
Open Access Library Journal 
2021, Volume 8, e7709 
ISSN Online: 2333-9721 

ISSN Print: 2333-9705 
 
 
 

Existence of Solutions for 
Klein-Gordon-Maxwell Equations  
Involving Hardy-Sobolev Critical Exponents 

Xin Zhang 

School of Mathematics, Liaoning Normal University, Dalian, China 

 
 
 

Abstract 
We investigate the existence of solutions for Klein-Gordon-Maxwell equa-
tions involving Hardy-Sobolev critical exponents. By means of the Ekeland’s 
variational principle and the Mountain Pass Theorem, we obtain that there is 
at least a nontrivial solution for the subcritical system. Then we prove that 
there are at least two different solutions for the critical system. 
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1. Introduction and Preliminaries 

In recent years, great attention has been given to problems driven by the Lapla-
cian. One of the reasons for this comes from the fact that this operator appears 
in several applications in different subjects, such as flame propagation, free boun-
dary obstacle problems, and ultrarelativistic limits of quantum mechanics. In 
particular, from a probabilistic point of view, the Laplace operator is the infini-
tesimal generator of a Lévy process. For more details and applications, see other 
references [1] [2]. 

Problems with two nonlinearities recently have been studied by several au-
thors. In particular, such problems were considered in [3] [4] for the Laplacian, 
the p-Laplacian, the Biharmonic operator and the fractional Laplacian. In [5], 
Ghoussoub, Robert and Shakerian investigated problems with doubly critical 
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nonlinear terms, with either critical Sobolev term or critical Hardy-Sobolev term, 
for the Laplacian and the fractional Laplacian. 

Solutions of critical Sobolev problems were found in [6], as critical points of a 
suitable functional, by the Mountain-Pass lemma without the ( )cPS  condition. 
In this case, the ( )cPS  condition only holds true for c in certain intervals re-
lated to the best Sobolev constant. In the control of the Mountain-Pass level, the 
extremal function of the best Sobolev constant plays an important role. 

For example, Jannelli (see [7]) considered that the problem  

( )2 2

2 , ,

0, ,

s

s

uuu u u x
x x

u x

λ µ
∗ −

−∆ − = + ∈Ω



= ∈∂Ω

              (1) 

they proved the existence of nontrivial solutions for the preceding equations in-
volving a critical Hardy-Sobolev exponent in a bounded domain. 

Then Kang and Peng in [8] considered the following problem based on the 
above equations  

( )2 2
2

2 , ,

0, .

s
r

s

u uu u u u x
x x

u x

µ λ
∗ −

−
−∆ − = + ∈Ω



= ∈∂Ω

            (2) 

They established the problem above has at least a pair of sign-changing solu-
tions with 0λ >  and 2 2r ∗< <  in this reference [8]. Kang and Peng in [9] 
proved that problem above has at least one positive solution under some condi-
tions for ,r µ  and λ . They also proved in [10] that as 2r = , the problem 
above has at least a pair of sign-changing solutions for 7N ≥ , [ )0, 4µ µ∈ −  
and ( )10 uλ λ< < . 

Motivated by the study of solitary waves of the nonlinear Klein-Gordon equa-
tion interacting with an electromagnetic field, Benci and Fortunato derived in 
[11] a model that is described by the following elliptic system  

( )

( )

222
0

2

,

,

pu m u u u

u

ω φ

φ ω φ

−  −∆ + − + =  
∆ = +

                (3) 

where 0m  and ω  are real constants. They proved existence of infinitely many 
radially symmetric solutions ( ) ( ) ( )1 3 1,2 3,u H Dφ ∈ ×   for the above system 
when 0m ω>  and for sub-critical exponents p satisfying 4 2p ∗< < . As in 
[12], they derived a variational identity to prove the non-existence of nontrivial 
weak solutions for the system above. In [13], Cassani investigated the critical  

case i.e. 22
2

Np
N

∗= =
−

, the critical Sobolev exponent. Moreover, Cassani used a  

Pohozaev-type argument, which points out an invariance property for the prob-
lem (3), to prove non-existence of solutions with a suitable decay at infinity and 
in particular it turns out to be the case of radially symmetric solutions. In [13], 
Cassani replaced the first equation of the System (3), adding a lower order per-
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turbation, by the following  

( ) 2 2 222
0 ,pu m u u u u uω φ µ

∗− − −∆ + − + = +              (4) 

where 0µ >  and 4 6 2p ∗≤ < = . In this case, they recovered a Mountain-Pass 
type solution for Equation (4) and the second equation of System (3). 

The above-mentioned equations with Hardy-Sobolev critical exponents are re-
stricted to bounded regions, and the two Klein-Gordon-Maxwell systems men-
tioned above involve Sobolev critical exponents, not Hardy-Sobolev critical ex-
ponents. Moreover, some parts of the certification process did not give a specific 
certification process. We are inspired by the proof methods of a nontrivial solu-
tion and infinitely many solutions in the above-mentioned literatures, and in-
vestigate the existence of solutions for subcritical equations and critical equa-
tions with Hardy-Sobolev critical exponents in 3 . 

In this paper, firstly we study existence of solutions for the following Klein- 
Gordon-Maxwell equations involving Hardy-Sobolev critical exponents  

( )
2

22 3

2 2 3

,

,

p

s

u u
u m u x

x
u u x

ω φ

φ φ ω

−
 −∆ + − + = ∈ 


−∆ + = − ∈





             (5) 

where m and ω  are real constants, ( ) ( )2
2 2

2
N s

p s
N

∗ −
< < =

−
, 0 2s< < . 

Then we study existence of solutions for the following equations  

( )
( )2 2 2 2

22 3

2 2 3

,

,

q p s

s s s

u u u u u u
u m u x

x x x
u u x

ω φ µ

φ φ ω

∗− − −
 −∆ + − + = + + ∈  


−∆ + = − ∈





   (6) 

where m, µ  and ω  are real constants, 1 2q< < , ( ) ( )2
2 2

2
N s

p s
N

∗ −
< < =

−
, 

0 2s< < . 
In Section 2, we first give main results for the Systems (5) and (6). In Section 3, 

we prove the existence of solutions of System (5). In Section 4, we establish exis-
tence of solutions of System (6).  

2. Main Results 

Throughout this paper, we denote the ( )3 , dspL x x−  norm by  

3

1

, d
p p

sp s

u
u x

x

 
 =
 
 
∫  

and ( )3 ,dpL x  norm by ( )3

1

dp p
pu u x= ∫ . For simplicity, set  

( )2 0 ,0 2 6u u u∗ ∗= = , since 22
2

N
N

∗ =
−

.  

( ) ( ) ( ){ }1,2 3 2 3 2 3:D u L u L
∗

= ∈ ∇ ∈    is a Sobolev space with norm  
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( )1,2 3

1
2 2d .Du u x= ∇∫  

Moreover, ( )1 3H   is the usual Sobolev space with norm  

( )( )1 3

1
2 22 dHu u u x= ∇ +∫  

continuously embedded in ( )3pL   for ( )2 2p s∗≤ ≤ . Define Hardy-Sobolev 
best constant as follows  

( ) ( ) ( )
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∇
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∫

∫







 

Theorem 2.1. If one of the following conditions is satisfied:  

1) 2 4p< <  and 2 21
2
p m ω − > 

 
, or  

2) ( )4 2p s∗≤ <  and m ω> . 
Then System (5) admits at least a nontrivial solution.  
Theorem 2.2. If one of the following conditions is satisfied: 
1) ( )4 2p s∗≤ <  and m ω> , or  

2) 2 4p< <  and 2 21
2
p m ω − > 

 
. 

Then there exists a constant 0m >  such that System (6) admits at least two 
different solutions ( ),u φ  satisfying 1Hu < +∞ , 1,2Dφ < +∞  when 
0 mµ< <  .  

We define the functional of System (5)  

( ) ( )( )3 3
2 2 22 21 1, d d .

2

p

s

u
F u u m u x x

p x
φ φ ω φ = ∇ − ∇ + − + − ∫ ∫ 

   (7) 

Define the functional of System (6) as follows  

( ) ( )( )

( )

( )

3

3 3 3

2 2 22 2

2

1, d
2

1 1d d d .
2

q p s

s s s

F u u m u x

u u u
x x x

q p sx x x

φ φ ω φ

µ
∗

∗

 = ∇ − ∇ + − + 

− − −

∫

∫ ∫ ∫





  

      (8) 

Remark 2.1. The functional F and F  are strongly indefinite i.e. unbounded 
from below and from above on infinite dimensional subspaces. In order to avoid 
this indefiniteness, which rules out many of the usual tools of critical point 
theory, a reduction method is performed in [11] which we now recall. For u and 
φ  defined above, we have the following lemmas.  

3. The Proof of Theorem 2.1 

Lemma 3.1. For every ( )1 3u H∈  , 
1) there exists a unique function ( ) ( )1,2 3u Dφ = Φ ∈   that solves the second 

equation of System (5); 

 

DOI: 10.4236/oalib.1107709 4 Open Access Library Journal 
 

https://doi.org/10.4236/oalib.1107709


X. Zhang 
 

2) if u is radially symmetric, then ( )uΦ  is radial too; 
3) ( )( ) 0u xΦ ≤ , moreover, ( )( )u x ωΦ ≥ − , if ( ) 0u x ≠  and 0ω > .  
Proof. The first result is proved in Lemma 3 of [14]. While the second one, 

though not explicitly stated, is proved in Lemma 5 of [14]. The third result can 
be found in Lemma 2.3 of [15].                                       □ 

Lemma 3.2. The map Φ  is 1C  and  

( ) ( ) ( ) ( ){ }1 3 1,2 3, | , 0G u H D F uφ φφ φ′= ∈ × =  .  

Proof. Noticing that ( )uΦ  is a solution of the second equation in System (5), 
we have  

( ) ( ) ( )3 3 3

2 2 2 2d d d .u x u u x u u xω− ∇Φ = Φ + Φ∫ ∫ ∫  
          (9) 

In addition,  

( )( ) ( ) ( )( )( )3

3

2 22 2 21, d
2

1 d ,
p

s

F u u u u m u u x

u
x

p x

ω Φ = ∇ − ∇Φ + − +Φ  

−

∫

∫





 

( )( ) ( ) ( ) ( )3 3 3

2 2 2 2, d d d .F u u u x u u x u u xφ ω′ Φ = − ∇Φ − Φ − Φ∫ ∫ ∫  
 

According to (9), one gets ( )( ), 0F u uφ′ Φ =  for any  

( ) ( ) ( )1 3 1,2 3,u H Dφ ∈ ×  . Thus  

( )( ) ( )( ) ( )( ) ( ) ( )( ), , , ,u uF u u F u u F u u u F u uφ′ ′ ′ ′ ′Φ = Φ + Φ Φ = Φ .             □ 

Define ( ) ( ),I u F u φ= . If ( )1 3,u v H∈  , then one has  

( ) ( )( )3 3

2
22 d d .

p

s

u
I u v u v m uv x uv x

x
ω φ

−

 ′ = ∇ ⋅∇ + − + − ∫ ∫ 
     (10) 

Lemma 3.3. The following statements are equivalent: 
1) ( ) ( ) ( )1 3 1,2 3,u H Dφ ∈ ×   is a solution of System (5); 
2) u is a critical point for I and ( )uφ = Φ .  
Proof. 2) ⇒  1) Obviously. 
1) ⇒  2) Suppose ( ),uF u φ′  and ( ),F uφ φ′  denote the partial derivatives of 

F at ( ) ( ) ( )1 3 1,2 3,u H Dφ ∈ ×  . Then for every ( )1 3v H∈   and 

( )1,2 3Dψ ∈  , one gets  

( )[ ] ( )( )3 3

2
22, d d ,

p

u s

u
F u v u v m uv x uv x

x
φ ω φ

−

 ′ = ∇ ⋅∇ + − + − ∫ ∫ 
   (11) 

( )[ ] ( )3 3
2, d d .F u x u xφ φ ψ φ ψ ω φ ψ′ = − ∇ ⋅∇ − +∫ ∫ 

           (12) 

By the standard computations, we can prove that ( ),uF u φ′  and ( ),F uφ φ′  
are continuous. From (11) and (12), it is easy to obtain that its critical points are 
solutions of System (5), by 1) of Lemma 3.1, one has ( )uφ = Φ .             □ 

Lemma 3.4. For ( )1 3u H∈  , if m ω> , then there exist some constants 

1 1, 0ρ α >  such that ( )
1 1

1 0
Hu

I u
ρ

α
=

≥ > .  
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Proof. From (7), one obtains  

( ) ( )( )3 3

3 3 3

2 22 2 2

2 2 2

1 1d d
2 2

1 1d d d .
2

p

s

I u u m u x x

u
u x u x x

p x

ω φ
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− − −

∫ ∫
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         (13) 

Substituting (9) into (13), we have  

( ) ( )( )
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( )
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3 3
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2 2
2 2

2 1 3
1 2 1 1
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2

, for , .

p

s

p

s

p
H H H

I u u m u x x

u
u x x

p x

m u
u u x x
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C u C u u H u

ω φ

φ

ω

α ρ
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−
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∫ ∫

∫ ∫
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Thus  

( )
1 1

1 0
Hu

I u
ρ

α
=

≥ >  

and the proof is completed.                                          □ 
Lemma 3.5. Under the assumptions of Theorem 2.1, there exists a function 

( )1 3
1 Hη ∈   with 11 1Hη ρ>  such that ( )1 0I η < .  
Proof. It is easy to obtain  

( ) ( )( ) ( )

( ) ( )

( )( ) ( )

( )( )

3 3

3 3 3

3 3 3

3 3

2
2 2 2 2 2 2

2
22 2

2
2 2 2 2 2 2

2
2 2 2 2 2 2

lim d d
2

1d d d
2 2

d d d
2

2 d d
2

,

t
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s
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s
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s

tI tu u m u x t tu u x

ut ttu u x tu x x
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ut tu m u x t tu u x x
p x

ut tu m u u x x
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ω ω

ω ω

ω ω

→+∞
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− Φ − ∇Φ −

≤ ∇ + − − Φ −

≤ ∇ + − + −

→ −∞

∫ ∫

∫ ∫ ∫

∫ ∫ ∫

∫ ∫

 

  

  

 

 

which implies that ( )I u → −∞ , as 1Hu →∞ . 
The lemma is proved by taking 1 tuη =  with 0t >  large enough and 0u ≠ . 

Therefore we know that there exists ( )1 3
1 Hη ∈  , 11 1Hη ρ>  such that 

( )1 0I η < .                                                        □ 

Therefore, there exists a sequence { } ( )1 3
nu H∈  , so-called Palais-Smale se-

quence, such that  

( ) ( )0, and 0, ,n nI u c I u n′→ > → →∞             (14) 

where  

[ ]
( )( )

0,1
inf max

t
c I t

γ
γ

∈Γ ∈
=  
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with  

[ ] ( )( ) ( ) ( ){ }1 3
10,1 , : 0 0, 1 .C Hγ γ γ ηΓ = ∈ = =  

Since System (5) is set on 3 , it is well known that the Sobolev embedding 

( )1 3H  ↪ ( ) ( )( )3 , d 2 2spL x x p s− ∗≤ ≤  is not compact and then it is usually  

difficult to prove that a Palais-Smale sequence is strongly convergent when we 
seek solutions of System (5) by variational methods. A standard tool to overcome 
the problem is to restrict ourselves to radial functions, namely we look at the  

functional I on the subspace ( ) ( ) ( ) ( ){ }1 3 1 3 |rH u H u x u x= ∈ =   and  

( ) ( ) ( ) ( ){ }1,2 3 1,2 3 |rD u D u x u x= ∈ =   compactly embedded in  

( )3 , dsp
rL x x−  for ( )2 2p s∗< <  and ( )3 ,dp

rL x  for  

22 2 6
2

Np
N

∗< < = =
−

. By standard arguments, one sees that if a critical point 

( )1 3
ru H∈   for the functional ( )1 3

rHI   is also a critical point of I.  

Lemma 3.6. The PS sequence { } ( )1 3
n ru H∈   given in (14) is bounded. 

Moreover, ( ) ( )1,2 3
n ru DΦ ∈   is bounded, too.  

Proof. Case 1. 2 4p< < . There exists a constant 3 0C > , then by (7), (9) and 
(10), we get  

( )
( ) ( )

( )( ) ( )

( )

( )

1

3 3

3

3 3

1

3

2 2 2 2 2

2 2

2 2 2 2 2

2
4

1

,

1 d 2 d
2 2

d

1 d 1 2 d
2 2 2

r

r

n H

n n n

n n n n

n n

n n

n H

C o u

pI u I u u
p pu m u x u u x

u u x

p p pu x m u x

C u

ω ω

ω ω

+

′≥ −

   = − ∇ + − − − Φ   
   
+ Φ

      ≥ − ∇ + − − + −            
≥

∫ ∫

∫

∫ ∫

 



 

 

for n large enough. Therefore, it follows that { }nu  is bounded in ( )1 3
rH  . 

Case 2. ( )4 2p s∗≤ < . We have that there is a positive constant 3C  such 
that  

( ) ( )13
1 , .

rn n n nHC u I u I u u
p

′+ ≥ −  

According to (9), (10) and (13), ( )nu ωΦ ≥ − , one has  

( ) ( )

( )( ) ( )

( ) ( )

1

3 3

3 3

3

2 2 2 2 2 2

2 2

1 ,

1 1 1 1d d
2 2
1 2d d
2

rn H

n n n

n n n n

n n n

C u

I u I u u
p

u m u x u u x
p p

u x u u x
p

ω

ω

+

′≥ −

   
= − ∇ + − + + Φ   
   

+ ∇Φ + Φ

∫ ∫

∫ ∫
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( )( ) ( )

( )

3 3

3

1

2 2 2 2 2 2

2

2
5

1 1 1 1d d
2 2

1 2 d
2

r

n n n n

n

n H

u m u x u u x
p p

u x
p

C u

ω
   

= − ∇ + − + − Φ   
   
 

+ − ∇Φ 
 

≥

∫ ∫

∫

 


 

for n large enough. It follows that { }nu  is bounded in ( )1 3
rH  . 

According to Equation (9), one has  

( ) ( ) ( )3 3 3

2 2 2 2d d d ,n n n n nu x u u x u u xω∇Φ = − Φ − Φ∫ ∫ ∫  
 

then by Hölder inequality  

( ) ( ) ( )( ) ( )( )
( ) ( )

3 3 3

1 1

d d d

1 1, 1, 1, 1

p qp q

p q

f x g x x f x x g x x

f x g x p q
p q

⋅ ≤ ⋅

 
= ⋅ > > + = 

 

∫ ∫ ∫  
 

and Sobolev inequality  

1 .
rq Hu C u≤  

One obtains  

( ) ( ) 11,2 1,2

2 2
6 .

rr r
n n n HD D

u C u uΦ ≤ Φ  

Thus ( ){ }nuΦ  is bounded in ( )1,2 3
rD   by the boundedness of  

{ } ( )1 3
n ru H⊂  .                                                   □ 
Up to subsequence, we may assume that there exists ( )1 3

ru H∈   and 

( )1,2 3
rDϕ ∈   such that  

( )1 3in ,n ru u H                      (15) 

( )3in ,d for 2 6,p
n ru u L x p→ < <              (16) 

( ) ( )1,2 3in .n ru DϕΦ                    (17) 

Lemma 3.7. ( )uϕ = Φ  and ( ) ( )nu uΦ →Φ  in ( )1,2 3
rD  .  

Proof. First we prove the uniqueness. For every fixed ( )1 3
ru H∈  , we con-

sider the following minimizing problem 
( )

( )
1,2 3
inf
r

u
D

E
φ

φ
∈ 

, where  

( )1,2 3:u rE D →   defined as energy functional of the second equation in Sys-

tem (5).  

( ) 3 3 3
2 2 2 21 1d d d .

2 2uE x u x u xφ φ φ ωφ= ∇ + +∫ ∫ ∫  
 

In fact, by the proof of Lemma 2.1 in [16], one can know  

( ) 3, locally uniformly in ,nu ϕΦ →   

so we obtain  

( ) ( )3 3 3 3
2 2 2 2 2 2d d , d d .n n n nu u x u x u u x u xϕ ϕΦ → Φ →∫ ∫ ∫ ∫   

 

From the weak lower semicontinuity of the norm in ( )1,2 3
rD   and the con-

vergence above, one has  
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( ) ( )( ) ( )( ) ( )( )liminf liminf ,
n nu u n u un n

E E u E u E uϕ
→∞ →∞

≤ Φ ≤ Φ = Φ  

then by 1) of Lemma 3.1, ( )uϕ = Φ . 
Next, we prove that ( ){ }nuΦ  converges strongly in ( )1,2 3

rD  . Since 
( )nuΦ  satisfies the following equation  

( ) ( ) ( )3 3 3
2 2 1,2 3d d d , .n n n n ru x u u x u x Dψ ψ ω ψ ψ∇Φ ∇ + Φ = − ∈∫ ∫ ∫  

   (18) 

Let us take the difference between (18) and the corresponding equation for 
( )uΦ  to have  

( ) ( )( ) ( ) ( )( ) ( ) ( )

( ) ( )
3

3

2 2 2

2 2 1,2 3

d

d , .

n n n n

n r

u u u u u u u u x

u u x D

ψ ψ ψ

ω ψ ψ

∇ Φ −Φ ∇ + Φ −Φ + − Φ

= − − ∈

∫
∫






 (19) 

Testing with ( ) ( )( )nu uψ = Φ −Φ , by the Hölder inequality, the following 
holds  

( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1,2

3 3

2

2 2 2 2

2 2 2 2
6 366 6
5 2

127 8 3
5

d d

,

r
n D

n n n n

n n n n

n n

u u

u u u u x u u u u u x

u u u u u u u u u

C u u C u u

ω

ω

Φ −Φ

≤ − Φ −Φ + − Φ Φ −Φ

≤ Φ −Φ − + Φ Φ −Φ −

≤ − + −

∫ ∫ 
 (20) 

according to (16), one has ( ) ( )nu uΦ →Φ  strongly in ( )1,2 3
rD  .          □  

Lemma 3.8. { } ( )1 3
n ru H∈   has a strongly convergent subsequence in 

( )1 3
rH  .  
Proof. Consider a sequence { }nu  in ( )1 3

rH  , which satisfies ( )nI u c→ , 

( ) 0nI u′ → , and 1sup
rn Hu < +∞ . Going if necessary to a subsequence, since 

the embedding ( )1 3
rH  ↪ ( )3 , dsp

rL x x−  is compact for any ( )( )2,2p s∗∈ , 

we have  

( )3in , d .sp
n ru u L x x−→                       (21) 

According to (10), one obtains  

( )( )

( ) ( )( ) ( )( )
( )

3

3

22

2

d

d .

n n

n n n n n

p
n

n ns

I u u u

u u u m u u u u x

u
u u u x

x

ω

−

′ −

 = ∇ ⋅∇ − + − +Φ −  

− −

∫

∫





 

Similarly, one gets  

( )( )

( ) ( )( ) ( )( )
( )

3

3

22

2

d

d .

n

n n

p

ns

I u u u

u u u m u u u u x

u
u u u x

x

ω

−

′ −

 = ∇ ⋅∇ − + − +Φ −  

− −

∫

∫





 

By (10), we easily get that  
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( ) ( )( )( )
( ) ( ) ( ) ( )( )( )

( )

( ) ( )( )( )

3

3

3

3

2 22 2

2 2

2 2

d

, d

d

2 d .

n n

n n n n n

p p
n

n ns s

n n n

u u m u u x

I u I u u u u u u u u u x

u u
u u u u x

x x

u u u u u u x

ω

ω

− −

∇ − + − −

′ ′= − − + Φ −Φ −

 
 + − −
 
 

+ Φ −Φ −

∫

∫

∫

∫









 (22) 

It is clear that  

( ) ( ) , 0, as .n nI u I u u u n′ ′− − → →∞              (23) 

Furthermore, in view of (21), we have  

( )3 3 3

1 1
1

1

, ,

d d d

0, as .

p
p p pp p

n n n
ns s s

p
n np s p s

u u u u
u u x x x

x x x

u u u n

−
−

−

   −
   − ≤
   
   

= − → →∞

∫ ∫ ∫        (24) 

Similarly, we also obtain that  

( )3

1

d 0, as .
p

ns

u
u u x n

x

−

− → →∞∫                 (25) 

Thus combining (24) and (25), one gets that  

( )

( ) ( )

3

3 3

2 2

1 1

d

d d

0, as .

p p
n

n ns s

p p
n

n ns s

u u
u u u u x

x x

u u
u u x u u x

x x
n

− −

− −

 
 − −
 
 

= − − −

→ →∞

∫

∫ ∫



 
            (26) 

By Hölder inequality and Sobolev inequality, one has  

( ) ( )( ) ( )

( ) ( )( )( )
( ) ( )

( ) ( )

3

11,2

22

3 26

9 3

d

.
rr

n n n

n n n

n n n

n n n HD

u u u u u x

u u u u u

u u u u u

C u u u u u

Φ −Φ −

≤ Φ −Φ −

≤ Φ −Φ −

≤ Φ −Φ −

∫

 

According to (16), one gets ( ) ( )( ) ( )3 d 0n n nu u u u u xΦ −Φ − →∫ , as n →∞ . 
And  

( )( ) ( )

( )
3

11,2

2

3 26

10 3

d

0, as .
rr

n n n

n n HD

u u u x u u u u u

C u u u u u n

Φ − ≤ Φ − −

≤ Φ − − → →∞

∫  

Thus we get that  

( ) ( )( )( )

( ) ( )( ) ( ) ( )( )
3

3 3

2

d

d d

0, as .

n n n

n n n n

u u u u u u x

u u u u u x u u u x

n

Φ −Φ −

= Φ −Φ − + Φ −

→ →∞

∫
∫ ∫



 
      (27) 

We observe that the sequence ( ){ }2
n nu uΦ  is bounded in ( )

3
32L  , since  
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( ) ( ) 22
3 36
2

,n n n nu u u uΦ ≤ Φ  

so that  

( ) ( )( )( )

( ) ( )

( ) ( )

3
2 2

2 2
3 3
2

2 2
3 3 3
2 2

d

.

n n n

n n n

n n n

u u u u u u x

u u u u u u

u u u u u u

Φ −Φ −

≤ Φ −Φ −

 
≤ Φ + Φ − 
 

∫
 

By (16), one has  

( ) ( )( )( )3
2 2 d 0, as .n n nu u u u u u x nΦ −Φ − → →∞∫         (28) 

Therefore according to (23)-(28) and m ω> , we obtain that  

{ } ( ) ( )( )1 3

2 22 2max 1, d

0, as .
rn n nHu u m u u u u x

n

ω− ≤ − ∇ − + −

→ →∞

∫  

Thus { }nu  has a strongly convergent subsequence in ( )1 3
rH  . 

Consequently, we conclude that  

( ) ( ), 0.I u c I u′= =                        □ 

Next we begin to prove Theorem 2.1.  
Proof. We only need to prove that 0u ≠ . Suppose by contradiction that 

0u = , and hence ( ) 0uΦ = . Since as n →∞ , ( ) , 0n nI u u′ → , 0nu →  in 

( ) ( )( )3 , d 2 2sp
rL x x p s− ∗< <  and ( )( )3 ,d 2 2p

rL x p ∗< < . Thus we get  

( ) ( )3 3
2 2 2d 2 d 0,n n n nu u x u u xωΦ + Φ →∫ ∫ 

 

3 d 0.
p

n
s

u
x

x
→∫  

We may assume  

( )( ) 13

2 22 2 2 d , 0.
rn n n Hu m u x C u Cω∇ + − = >∫  


 

Set  

1
2 , 0,

rn Hu l l→ ≥  

obviously, 0 0nl u= ⇔ →  in ( )1 3
rH  . As a consequence we obtain that  

( ) , .
2n

ClI u n→ →∞


 

According to ( ) 0nI u c→ > , we get  

0,
2

Clc = >


 

which implies that 0l =  is impossible, i.e., which contradicts with 0u = . 
Therefore, u is a nontrivial solution of System (5). 

This theorem is mainly based on satisfying the conditions of the Mountain 
 

DOI: 10.4236/oalib.1107709 11 Open Access Library Journal 
 

https://doi.org/10.4236/oalib.1107709


X. Zhang 
 

Pass Theorem, and then there is a (PS) sequence, proving that the (PS) sequence 
is bounded and nu  has a strongly convergent sub-sequence in ( )1 3

rH  , so as 
to prove that the system of Equation (5) has at least a nontrivial solution.    □ 

4. The Proof of Theorem 2.2 

Similarly, we also have the following lemmas.  
Lemma 4.1. For every ( )1 3u H∈  , 
1) there exists a unique function ( ) ( )1,2 3u Dφ = Φ ∈   that solves the second 

equation of System (6); 
2) if u is radially symmetric, then ( )uΦ  is radial too; 
3) ( )( ) 0u xΦ ≤ , moreover, ( )( )u x ωΦ ≥ − , if ( ) 0u x ≠  and 0ω > .  
Lemma 4.2. The map Φ  is 1C  and  

( ) ( ) ( ) ( ){ }1 3 1,2 3, | , 0G u H D F uφ φφ φ′= ∈ × =   .  

Likewise, define ( ) ( ),J u F u φ=  .  
Lemma 4.3. The pair ( ),u φ  is a weak solution of System (6) if and only if it 

is a critical point of J in ( ) ( )1 3 1,2 3H D×  .  
Lemma 4.4 For ( )1 3u H∈  , if m ω> , then there exist some constants 

2 2, , 0mρ α >  such that ( )
1 2

2
Hu

J u
ρ

α
=

≥  for all µ  satisfying 0 mµ< <  .  

Proof. From (8), one obtains  

( ) ( )( )

( )

( )

3 3 3

3 3 3 3

2 22 2 2 2

2
2 2

1 1d d d
2 2

1 1 1d d d d .
2 2

q p s

s s s

J u u m u x x u x

u u u
u x x x x

q p sx x x

ω φ ωφ

µφ
∗

∗

= ∇ + − − ∇ −

− − − −

∫ ∫ ∫

∫ ∫ ∫ ∫

  

   

 (29) 

Substituting (9) into (29), we have  

( ) ( )( )

( )

( )

( )( )

( )

( )

3 3 3

3 3 3

3 3

3 3

2 22 2 2 2 2

2

2 2 2 2

2

1 1 1d d d
2 2 2

1 1d d d
2

1 d d
2 | |

1 1d d
2

q p s

s s s

q

s

p s

s s

J u u m u x x u x

u u u
x x x

q p sx x x

u
u m u x x

q x

u u
x x

p sx x

ω φ φ

µ

µω

∗

∗

∗

∗

= ∇ + − + ∇ +

− − −

≥ ∇ + − −

− −

∫ ∫ ∫

∫ ∫ ∫

∫ ∫

∫ ∫

  

  

 

 

 

{ }
( )

( )
( )

{ }
( )

( )
( )

1 1 1 1

1 1 1 1

2 2 2
2 211 12 2

2 2 2
2 212 112

min 1, 1
2 2

min 1, 1 .
2 2

s
q p s

sH H H H

s
q q p q s q

sH H H H

m C Cu u u S u
q p s

m C Cu u u S u
p qs

ω µ

ω µ

∗
∗

∗
∗

−

∗

−− − −

∗

−
≥ − − −

 −
 = − − −

 

 

Set ( )
{ }

( )

( )
( )

2 2 2
22 12 2

1

min 1, 1 , 0
2 2

s
s qq p q

s

m Ch S
p s

ω
ρ ρ ρ ρ ρ

∗
∗− −− −

∗

−
= − − ≥ . 

Since  
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( )
{ }( )( ) ( )

( )
( )

( )
( )

{ }( )( ) ( )

( )
( )

( )
( )

2 2
121 1

1

2
2 12

2 2
121 2

2
2 22

min 1, 2

2

2
2

min 1, 2

2

2
.

2

q p q

s
s q

s

q p

s
s

s

m q C p q
h

p

s q
S

s

m q C p q
p

s q
S

s

ω
ρ ρ ρ

ρ

ω
ρ ρ

ρ

∗
∗

∗
∗

− − −

∗
− − −

∗

− −

∗
− −

∗

− − −
′ = −

−
−

 − − −= −



−
−



 

Evidently, when 0ρ ≥  is small enough, ( )1h ρ′  is greater than 0, and 
( )1h ρ  increases monotonically. When 0ρ ≥  is large enough, ( )1h ρ′  is less 

than 0, and ( )1h ρ  decreases monotonically. Therefore there exists a maximum 
point ξ  such that  

( )1 0.h ξ′ =  

Obviously, we observe that 0ξ =  or 0ξ > , while 0ξ =  is impossible. 

Then 0ξ > , next we obtain ( ) ( )1 10
max 0h h
ρ

ρ ξ
≥

= > . Choosing that  

1 2Hu ξ ρ= = , we deduce, for all µ  satisfying ( )1 2

11

0
2

qh
m

C
ρ

µ< < =  ,  

( ) ( ) ( )
1 2

2 1 211
2 1 2 2 0

2H

q
q

u

hCJ u h
qρ

ρ ρµ
ρ ρ α

=

⋅ 
≥ ⋅ − ≥ = > 

 
 

and the proof is completed.                                          □ 
Lemma 4.5. Under the assumptions of Theorem 2.2, there exists a function 

( )1 3
2 Hη ∈   with 12 2Hη ρ>  such that ( )2 0J η < .  
Similarly, a standard tool is to restrict ourselves to radial functions, namely 

( ) ( ) ( ) ( ){ }1 3 1 3 |rH u H u x u x= ∈ =   and  

( ) ( ) ( ) ( ){ }1,2 3 1,2 3 |rD u D u x u x= ∈ =   compactly embedded in  

( )3 , dsp
rL x x−  for ( )2 2p s∗< <  and ( )3 ,dp

rL x  for  

22 2 6
2

Np
N

∗< < = =
−

. Moreover, one sees that if a critical point ( )1 3
ru H∈   

for the functional ( )1 3
rHJ   is also a critical point of J.  

Lemma 4.6. Under the assumptions of Theorem 2.2, if { } ( )1 3
n ru H∈   is a 

bounded Palais-Smale sequence of J, then { }nu  has a strongly convergent sub-
sequence in ( )1 3

rH  .  
Proof. Consider a sequence { }nu  in ( )1 3

rH  , which satisfies ( )nJ u c→ , 
( ) 0nJ u′ → , and 1sup

rn Hu < +∞ . Going if necessary to a subsequence, we as-
sume  

( )1 3in .n ru u H   

Since the embedding ( )1 3
rH  ↪ ( )3 , dsp

rL x x−  is compact for any 
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( )( )2,2p s∗∈ , we have  

( )3in , d .sp
n ru u L x x−→                      (30) 

Moreover, likewise, for ( )2,2p ∗∈ , we also get  

( )3in ,d .p
n ru u L x→                      (31) 

According to  

( ) ( )( )
( )

3 3

3 3

2
22

2 2 2

d d

d d ,

q

s

p s

s s

u
J u v u v m uv x uv x

x

u u
uv x uv x

x x

ω φ µ

∗

−

− −

 ′ = ∇ ⋅∇ + − + − 

− −

∫ ∫

∫ ∫

 

 

    (32) 

one obtains  

( )( )

( ) ( )( ) ( )( )
( ) ( )

( )

( )

3

3 3

3

22

2 2

2 2

d

d d

d .

n n

n n n n n

q p
n n

n n n ns s

s
n

n ns

J u u u

u u u m u u u u x

u u
u u u x u u u x

x x

u
u u u x

x

ω

µ

∗

− −

−

′ −

 = ∇ ⋅∇ − + − +Φ −  

− − − −

− −

∫

∫ ∫

∫



 



 

Similarly, one gets  

( )( )

( ) ( )( ) ( )( )
( ) ( )

( )

( )

3

3 3

3

22

2 2

2 2

d

d d

d .

n

n n

q p

n ns s

s

ns

J u u u

u u u m u u u u x

u u
u u u x u u u x

x x

u
u u u x

x

ω

µ

∗

− −

−

′ −

 = ∇ ⋅∇ − + − +Φ −  

− − − −

− −

∫

∫ ∫

∫



 



 

By (32), we easily get that  

( ) ( )( )( )
( ) ( ) ( )

( )

( ) ( )( )( )
( ) ( )

( )

( ) ( )( )( )

3

3

3

3

3

3

2 22 2

2 2

2 2

2 2 2 2

2 2

d

, d

d

2 d

d

d .

n n

q q
n

n n n ns s

p p
n

n ns s

n n n

s s
n

n ns s

n n n

u u m u u x

u u
J u J u u u u u u u x

x x

u u
u u u u x

x x

u u u u u u x

u u
u u u u x

x x

u u u u u u x

ω

µ

ω
∗ ∗

− −

− −

− −

∇ − + − −

 
′ ′  = − − + − −

 
 

 
 + − −
 
 

+ Φ −Φ −

 
 + − −
 
 

+ Φ −Φ −

∫

∫

∫

∫

∫

∫













   (33) 

Then we use similar method in the proof of Lemma 3.8, we obtain that { }nu  
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has a strongly convergent subsequence in ( )1 3
rH  .                      □ 

Next we begin to prove Theorem 2.2.  
Proof. The proof is divided into two steps. 
Step 1. There exists ( )1 3

1 ru H∈   such that ( )1 0J u′ =  and ( )1 0J u < . 
We choose a function ( )1 3

rv H∈  . Since ( )u ωΦ ≥ − , one has  

( ) ( )( ) ( )

( ) ( )

( )

( )

( )

( )( )

3 3

3 3

3 3 3

3 3

2
2 2 2 2 2 2

2
22 2

22

2
2 2 2 2 2 2

d d
2

1d d
2 2

d d d
2

2 d d
2

0

q p ssq p

s s s

qq

s

tJ tv v m v x t tv v x

t tv v x tv x

v v vt t tx x x
q p sx x x

vt tv m v v x x
q x

ω ω

µ

µω ω

∗∗

∗

= ∇ + − − Φ

− Φ − ∇Φ

− − −

≤ ∇ + − + −

<

∫ ∫

∫ ∫

∫ ∫ ∫

∫ ∫

 

 

  

 

    (34) 

for 0t >  small enough. Thus we have ( ){ }21 inf : 0c J u u Bρ= ∈ < , where 

2 0ρ >  is given by Lemma 4.4, ( ){ }12

1 3
2:

rr HB u H uρ ρ= ∈ < . By the Ekel-

and’s variational principle [17], Let 1 0
n

ε = > , 1 0
rn Huδ ζ= − >  for all 

2
Bρζ ∈ , then there exists a sequence { }

2nu Bρ⊂  such that  

( )1 1nc J u c ε≤ ≤ +  

and  

( )1 11 .
r rn nH Hc u J uε εζ ζ ζ

δ δ
+ − ≤ + −  

Then we obtain that  

( ) ( ) 1 .
rn n HJ J u uεζ ζ

δ
≥ − −  

Obviously, in view of Lemma 4.4, 
2nu Bρ∈ , for n large enough. Thus for any 

( )1 3
rHφ ∈   with 1 1

rHφ = , we can take 0t >  such that ( )
2nu t Bρφ+ ∈  for n 

large enough (see [18]). Then we have  

( ) ( )
.n nJ u t J u

t
φ

ε
+ −

≥ −  

Letting 0t → , we get  

( ) , .nJ u φ ε′ ≥ −  

We replace φ  by φ−  in the above inequality, then it follows that  

( ) , ,nJ u φ ε′ − ≥ −  

i.e.,  

( ) , .nJ u φ ε′ ≤  
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Thus one obtains  

( ) , ,nJ u φ ε′ ≤  

which implies ( ) 0nJ u′ →  as n →∞ . 
Hence we conclude that { }nu  is bounded PS sequence of J for 1c . Therefore, 

by Lemma 4.6, we get that there exists a function ( )1 3
1 ru H∈   such that 

( )1 0J u′ =  and ( )1 1 0J u c= < .  
Step 2. There exists ( )1 3

2 ru H∈   such that ( )2 0J u′ =  and ( )2 0J u > . 
From Lemma 4.4, Lemma 4.5 and the Mountain Pass Theorem [19], there is a 

sequence { } ( )1 3
n ru H⊂   such that  

( )
[ ]

( )( )2 20,1
inf max 0n t

J u c J t
γ

γ α
∈Γ ∈

→ = ≥ >  

and  

( ) 0,nJ u′ →  

where [ ] ( )( ) ( ) ( ){ }1 3
20,1 , : 0 0, 1rC Hγ γ γ ηΓ = ∈ = = . From Lemma 4.6, we 

only need to prove that { }nu  is bounded in ( )1 3
rH  . 

Case 1): ( )4 2p s∗≤ < . From (8) and (9), one has  

( ) ( )( ) ( ) ( )

( )

( )

3 3 3

3 3 3

22 2 2 2 2 2

2

1 1 1d d d
2 2 2

1 1d d d .
2

q p s

s s s

J u u m u x u u x u x

u u u
x x x

q p sx x x

ω

µ
∗

∗

= ∇ + − + Φ + ∇Φ

− − −

∫ ∫ ∫

∫ ∫ ∫

  

  

 

Then by (32), one obtains  

( ) ( )

( ) ( )

( )( ) ( )

( )

( )
( )

( )

1

3 3

3 3

3 3

2

2 2 2 2 2 2

2

2
2

1 1

1 ,

1 1 1 1d d
2 2

1 1 1d d
2

2 1 1d d
2

rn H

n n n

n n n n

q
n

n s

s
n

n n s

c o u

J u J u u
p

u m u x u u x
p p

u
u x x

p q x

u
u u x x

p p s x

ω

µ

ω
∗

∗

+ +

′≥ −

   
= − ∇ + − + + Φ   
   

 
+ ∇Φ + − 

 

 
+ Φ + −  

 

∫ ∫

∫ ∫

∫ ∫

 

 

 

 

( )( ) ( )

( )

( )

( )

3 3

3 3

3

1 1

2 2 2 2 2 2

2

2

2
13 14

1 1 1 1d d
2 2

1 2 1 1d d
2

1 1 d
2

1 1
r r

n n n n

q
n

n s

s
n

s

q
n nH H

u m u x u u x
p p

u
u x x

p p q x

u
x

p s x

C u C u
p q

ω

µ

µ

∗

∗

   
= − ∇ + − + − Φ   
   

   
+ − ∇Φ + −   
   

 
+ −  
 

 
≥ + − 

 

∫ ∫

∫ ∫

∫
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for n large enough. Therefore, it follows that { }nu  is bounded in ( )1 3
rH  . 

Case 2): 2 4p< < . From (8) and (9), one has  

( ) ( )( ) ( )

( )

( )

3 3 3

3 3

2 2 2 2 2

2

1 1d d d
2 2

1 1d d .
2

q

s

p s

s s

u
J u u m u x u u x x

q x

u u
x x

p sx x

µω ω

∗

∗

= ∇ + − − Φ −

− −

∫ ∫ ∫

∫ ∫

  

 

 

Then by (32) and 2 21
2
p m ω − > 

 
 and ( )nu ωΦ ≥ − , 1 2q< < , we get  

( )
( ) ( )

( )( ) ( )

( )
( )

( )

1

3 3

3 3 3

2

2 2 2 2 2

2
2 2

1

,

1 d 2 d
2 2

d 1 d 1 d
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for n large enough. It follows that { }nu  is bounded in ( )1 3
rH  . 

This theorem is mainly based on the Mountain Pass Theorem and the Ekeland 
variational principle to prove that the System (6) has at least two different solu-
tions.                                                            □ 

Remark 4.1. Here a simple infimum definition is given as follows. Suppose S 
is a set of numbers in  . If the number 0ξ  satisfies: 

1) 0,x S x ξ∀ ∈ ≥ , that is, 0ξ  is a lower bound of S. 
2) 0 0β ξ∀ > , there exists a 0x S∈  that satisfies 0 0x β< , that is, 0ξ  is 

maximum lower bound of S, then the number 0ξ  is the infimum of the number 
set. Referred to as: 0 inf Sξ = .  
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