inhomogeneities with a theorem developed by Osborn applied from com-
pact operators.

The novelty of this work, it that to give the asymptotic expansion of the largest
eigenvalues using the tensor polarisation tensors [11] which are symmetric defi-
nite positive matrix with order nxn. Our method is different from the work of
(2] [7] [8] [9] [10].

Let Q be a bounded domain in IR®, with Lipchitz boundary Q. Let
denote the out unit normal to 00 and assume it has a smooth background
conductivity 1. We suppose that € contains a finite number of small inhomo-

geneities each of the form z, +¢&B,, where B — IR’ is a bounded smooth
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(C”) domain containing the origin. The total collection of imperfections thus takes
the form D, =U|N:1D' , where D' = 7, +¢&bB, . The points 2, €Q, 1=12,---)N,

& &
that determines the locations of the inhomogeneities (see Figure 1).

Figure 1. Examples of do
three imperfections.

Let A

: e Laplacian in the

. e e . . wym
absence of any inhomogeneities. zero solutions {u"}
j=1

to

(1)

_v.(1+|2il:((k, -1) (D} ))JVUB =2ul inQ,

ou?
ov

()

0Q

It is well known that all eigenvalues of (1) are real, of finite multiplicity, have
o finite accumulation points and there corresponding eigenfunctions which
make up an orthonormal basis of L (Q).

This paper is organized as follows. In Section 2, we introduce the eigenvalue
Laplace-Neumann problem (2) and (1) and the geometry properties of the do-
main Q and we give some preliminary results. In Section 3, we derive the
asymptotic expansion for the Largest eigenvalue using the convergence estimate
of the eigenvalues of a sequence of self-adjoint compact operators and applying
the Osborn’s formula such that Theorem 3.7 the main result of this paper. In

Section 4, we present some numerical tests given by Freefem++.

2. Some Preliminaries Results

To derive the asymptotic formula for the eigenvalues we will use a convergence

estimate of the eigenvalues of a sequence of self-adjoint compact operators. Let
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X be a (real) Hilbert space and suppose we have a compact, self-adjoint linear
operator 7 : X —» &X' along with a sequence of compact, self-adjoint linear op-
erators 7,:X —> X such that 7, > 7 pointwise as ¢ >0 and the se-
quence {7,} is collectively compact. Let 4 be a nonzero eigenvalue of 7 of
multiplicity m. Then we know that for small &, each 7, has a set of eigenva-
lues counted according to multiplicity, { J75ieee ,u;"} such that for each j

u) — 1 as & —0. Define the average

lowing Osborn’s formula holds

u-B YT -T)¢ g

i1

(4)

where (’T -7, )

. denot icti -7,) to the m-dimen-
span{¢‘} €

1<j<m
sional vector Space spanne

In our case, let X L’ (Q) with the standard inner product. For any
gel® (Q), we define 7,

(5)

Au=g inQ,
au
ov

0. (6)

oQ

The function g (—A)_l g is continuous from L*(Q) to Hj(Q). Clearly
7, and 7 are compact operators from L*(Q) to L*(Q). From the stan-
dard H' estimates we get the following lemma:

Lemma 2.1 7, and T are compact, self-adjoint operators from L(Q)
to L*(Q). Moreover, the family of operators {T.} is collectively compact.

&

Let (,ui,ui), and (,ul,uig) be the ith normalised eigenpairs of 7 and 7,

respectively. Thenif 4 =— and 4, =—,then u! and u' are the solution

&

of (2) and (1) respectively. From the spectral theory, if A has a multiplicity m
with a correspond set of orthonormal eigenfunctions {uij }T_l then there exist m
eigenvalues [ that satisfy the following lemma.

Lemma 2.2 Let Q be a bounded domain in IR?, and ¢ >0 a small num-

ber. Then the eigenvalues of Laplacian-Neumann operator satisty the following
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expansion

A —

1

=0(1), as tends to 0, (7)
in the other word,

AA, =22+ 40(1), as tends to 0, (8)

&

forany j=12,---,m, such that (1) independent ofI.
Proof. From [12], the proof is based on the following asymptotic expansion

o, — w, =%ilig"trjav%8n,p(a))da) 9)

T p=1 P np

1 i(Zn)nj-avs 1 )x(Dg)[Ng(-,Z)] m dw, (10)

+
2dnia n 0| In(noe

where

Bn'p(a))z(_l)pZ(Ab( +(In( oz a)g))Bo(a))) (11)
x--+( A (@) (In(we)) (@)@, (12)

and cap(oB) called the
pansion the following lea

e obtain from this asymptotic ex-

of 2 -2 in two dimensions as fol-

1 )

|u” (z)|2+6{m}, (13)

lows

Asympt#tic Expansion of the Largest Eigenvalues

Int rt, we assume that the domains D; , 1=1,2,---,m, satisfy
0<d, <|z,-z] Vl=k, dist(z,0Q)>d, VI, (14)
hich the following theorem holds
Theorem 3.1 Suppose that € contains an inclusion as the form
D =1+¢B which is far from the boundary. Then the solutions {uij }rjnﬂ to (1)

satisty
o ||u” ||L°°(D) <C, where C Iisindependentof & and 7 .

ij
A <C, where C Iisindependentof & and 1.
Vi ooy
vy
o <C, where C isindependentof ¢ and 7 .
(o)

To prove the Theorem 3.1, we need this following lemma
Lemma 3.2 Forany i,5=0,1,2,---, we have
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u/(r.¢)=

e’ (15)

g

where 1°=-1, J, (r) is the Bessel function of integer order s, f; denotes

2
the ith zero of J!(r) and A; = [%) is the associated ejgenvalue.

Proof. For a round disk of radius R, the Helmholtz equation (A+4;)u” =0
can be expressed in the polar coordinate system in the f
see [15])

ing form (we can

o%ul 1aut 1 oAt
+ =
o2 ror r? 96?

with 0<r<R, 0<6<2r.
One can seek a solution of the
0<60<2m, that

as F ier expansion over

Then, for each U (r) ineax independence of trigonometric functions,

we arrive at to ordinary di

a separation of the variables we can write Ul (r,¢)=c U (r)e*™, where

si— si

onstantand U (r) satisfies
2

03+ 200+ - o () -0. 05 <k
r

Us

(R) =0.
Using the definition of the Bessel function [16] we can deduce that,

U, (ré)=J. (ﬂsi %j

we get,

Js(ﬂsirj
ul(r.¢)= = R et
R 1—5} 2(p.
\/n{ 5 T (By)

Now, we give an important result about the eigenvalue A, , which will be de-

scribed by this lemma
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Lemma 3.3 Asitends to «©, we have.
A =i (16)

Proof. We proof our lemma firstly in the case of a disk and after we study the

general case.

2
For the case of a disk, our proof are based on this relation 4. = (%} . From,

[17], if we fix s thus  f; have the following asymptotic expansion

1
=B 0] — |,
ﬁSI ﬁSIJ’_ [ﬂ;]

. s 3
h G=|i+=——|m.
where S ( > 4jn

ula in [18] [19] [20] to get the

be a Riemannian manifold and

. . o
sts of an increasing sequence {4 |, of

g to their multiplicities) where A'=0 and
if n=dimX then Weyl’s [19] asymptotic for-

the eigenvalues

A4 —oo as i—>

mula , for latge values of 7
2
4ntin
hx——7, (17)
(cte (X))
W 4 is the Reimannian measure on X and ¢, >0 is a constant depending

only n. According to the last theory in our case when, 7 is large, A'=0

Jal

lemma. O

rresponding to U' = , X=Q and u(Q)= |Q| we can prove the above

Now, we prove Theorem 3.1.

Proof of Theorem 3.1. We derive this theorem firstly in the simple case when
Q is a disk and after we study the general case; For the case of a disk, the ei-
genvalue {Z} ., of A inadisk Q ofradius Rin IR* have two mul-

tiplicity and they are the solutions of the following system:
(A+2)ul (r,¢) inQ,
oul (r,9) 0 (18)
or o

r=R

From the Lemma 3.1, we have the following result
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J, (ﬂsi ;j

Then, we study the eigenfunction

et (19)

u!(r.¢)=

S

I
1) As I > we have js(r)Z%r.

a

3) If we fix and we choose i= E(
€

L ),weﬁnd

VAV

is uniform

sip(x) =] T(x-y)p(y)do(y), xeIR®.

he other hand, we have the following result, let ¢ e L* (D),
gb(x 8go(gx+ Z), X € 0B . Then, for x € 0B , we have
2n
1 400 n (\/Zg)

sﬁga(gmz):z_n;(_l) )

x_|'68|x— y[" (In(ﬁdx— y|)+ Iny—é%j@(y)do-(y).

Then, using the Lemma 3.2 we can get the assertion (1) deduced easily such
that,

||uij ={sup|u“|,XeD}.

(D)
ij
Finally, the last two assertions may be deduced easily after we calculate ——

i

2,1ij
Vu‘ 0

and
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3.1. Estimation Energy

In this section, when the inclusions are not degenerate (ie. their conductivity
k >0, k #1) the first term the expansion of u, solution to (5) is the back-
ground potential u solution to (6). In fact, U, converges strongly in Hl(Q).
This is the consequence of the following estimate of the H'(Q) norm of
u, -u.

Lemma 3.4 Let u, be the solution to (5) and u solution to (6) for a given
gel? (Q) . Then there exists a constant C , independent of ¢, u and the set of
points (z, )IN: , such that the following estimate holds.

3
Ju, —u||H1(Q) < C("qu"ﬁ@) &2 +|V§u o) (20)
Proof. The proof of the above lemma is bas
[V, (u. (ey)-u(ey)-ev(y
3 21)
{77+
where o is the unique solfttiont of the foll transmission problem:
in IR? \(U[“:1 B, )
inB,, v1=12,3,---,m.
on aB, (22)

v,u(z)-v, ondB,

nd Q= hen, from [22] we put

w(e)=u,(ey)e—u(ey)-ev(y).

Using the unperturbed problem and setting =4, (), we see that w(¢)
lves:

—Ao(e) =20 +(2- 1) (u(ey)+ev(y))-
For ze IR, we define the function 6 by
0(2)=22+(A= % )u(ey)-e0(Y) o, -
then trivially remark,
o|<lo) 2l viemw,
and consequently,
10((2))|<]0(0)]+ 2]2]. (23)

Now, it turns out from the definition of @ that w(&)—>0 as &—0 and
so by ||u(gy)—gu(y)||Lw(D£) >0, we get,

DOI: 10.4236/0alib.1107869 9 Open Access Library Journal
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lo(£)(x)|<2u(zy)+ gu(y)"w(@) , forxeD,.

Moreover, we recall that A(&)— 4,. Now it is useful to introduce the fol-

lowing function
6(w(s))=Aw+(2~4)(u(ey)+ev(y)),
and the second term is bounded by
Ao(e) < 2 u(ey) +ev(Y) -
These estimate give

|o(e(2))

Next, we can writein Q,

L(

o <(1+ 2/1)||u(5y)+gu( (24)

following problem

YV e Hé(Q),

Then, by Poin i e exist some positive constant C (f)) such
that

2() < C(Q)||Va)"L2(Q) : (25)

1 w,are uniformly bounded in Q. There exist some constant

pendent of ¢ such that C(Q)<(,, which give

[V <Cluley)+eo (V) (26)

whi ncludes the proof.
Now, we have this remark
Remark 3.5 The function v is connected to polarisation tensors M' for any

I=1,---,N, which are given by

, a¢(')
Mg = (1=K )[Bi[6 + (1=K )" [, v, ~ do, 27)
where for p=12, ¢S) is the unique function which satisfies
AgY) =0 in IR*\B,
A =0 inB,
p ogy) | .
vl _ =y, ondB,
ov|, ov

with ¢S) continuous across 0B, and lim, ¢S) =0.
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3.2. Derivation of the Asymptotic Expansion for the Largest
Eigenvalues

In this section, we restrict to the case of a single inhomogeneity (N = 1), by itera-
tion, we can get the more general case. So, we suppose that this inhomogeneity is
centred at the origin, so it is of the form D = ¢B, with conductivity & The gen-
eral case may be verified by fairly direct iteration of the argument we present
here, adding one inhomogeneity at a time. By according Osborn’s (see [23])
formula in (4), we obtain

112112<% >

A m j:]_ﬂ, miz

I &

<C

2
1 .
—u' — 29
; -

where v satisfies

If we take i= E(ia
£
(30)
Then accordin and
(31)

Let <,> be the I*-inner product, by integration by parts and by using the

transmission conditions satisfies by 0! across 0D, , we get

oo\ X,6 il
<Zu'—u;,u’>_fg(zu‘—ug‘ju’dy

KoL) ifay - 12K ov

=— u'da,.
Ak A 7® ov

Suppose

where o is defined in (22) (with %u“ in place of u), inserting this into the

above formula we get
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uldo

X

<%Iuij_ulj,uij> .[ | .,| 1 Ik Srij

) (32)
— 1 .
LK iai(x)+ £r v (—) u'do,.
A A4 Ov, A 3”61/ €
Note that
Axrg”(x)=%u”(x)—%Axu”(x).
From (17) we also have
[V.rd (e5.25,) oy <0
this gives that
- i
u ai uIJdGX:
A
5 (33)
1- k & i g?
Au”g ul(e£)dé+6| — |
(s€)u ()08 +6) -
In the same time we have
i i
1K) LM (x4 00 (EJ“_dox
DA Ov, ove| \e) 4
ij i ij
)] i‘l“_d sa-k)e] (z)u_(x)dax_
DA Ov A4 Pov.| \e) A
From Theorem 3.1, the Taylor expansion of u" is
i i i
L0 =L0)+ 2L (0)-x+0(x?), (34)

4 4 %
where H(Xz) independent of i This gives that:

DOI: 10.4236/0alib.1107869 12 Open Access Library Journal
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1-k ¢ ou'
7J‘w§u’(x)dx
1-k ij ij quijr
=7 AU ()" () dx+(1-K) [ E (x)dx (35)
1-k i i 1-k i £ [2 &’
=g’ AU (e6)u” (e£)dx + &2 B||V.u'(0) +6| — |,
77 s (s6)u” (£) ﬂiz|| (0) [\/ZJ

where, 0(53) independent of i
At the same time, by a Taylor expansion of u’ in (38) about x=0, we ob-

:

tain

ov
(1-k) |, =—
oD avé:

do (36)

0 (37)
, i
where ¢, is defined in (28). Putting V" =uﬁ we obtain the following expan-
sion
5
1 181 g2 . , £2
SRS - V0" (0)- MV 0" (0)+6] <= |,
P ACIURUOR o

5
where M is the polarisation tensor which is defined in (27) and 9[52] in-
dependent of i

Our main result in this section is the following:

Theorem 3.6 Forany i=E (%J .If A, 1is an eigenvalue of (1) of multiplicity
£

DOI: 10.4236/0alib.1107869 13 Open Access Library Journal
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m then there is m eigenvalue of (2) which converges to A, , such that

Z—/l,‘=49(82_“),forauy 0<a<l,

for any small ¢ .
Proof. We easily see that farall j=1,---,m (see [22] for more details)

A =%
Aiss

M= 1| =

which we can write,

A=A =

:u.s _:u| 2151'1|

Then according to Lemma 2.2, we have

Ay =4 =€ (4 +0(1)V,0" (0)- MV 0

(P

))] (38)

The fact that

is amyeigenvalue of multiplicity m of (1), with

B [ L2
of eigenfunctions {u ‘¢ . Suppose A, ¢

i
L
SIZ

E
ich converge to A [ ] For any 0<«a <1, the fol-

« :gzzzvxu(;)j(L)'MIVXU[;]j(ZI)"'@{g[z )J, (39)

1
)
where M' is the polarisation tensor associated to B' and 1,‘¢"’ is the

L)

harmonic average of the A,

Proof- We have

- ii 2 ov quij g?
=¢ e (“B|qu (0)| +/11J.33a_(§)7(0)-§d0'§]+0 ﬁ ,

5
18,1 &2 & . . g2
=3 =2 3,01 (0)- MV 07 (0)+6] S |.
&7 g & O MO0

DOI: 10.4236/0alib.1107869 14 Open Access Library Journal


https://doi.org/10.4236/oalib.1107869

M. Gozzi, A. Khelifi

R . R
Then, inserting this in Theorem 3.6 in connection with v! =—, we prove

that

1

Ao =2 :52§:ZN:VXUE(£%]1(Zl)'M'VXuE[sa]](Zl)+® g(g_“] \

N
where M' is the polarisation tensor associated to B'. Finally, we take

i=E (%) ,for 0<a <1, we get our main result. O
&

4. Numerical Experiments

fem++ such
t values of &
e some arbitrary
values of ¢ and « then we get

its values) as shown in Table 1.

Then, we present this
Excel as presented by Fig

. 1 1
i|. By numerical examples, for the case of o= 2975 and
_ The values of &”.

1 1 1

a, = 2 a, = 3 a, 3
£ =2x10"° 0.2114 0.044 0.128
g, =1x10" 0.056 0.0031 0.022
&, =4x10" 0.141 0.2 0.075

Table 2. The different values of the largest eigenvalues.
8 8

1 1 1

a, = 2 a,= 3 a, = 3

g =2x10" 1589.86 2989.19 1610.88
g, =1x10"° 8416.03 602192 11956.8
&, =4x10" 291.085 1018.37 22.116
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The largest eigenvalues

D

N
o
=)

100 200 300 400
the values of i

—
D
D
D
D
D

Figure 2. The variation of the largest eigenval

£=2x107, we have:

quence of self-adjoint compact operators satisfying the following property:

Z—ﬂﬁ‘:e(sz’“), forany0<a <1,

which are tested by numerical experiments.
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