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Abstract 
In this paper, we provide a rigorous derivation of asymptotic formula for the 
largest eigenvalues using the convergence estimation of the eigenvalues of a 
sequence of self-adjoint compact operators based on the polarisation tensors 
of perturbations resulting from the presence of small inhomogeneities re-
ported with numerical tests for the Laplace operator. 
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1. Introduction 

In the past decades, the Laplacian spectrum has attracted wide attention and be-
come an area of great interest. It had been widely applied to solve problems in 
fields, such as: randomized algorithms, combinational optimization problem and 
machine learning. 

One of the fields that paid particular attention to Laplacian spectrum is the 
so-called the largest eigenvalue [1] [2]. It plays an important role in many tech-
niques of multivariate statistics including the Principal Component Analysis 
(PCA). Furthermore, considering the study of sample covariance matrices in 
fundamental multivariate analysis as an example, it possibly works as a test sta-
tistic used in statistical hypothesis testing [3]. But still little is known about the 
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distribution of the largest eigenvalue [4] [5] [6], and Principal Component 
Analysis (PCA) is a known technique of multivariate data analysis. The origins 
of PCA lie in multivariate data analysis; however, it has a wide range of other 
applications, one of eigenvalues of the covariance matrix. It is a linear dimen-
sionality reduction procedure, which can also be thought of as a model selection 
technique. Inspired by this notion, we consider recovering as much of the total 
variance in the data as possible while reducing the dimensionality of the problem 
from p to k. In genetic studies, for example, it is not uncommon to have p (the 
number of genes in this context) of the order of 1000 and n (the number of pa-
tients) of order 100. 

In other parts, eigenvalues and eigenvectors of several graph matrices appear 
in numerous papers on various subjects relevant to information and communi-
cation technologies. Efficient computation of eigenvectors and eigenvalues (es-
pecially for corresponding the largest or smallest eigenvalues) of matrix is an 
important problem in engineering. Recently, many researches tackle this prob-
lem by using neural networks mostly by focusing on computing the eigenvectors 
of positive definite symmetric matrices corresponding to the largest or smallest 
eigenvalues. A more general case will be studied in [7], which proposes a neural 
network approach to compute the eigenvectors corresponding to the largest or 
the smallest eigenvalues of any real symmetric matrix. [7] [8] [9] [10] proposed 
an iterative method for computing the largest eigenvalue of an irreducible non-
negative tensor. Depending on the polynomial optimization techniques, this 
method aims to extend the non-negative tensors and examine the maximum ei-
genvalue of an essentially non-negative tensor. They demonstrated that finding 
the maximum eigenvalue of an essentially non-negative tensor is equivalent to 
solving a sum of squares (SOS) polynomial optimization problem, which, in turn, 
can be equivalently rewritten as a semi-definite programming problem. 

The eigenvalues of the higher order have become an important subject of 
study in a new branch of applied mathematics and digital multilinear algebra, 
with many practical applications. The present paper differs from the research 
about the largest eigenvalues in [2] [7] [8] [9] [10]. We have presented the 
Laplace-Neumann eigenvalue problem in domain contains a finite number of 
inclusion using the convergence estimation of eigenvalues of a sequence of 
self-adjoint compact operators of perturbation resulting from the presence of 
small inhomogeneities with a theorem developed by Osborn applied from com-
pact operators. 

The novelty of this work, it that to give the asymptotic expansion of the largest 
eigenvalues using the tensor polarisation tensors [11] which are symmetric defi-
nite positive matrix with order n n× . Our method is different from the work of 
[2] [7] [8] [9] [10]. 

Let Ω  be a bounded domain in 2IR , with Lipchitz boundary ∂Ω . Let ν  
denote the out unit normal to ∂Ω  and assume it has a smooth background 
conductivity 1. We suppose that Ω  contains a finite number of small inhomo-
geneities each of the form l lz ε+  , where 2

l IR⊂  is a bounded smooth 
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( C∞ ) domain containing the origin. The total collection of imperfections thus takes 
the form 

1

N l
lε ε=

=∪  , where l
l lzε ε= +  . The points lz ∈Ω , 1,2, ,l N= � , 

that determines the locations of the inhomogeneities (see Figure 1). 
 

 
Figure 1. Examples of domain contain 
three imperfections. 

 
Let iλ  be the ith eigenvalue of multiplicity m for the Laplacian in the   

absence of any inhomogeneities. Then there exist m nonzero solutions { }
1

mij

j
u

=
  

to 

in ,

0.

ij ij
i

ij

u u

u

λ

ν
∂Ω

−∆ = Ω

∂

= ∂

                        (1) 

The eigenvalues problem in the presence of imperfections consists of finding  

{ }
1

mij

jελ =
 such that there exists a nontrivial eigenfunction { }

1

mij

j
uε =

 that is solution 

to 

( ) ( )( )
1

1 1 in ,

0.

N
l ij ij

l
l

ij

k D u u

u

ε ε ε ε

ε

χ λ

ν

=

∂Ω

  −∇ ⋅ + − ∇ = Ω  
 


∂ = ∂

∑ �

         (2) 

It is well known that all eigenvalues of (1) are real, of finite multiplicity, have 
no finite accumulation points and there corresponding eigenfunctions which 
make up an orthonormal basis of ( )2L Ω . 

This paper is organized as follows. In Section 2, we introduce the eigenvalue 
Laplace-Neumann problem (2) and (1) and the geometry properties of the do-
main Ω  and we give some preliminary results. In Section 3, we derive the 
asymptotic expansion for the Largest eigenvalue using the convergence estimate 
of the eigenvalues of a sequence of self-adjoint compact operators and applying 
the Osborn’s formula such that Theorem 3.7 the main result of this paper. In 
Section 4, we present some numerical tests given by Freefem++. 

2. Some Preliminaries Results 

To derive the asymptotic formula for the eigenvalues we will use a convergence 
estimate of the eigenvalues of a sequence of self-adjoint compact operators. Let 
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  be a (real) Hilbert space and suppose we have a compact, self-adjoint linear 
operator : →    along with a sequence of compact, self-adjoint linear op-
erators :ε →    such that ε →   pointwise as 0ε →  and the se-
quence { }ε  is collectively compact. Let µ  be a nonzero eigenvalue of   of 
multiplicity m. Then we know that for small ε , each ε  has a set of eigenva-
lues counted according to multiplicity, { }1 , , m

ε εµ µ�  such that for each j, 
j
εµ µ→  as 0ε → . Define the average 

1

1 1 .
m

j
jmε

ε

µ
µ=

= ∑                            (3) 

If 1, , mφ φ�  is an orthonormal basis of eigenfunctions associated with the ei-
genvalue µ , then there exists a constant   such that for 1, ,j m= �  the fol-
lowing Osborn’s formula holds 

( ) ( ) { }1

2

1

1 , ,j
j m

m
j j

span
jmε ε ε φ

µ µ φ φ
≤ ≤=

− − − ≤ −∑               (4) 

where ( ) { }1j
j m

spanε φ
≤ ≤

−   denotes the restriction of ( )ε−   to the m-dimen- 

sional vector space spanned by 1
j

j mφ ≤ ≤ . 

In our case, let   be ( )2L Ω  with the standard inner product. For any 
( )2g L∈ Ω , we define g uε ε=  and g u= , where uε  is the solution to 

( ) ( )( )
1

1 1 in ,

0,

N
l

l
l

k D u g

u

ε ε

ε

χ

ν

=

∂Ω

  −∇ ⋅ + − ∇ = Ω  
 


∂ = ∂

∑
              (5) 

and u is the solution of 

in ,

0.

u g
u
ν ∂Ω

∆ = Ω

∂ =∂

                          (6) 

The function ( ) 1g g−−∆�  is continuous from ( )2L Ω  to ( )1
0H Ω . Clearly 

ε  and   are compact operators from ( )2L Ω  to ( )2L Ω . From the stan-
dard 1H  estimates we get the following lemma: 

Lemma 2.1 ε  and   are compact, self-adjoint operators from ( )2L Ω  
to ( )2L Ω . Moreover, the family of operators { }ε  is collectively compact. 

Let ( ),i iuµ , and ( ),i iuε εµ  be the ith normalised eigenpairs of   and ε   

respectively. Then if 1
i iλ

µ
=  and 1

i iε
ε

λ
µ

= , then iuε  and iu  are the solution  

of (2) and (1) respectively. From the spectral theory, if iλ  has a multiplicity m  

with a correspond set of orthonormal eigenfunctions { }
1

mij

j
u

=
 then there exist m  

eigenvalues ελ�  that satisfy the following lemma. 
Lemma 2.2 Let Ω  be a bounded domain in 2IR , and 0ε >  a small num-

ber. Then the eigenvalues of Laplacian-Neumann operator satisfy the following 
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expansion 

( )1i ελ λ θ− =� , as tends to 0,                  (7) 

in the other word, 

( )2 1i i iελ λ λ λθ= +� , as tends to 0,                 (8) 

for any 1, 2, ,j m= � , such that ( )1θ  independent of i. 
Proof. From [12], the proof is based on the following asymptotic expansion 

( )
0

0 ,
1

1 1 d
2

n
n pV

p n p
tr B

p δ
εω ω ε ω ω

∞ +∞

∂
= =π

− = ∑ ∑ ∫                 (9) 

( )
( ) ( ) ( ) ( ) ( )

01

2 ln1 1 ., d ,
ln 22

nn

V
n

cap B
D N z x

n δ

ε ε ω
ηωε

∞

Ω Ω∂
=

π  ∂
 + × −    π π

∑ ∫   (10) 

where 

( ) ( ) ( ) ( )( ) ( )( ) ( )( ) ( )( )1

1

, 0 0 01 ln ln
i

p
n p n

n
B A B A Bω ω ωε ω ωε ω

−
= − + +∑    (11) 

( ) ( )( ) ( )( ) ( )( ) ( )( )1

0 0 ,1
ln ln ,n

n n pA B A Bω ωε ω ωε ω ω
−

× +�         (12) 

then εω  is the characteristic eigenvalue and DΩ  is the double layer potential 
and ( )cap B∂  called the capacity of B∂ . We obtain from this asymptotic ex-
pansion the following leading-order term of ij

i ελ λ−  in two dimensions as fol-
lows 

( ) ( )
( )

22 1 ,
lnln

ij
i

i

u zελ λ θ
εε λ

 −
− = + 

π
 

 
�               (13) 

this formula is exactly the one derived by Ozawa in [13], see also Besson [14], so 
as ε  tends to 0 we get our desired result. 

3. Asymptotic Expansion of the Largest Eigenvalues 

In this part, we assume that the domains l
ε , 1,2, ,l m= � , satisfy 
( )0 00 < , , ,l k ld z z l k dist z d l≤ − ∀ ≠ ∂Ω ≥ ∀             (14) 

which the following theorem holds 
Theorem 3.1 Suppose that Ω  contains an inclusion as the form  

z Bε= +  which is far from the boundary. Then the solutions { }
1

mij

j
u

=
 to (1)  

satisfy 
• 

( )
ij

L D
u ∞ ≤  , where   is independent of ε  and iλ . 

• 
( )

ij

i L D

u
λ ∞

∇
≤  , where   is independent of ε  and iλ . 

• 
( )

2 ij

i L D

u
λ ∞

∇
≤  , where   is independent of ε  and iλ . 

To prove the Theorem 3.1, we need this following lemma 
Lemma 3.2 For any , 0,1, 2,i s = � , we have 
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( )
( )

2
2

2

, e ,

1

s si
ij Is
s

s si
si

rJ
Ru r

sR J

φ
β

φ

β
β

±

 
 
 =

 
− 

 
π

             (15) 

where 2 1= − , ( )s r  is the Bessel function of integer order s, siβ  denotes  

the ith zero of ( )s r′  and 
2

si
si R

β
λ  =  

 
 is the associated eigenvalue. 

Proof. For a round disk of radius R, the Helmholtz equation ( ) 0ij
si uλ∆ + =  

can be expressed in the polar coordinate system in the following form (we can 
see [15]) 

2 2

2 2 2

1 1 0,
ij ij ij

ij
si

u u u u
r rr r

λ
θ

∂ ∂ ∂
+ + + =

∂∂ ∂
 

with 0 r R≤ ≤ , 0 2θ≤ ≤ π . 
One can seek a solution of the last equation as Fourrier expansion over 

0 2θ≤ ≤ π , that 

( )e .ij is
siu U r θ

∞

−∞

= ∑  

Then, for each ( )siU r , due to linear independence of trigonometric functions, 
we arrive at to ordinary differential equation 

( ) ( ) ( )
2

2

1 0,si si si si
sU r U r U r

r r
λ
 

′′ ′+ + − = 
 

 

whose only solution regular inside the disk is the Bessel function of the first kind 
and order m. Therefore a complete system of linearly independent solutions for 
our equation, can be chosen as ( ){ }e Is

sJ φ±× , with the boundary Neumann con-
dition 0sJ ′ = . 

By a separation of the variables we can write ( ) ( ), eij Is
s si siu r c U r φφ ±= , where 

sic  is a constant and ( )siU r  satisfies 

( ) ( ) ( )

( )

2

2

1 0, 0 ,

0.

si si si si

si

sU r U r U r r R
r r

U R

λ
  

′′ ′+ + − = ≤ <  
  
 ′ =

 

Using the definition of the Bessel function [16] we can deduce that, 

( ), ,si s si
rU r
R

φ β =  
 

  

we get, 

( )
( )

2
2

2

, e .

1

s si
ij Is
s

s si
si

r
Ru r

sR

φ
β

φ

β
β

±

 
 
 =

 
−π 

 





 

Now, we give an important result about the eigenvalue iλ , which will be de-
scribed by this lemma 
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Lemma 3.3 As i tends to ∞ , we have: 

.i iλ ≈                                (16) 

Proof. We proof our lemma firstly in the case of a disk and after we study the 
general case. 

For the case of a disk, our proof are based on this relation 
2

i si
s R

β
λ  =  

 
. From,  

[17], if we fix s thus siβ  have the following asymptotic expansion 

1 ,si si
si

β β θ
β

 
′= +  ′ 

 

where 3
2 4si
siβ  ′ = + − 

 
π . 

Then, we have for the general case, provided Ω  is bounded and the boun-
dary ∂Ω  is sufficently regular, the Neumann Laplacian has a discrete spectrum 
of infinitely many positive eigenvalues with no infinite accumulation point 

1 2 30 .λ λ λ< ≤ ≤ ≤�  

Here we use the Weyl’s Asymptotic Formula in [18] [19] [20] to get the 
asymptotic expansion for the eigenvalues. Let X be a Riemannian manifold and 
∆  be the Laplace operator on X. It is well-known that if X is compact then the 
spectrum of −∆  is discrete and consists of an increasing sequence { } 1i i

λ ∞

=
 of 

the eigenvalues (counted according to their multiplicities) where 1 0λ =  and 

iλ →∞  as i →∞ . Moreover, if n dimX=  then Weyl’s [19] asymptotic for-
mula says that, for large values of i 

( )( )

2
2

2

4 ,
n

i
n

n

i

c X
λ

µ
≈

π                           (17) 

where µ  is the Reimannian measure on   and 0nc >  is a constant depending 
only on n. According to the last theory in our case when, i is large, 1 0λ =   

corresponding to 1 1u =
Ω

, X = Ω  and ( )µ Ω = Ω  we can prove the above  

lemma.                                                            
Now, we prove Theorem 3.1.  
Proof of Theorem 3.1. We derive this theorem firstly in the simple case when 

Ω  is a disk and after we study the general case; For the case of a disk, the ei-
genvalue { } , 0,1,2,is i s

λ
= �

 of −∆  in a disk Ω  of radius R in 2IR  have two mul-
tiplicity and they are the solutions of the following system: 

( ) ( )
( )

, in ,

,
0.

ij
is s

ij
s

r R

u r

u r
r

λ φ

φ

=

 ∆ + Ω

∂

= ∂

                       (18) 

From the Lemma 3.1, we have the following result 
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( )
( )

2
2

2

, e .

1

s si
ij Is
s

s si
si

r
Ru r

sR

φ
β

φ

β
β

±

 
 
 =

 
−π 

 





              (19) 

Then, we study the eigenfunction 

1) As r →∞  we have ( ) !
2

s
s s

sr r  . 

2) As β →∞  we have ( ) 3
2

2 2 1 1cos
2 4s

Sβ β θ
β

β

 
+   − +   

π

  
 

π
  . 

3) If we fix and we choose 1i E αε
 =  
 

, we find 

( )1 .si
α

αβ θ ε
ε

−≈ +  

Using, this three assertions we can deduce that 
( )

s si

s si

r
R

β

β

 
 
 




 is uniform 

bound for s and [ ]0,r R∈ , so 
( )

ij
L

u ∞ ≤


 , where   is independent of ε   

and iλ , where satisfied for the case of a disk. 
Now, let’s turn to the general case. From [21], iju  can be represented as 

( ) , ,iiju S x xλ ϕ= ∈   

where ( )iS xλ ϕ  the single layer potential of the density function ϕ  on ∂ , 
which can be defined as 

( ) ( ) ( ) ( ) 2d , .iS x x y y y x IRλ ϕ ϕ σ
∂

= Γ − ∈∫ 
 

On the other hand, we have the following result, let ( )2Lϕ ∈ ∂ ,  
( ) ( ) ,x x z xϕ εϕ ε= + ∈∂�  . Then, for x∈∂ , we have 

( ) ( )
( )

( )

( ) ( ) ( )

2

22
0

2

1

1 1
2 2 !

1ln ln d .

i

n

in

n
n

nn
iB

j

S x z
n

x y x y y y
j

λ
λ ε

ϕ ε

λ ε γ ϕ σ

+∞

=

∂
=

+ = −

 
× − − + −

π

 
 

∑

∑∫ �



 

Then, using the Lemma 3.2 we can get the assertion (1) deduced easily such 
that, 

( ) { }sup , .ij ij
L

u u x∞ = ∈


  

Finally, the last two assertions may be deduced easily after we calculate 
ij

i

u
λ

∇  

and 
2 ij

i

u
λ

∇ .                                                       
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3.1. Estimation Energy 

In this section, when the inclusions are not degenerate (i.e. their conductivity 
0lk > , 1lk ≠ ) the first term the expansion of uε  solution to (5) is the back-

ground potential u solution to (6). In fact, uε  converges strongly in ( )1H Ω . 
This is the consequence of the following estimate of the ( )1H Ω  norm of 
u uε − . 

Lemma 3.4 Let uε  be the solution to (5) and u solution to (6) for a given 
( )2g L∈ Ω . Then there exists a constant  , independent of ε , u and the set of 

points ( ) 1

N
l l

z
=

 such that the following estimate holds: 

( ) ( ) ( ) ( )1

3
2 2 22 .x x LH L L

u u u u g
εε ε

ε ε ε ε∞∞ ∞Ω

 
− ≤ ∇ + ∇ +  

 
 

         (20) 

Proof. The proof of the above lemma is based on the following estimate 

( ) ( ) ( )( ) ( )

( ) ( ) ( )

2

3
2 2 22 .

y L

x x LL L

u y u y y

u u g
εε ε

ε ε ε ευ

ε ε ε∞∞ ∞

Ω
∇ − −

 
≤ ∇ + ∇ +  

 

�

 


             (21) 

where υ  is the unique solution of the following transmission problem: 

( )

( ) ( )

( )

2
1

0 in \

0 in , 1,2,3, , .
on

1 , on ,

lim 0,

m
ll

l

l

x l l l

y

IR B

B l m
B

k k u z B

y

υ

υ
υ υ
υ υ ν
ν ν

υ

=

− +

+ −

→∞

∆ =

∆ = ∀ =
 = ∂
∂ ∂

− = − ∇ ⋅ ∂
∂ ∂

 =

�

∪

       (22) 

and 1
ε

Ω = Ω� . Then, from [22] we put 

( ) ( ) ( ) ( ).u y u y yεω ε ε ε ε ευ= − −  

Using the unperturbed problem and setting ( )jλ λ ε= , we see that ( )ω ε  
solves: 

( ) ( ) ( ) ( )( )0 .u y yω ε λω λ λ ε ευ−∆ = + − +  

For z IR∈ , we define the function θ  by 

( ) ( ) ( ) ( ) ( )0 ,
L D

z z u y y
ε

θ λ λ λ ε ευ ∞= + − −  

then trivially remark, 

( ) ( )0 , ,z z z IRθ θ λ≤ + ∀ ∈  

and consequently, 

( )( ) ( )0 .z zθ ω θ λ≤ +                      (23) 

Now, it turns out from the definition of ω  that ( ) 0ω ε →  as 0ε →  and 
so by ( ) ( ) ( )

0
L

u y y
ε

ε ευ ∞− >


, we get, 
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( )( ) ( ) ( ) ( )
2 , for .

L
x u y y x

ε
εω ε ε ευ ∞≤ + ∈


  

Moreover, we recall that ( ) 0λ ε λ→ . Now it is useful to introduce the fol-
lowing function 

( )( ) ( ) ( ) ( )( )0 ,u y yθ ω ε λω λ λ ε ευ= + − +�  

and the second term is bounded by 

( ) ( ) ( ) ( )02 .
L

u y y
ε

λ ω ε λ ε ευ ∞≤ +


 

These estimate give 

( )( )
( )

( ) ( ) ( ) ( )
1 2 .

LL
u y y

ε
θ ω ε λ ε ευ ∞∞ Ω

≤ + +�


           (24) 

Next, we can write in Ω , 

( ) ( )( ).ω ε θ ω ε−∆ = �  

By integrating by parts, we find that the function ( )ω ε  is a solution to the 
following problem 

( ) ( ) ( )( )1
0 , d d .v H v x v v xω ε ω ε

Ω Ω
∀ ∈ Ω ∇ ∇ =∫ ∫  

If we take ( )v ω ε=  we can deduce that: 

( ) ( )2
2 d ,L xω ω ω

Ω Ω
∇ = Ω∫  

Then, by Poincare's inequality, there exist some positive constant ( )Ω�  such 
that 

( ) ( ) ( )2 2 .L Lω ω
Ω Ω
≤ Ω ∇                    (25) 

Since ω  and ω∇  are uniformly bounded in Ω . There exist some constant 
independent of ε  such that ( ) 0Ω ≤  , which give 

( ) ( ) ( ) ( )2 ,L L
u y y

ε
ω ε ευ ∞Ω

∇ ≤ +


                 (26) 

which concludes the proof. 
Now, we have this remark 
Remark 3.5 The function v is connected to polarisation tensors l  for any 
1, ,l N= � , which are given by 

( ) ( )
( )

21 1 d ,
l

l
pl

pq l l pq l p yB
k B k y

φ
δ σ

ν∂

−

∂
= − + −

∂∫          (27) 

where for 1,2p = , ( )l
pφ  is the unique function which satisfies 

( )

( )

( )

20 in \

0 in ,

, on ,

l
p l
l

p l

l
p

l l

IR B

B

k B

φ

φ

φυ υ
υ υ+

−

∆ =

∆ =


∂∂ − = ∂∂ ∂

                 (28) 

with ( )l
pφ  continuous across lB∂  and ( )lim 0l

py φ→∞ = . 
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3.2. Derivation of the Asymptotic Expansion for the Largest  
Eigenvalues 

In this section, we restrict to the case of a single inhomogeneity (N = 1), by itera-
tion, we can get the more general case. So, we suppose that this inhomogeneity is 
centred at the origin, so it is of the form ε= B , with conductivity k. The gen-
eral case may be verified by fairly direct iteration of the argument we present 
here, adding one inhomogeneity at a time. By according Osborn’s (see [23]) 
formula in (4), we obtain 

( )2

2

1 1

1 1 1 1 1 1, ,
m m

ij ij ij ij ij

j ji i i L

u u u
m m ε ε

ε

υ υ
λ λ λλ= = Ω

− − − ≤ −∑ ∑�           (29) 

where ij
ευ  satisfies 

( ) ( )
1

1 1 in ,

= 0.

m
l ij ij

l
l

ij

k uε ε

ε

χ υ

υ
ν

=

∂Ω

  ∇ ⋅ + − ∇ = Ω  
 


∂

 ∂

∑ 

 

If we take 1i E αε
 =  
 

 with 0 1α≤ ≤ , we deduce from Lemma 3.5, 

( ) , as tends to 0.i
αλ θ ε ε−=                  (30) 

Then according to Theorem 3.1 and Lemma 3.7 with 
ij

i

uu
λ

= , ijuε ευ=  and  

ijg u=  we obtain 

( )2

3
2

.
ij

ij

i iL

u
ε

ευ
λ λΩ

− ≤   

This gives 
3

1 1

1 1 1 1 1 , .
m m

ij ij ij

j ji i i

u u
m m ε

ε

ευ θ
λ λ λλ= =

 
− = − +  

 
∑ ∑�            (31) 

Let .,.  be the L2-inner product, by integration by parts and by using the 
transmission conditions satisfies by ij

ευ  across ε∂ , we get 

2

1 1, d

1 1d d .

ij ij ij ij ij ij

i i

ij
ij ij

xD D
i i

u u u u y

k ku y u
k

ε ε

ε

υ υ
λ λ

υ
σ

λ λ ν

Ω

∂
−

 
− = − 

 

∂− −
= +

∂

∫

∫ ∫
 

Suppose 

( ) ( ) ( )1 ,ij ij ij

i

xr x x u xε ευ ευ
λ ε

 = − −  
 

 

where υ  is defined in (22) (with 1 ij

i

u
λ

 in place of u), inserting this into the  

above formula we get 
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( )

21 1 1, d d

1 1 d .

ij
ij ij ij ij ij

xD
i i i x

ij
ij

x
i i x i x

rk ku u u x u
k

k u xx u

ε
ευ σ

λ λ λ ν

ε υ σ
λ λ ν λ ν ε

∂
−

∂
−

∂− −
− = +

∂

 − ∂ ∂  + +   ∂ ∂   

∫ ∫

∫





     (32) 

Note that 

( ) ( ) ( )1 1 .ij ij ij
x x

i

r x u x u x
kε λ

∆ = − ∆  

From (17) we also have 

( ) ( ) ( )2

3
2

1 2, , ,ij
L

i

r k Bξ ε
εεξ εξ
λΩ

∇ ≤
�

  

this gives that 

( ) ( ) ( )

( ) ( ) ( ) ( )2

1 d 1 d

1 11 d .

ijij
xij ij

x
i x i

ij
ij ij

x
i i

urk u k r

uk u u
k

ε
ξ ε

εξ
σ ε εξ ξ

λ υ λ

ε εξ εξ εξ ξ
λ λ

∂
−

∇∂−
= − ∇ ⋅

∂

 
+ − − ∆ 

 

∫ ∫

∫

 



 

Using the Lemmas 3.5 and Theorem 3.1, we deduce that 

( ) ( ) ( )

( ) ( ) ( )
( )

( )2

5
2

1 d

, , ,

ij
xij

i

ij
ij x

L
i iL D

u
k r

u
k B r k B

ξ ε

ξ ε

εξ
ε εξ ξ

λ

εε εξ
λ λ∞

Ω

∇
− ∇ ⋅

∇
≤ ∇ ≤

∫

�



 

 

where ( ),k B  independent of i. 
We conclude that 

( ) ( ) ( ) ( )
5
212 2

2

1 d

1 1d d .

ij
ij

x
i x

ij ij ij
xi

i i

rk u

k ku u u
k

ε

ε

σ
λ υ

εε εξ ξ ε εξ εξ ξ θ
λ λλ

∂
−

∂−
∂

 
− −  = − ∆ +  

 
 

∫

∫ ∫



 

  (33) 

In the same time we have 

( ) ( )

( ) ( ) ( )

11 d

11 d 1 d .

ij ij

x
i x i

ij ij ij

x xD
i i i

u x uk x

u u x uk k x

ξ

ξ

υ σ
λ ν ν ε λ

υσ ε σ
λ ν λ ν ε λ

∂
−

∂ ∂
−

∂ ∂  − +  ∂ ∂  

∂ ∂  = − + −  ∂ ∂  

∫

∫ ∫





 

From Theorem 3.1, the Taylor expansion of iju  is 

( ) ( ) ( ) ( )20 0 ,
ijij ij

x

i i i

uu ux x xθ
λ λ λ

∇
= + ⋅ +              (34) 

where ( )2xθ  independent of i. This gives that: 
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( )

( ) ( ) ( ) ( )

( ) ( ) ( )

2

2

2 2

322 2
2 2

1 d

1 d 1 d

1 1d 0 ,

ij
ij

xi

ij
xij ij

x
i i

ij ij ij
x x

i i i

k u u x x

uk u x u x x k x x

k ku u x u

νλ

λ λ

εε εξ εξ ε θ
λ λ λ

∂

∂

− ∂
∂

∇−
= ∆ + −

 − −
= ∆ + ∇ +   

 

∫

∫ ∫

∫



 




    (35) 

where, ( )3θ ε  independent of i. 
At the same time, by a Taylor expansion of iju  in (38) about 0x = , we ob-

tain 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

2

3
2

1 d

1 0 0 d

1 0 d ,

ij

x
i

ijij
x

x
i i

ij
x

i i

x uk x

ux uk x x

u
k

ξ

ξ

ξ
ξ

υ σ
ν ε λ

υ θ σ
ν ε λ λ

υ εε ξ ξ σ θ
ν λ λ

∂
−

∂
−

∂
−

∂  −  ∂  

 ∇∂   = − + ⋅ +  ∂    

 ∇∂
= − ⋅ +   ∂  

∫

∫

∫







       (36) 

where ( )3θ ε  independent of i. 
We choose 0 1α≤ ≤  and inserting the above identity, (34), (33) in (31), we 

get 

( ) ( ) ( )
5
222

2

1 ,

1 0 0 d .

ij ij ij

i

ij
ij x

x i
ii i

u u

uk u

ε

ξ
ξ

υ
λ

υ εε λ ξ ξ σ θ
ν λλ λ∂

−

−

  ∇− ∂   = ∇ + ⋅ +   ∂     
∫ 

 

We now use the fact 

( ) ( ) ( )
2

1

1 0 ,
ij

p
pi p

k u
x

υ ξ φ ξ
λ =

− ∂
=

∂∑                    (37) 

where pφ  is defined in (28). Putting 
ij

ij

i

uv
λ

=  we obtain the following expan-

sion 

( ) ( )
5

2 2

1 1

1 1 1 0 0 ,
m m

ij ij
x x

j ji i im mε

ε ευ υ θ
λ λλ λ= =

 
 − = ∇ ⋅ ∇ +  
 
 

∑ ∑�   

where   is the polarisation tensor which is defined in (27) and 
5
2θ ε

 
  
 

 in-

dependent of i. 
Our main result in this section is the following: 

Theorem 3.6 For any 1i E αε
 =  
 

. If iλ  is an eigenvalue of (1) of multiplicity 
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m then there is m eigenvalue of (2) which converges to iλ , such that 

( )2
i i

α
ελ λ θ ε −− = , for any 0 1α≤ ≤ , 

for any small ε . 
Proof. We easily see that far all 1, ,j m= �  (see [22] for more details) 

,i i

i i

ε
ε

ε

λ λ
µ µ

λ λ
−

− =  

which we can write, 

.i i i iε ε ελ λ µ µ λ λ− = −  

Then according to Lemma 2.2, we have 

( )( ) ( ) ( ) ( )( )
5

2 221 0 0 .ij ij
i i i x x i

α
ελ λ ε λ θ υ υ θ ε λ θ ε − 
− = + ∇ ⋅ ∇ + +  

 
    (38) 

The fact that 

( ) ( )0 0 ,ij ij
x xυ υ∇ ⋅ ∇ ≤   

where   is independent of iλ  and ε  which complete the proof. 
So, the following theorem holds. 

Theorem 3.7 Suppose 
1E
αελ

 
 
   is an eigenvalue of multiplicity m of (1), with 

an 2L  orthonormal basis of eigenfunctions 
1

1

m
E j

j

u αε

 
 
 

=

  
 
  

. Suppose 
1E j
αε

ελ
 
 
   

are eigenvalues of (2) which converge to 
1E
αελ

 
 
  . For any 0 1α≤ ≤ , the fol-

lowing asymptotic expansion holds: 

( ) ( )
1 1 1 1 5

2 2

1 1
,

m NE E j j
l

x l x l
j l

u z u zα α α α α
ε ε ε ε

ελ λ ε ε
         −         
         

= =

 
 − = ∇ ⋅ ∇ +Θ
 
 

∑∑    (39) 

where l  is the polarisation tensor associated to l  and 
1E
αε

ελ
 
 
   is the 

harmonic average of the 
1E j
αε

ελ
 
 
  . 

Proof. We have 

( ) ( ) ( )

1 1

5
222

2

1 1 1 1 1 ,

1 0 0 d ,

m m
ij ij ij

j ji i

ij
ij x

x i
ii i

u u
m m

uk u

ε
ε

ξ
ξ

υ
λ λλ

υ εε λ ξ ξ σ θ
ν λλ λ

= =

∂
−

− = −

  ∇− ∂   = ∇ + ⋅ +   ∂     

∑ ∑

∫

�




 

and using the assertion (37), we get 

( ) ( )
5

2 2

1 1

1 1 1 0 0 .
m m

ij l ij
x x

j ji i im mε

ε ευ υ θ
λ λλ λ= =

 
 − = ∇ ⋅ ∇ +  
 
 

∑ ∑�   
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Then, inserting this in Theorem 3.6 in connection with 
ij

ij

i

uv
λ

= , we prove  

that 

( ) ( )
1 1 5

2 2

1 1
,

m N E j E j
l

i i x l x l
j l

u z u zα α α
ε ε

ελ λ ε ε
     −     
     

= =

 
 − = ∇ ⋅ ∇ +Θ
 
 

∑∑   

where l  is the polarisation tensor associated to l . Finally, we take  
1i E αε

 =  
 

, for 0 1α≤ ≤ , we get our main result.                       

4. Numerical Experiments 

In this section, we want to give some numerical examples using Freefem++ such 
that ε=  , the inclusion centred in the origin, for some different values of ε  
and α  we give the largest eigenvalues in any case. Now, we give some arbitrary 
values of ε  and α  then we get αε  (by replacing ε  and α  each time by 
its values) as shown in Table 1. 

Then, according to the values of αε  we give the different values of the larg-
est eigenvalues as shown in Table 2. 

Then, we present this following graft how is plotted using Microsoft Office 
Excel as presented by Figure 2. 

From this figure we show that the variation of the largest eigenvalues and i are 
dependent. One more important result presented by this paper that 

( )2 , for any 0 1,i i
α

ελ λ θ ε α−− = ≤ ≤  

for any small ε . 
We remember that 0 1α≤ ≤ , so we take some arbitrary values of α  and ε   

to test i iελ λ− . By numerical examples, for the case of 1
4

α = , 1
2

α =  and 

 
Table 1. The values of αε . 

 1

1
4

α =  2

1
2

α =  3

1
3

α =  

3
1 2 10ε −= ×  0.2114 0.044 0.128 

5
2 1 10ε −= ×  0.056 0.0031 0.022 

4
3 4 10ε −= ×  0.141 0.2 0.075 

 
Table 2. The different values of the largest eigenvalues. 

 1

1
4

α =  2

1
2

α =  3

1
3

α =  

3
1 2 10ε −= ×  1589.86 2989.19 1610.88 

5
2 1 10ε −= ×  8416.03 602192 11956.8 

4
3 4 10ε −= ×  291.085 1018.37 22.116 
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Figure 2. The variation of the largest eigenvalues depending of i. 

 
32 10ε −= × , we have: 

2 14.11148321 , for ,
4

eαε α− = =  

and 

2 13.994148321 , for .
2

eαε α− = =  

In other part, if we calculate numerically i iελ λ− , we get: 

314.1688 012, for and 2 10 ,
4i i eελ λ α ε −− = − = = ×  

and 

313.8467 011, for and 2 10 .
2i i eελ λ α ε −− = − = = ×  

5. Conclusion 

In this paper, a rigorous derivation of asymptotic formula was provided for the 
largest eigenvalues using the convergence estimation of the eigenvalues of a se-
quence of self-adjoint compact operators satisfying the following property: 

( )2 , for any 0 1,i i
α

ελ λ θ ε α−− = ≤ ≤  

which are tested by numerical experiments. 
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