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Abstract 
The network pharmacology and molecular docking technology were used to 
elucidate the mechanism of Artemisiae scopariae Herba (ASH) against liver 
cancer (LC). TCMSP and UniProt database were used to collect the active in-
gredients of ASH and predict their potential targets. The targets of LC were 
screened by GeneCards, OMIM and TTD database. The intersections of drug 
and disease targets were obtained by online software Venny 2.1, and the in-
tersection targets were imported into R software (v3.6.3) for GO and KEGG 
function enrichment analysis. Construction of protein-protein interaction 
(PPI) network through STRING database, Cytoscape software was used to 
screen hub genes. Molecular docking analysis of hub genes was carried out 
with AutoDock vina software. A total of 13 active ingredients were screened 
out from ASH and 103 drug and disease intersection targets were screened. 
Finally, 7 hub targets including AKT1, TP53, JUN, MAPK1, TNF, RELA, IL6 
were screened out. The hub targets were docked well with some active ingre-
dients. The active ingredients of ASH are involved in hepatitis B, hepatitis C 
and other signaling pathways by acting on AKT1, TP53, JUN and other tar-
gets, which may play a role in the treatment of LC. 
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1. Introduction 

Artemisiae scopariae Herba (ASH) also called Artemisia capillaris (AC), belongs 
to the family of Asteraceae and the genus Artemisia [1]. As a therapeutic tradi-
tional medicine, it showed the anti-inflammatory effects in chronic hepatitis B 
virus infection and liver cirrhosis [2]. Moreover, the major constituents of ASH 
such as capillin and scoparone exhibit anti-cancer effects in liver, prostate, and 
lung cancers [2]. The extract of ASH (AC68) not only induced apoptosis but also 
inhibited cell growth, migration, and invasion of liver cancer cells by blocking 
the PI3K/AKT pathway [3]. ASH has certain effects on the treatment of hepati-
tis, also inhibits cell growth, invasion, and metastasis in liver cancer, together 
with induction of apoptosis, as well as hepatoprotective property [3] [4]. 

Liver cancer (LC) is the second most common cause of cancer-related death 
worldwide, it ranks fifth in terms of global cases and second in terms of deaths 
for males, hepatocellular carcinoma (HCC) is the most common type of LC 
worldwide [5] [6]. Lack of suitable biomarkers for early detection and limited 
treatment strategies are the major causes of high mortality [7]. A variety of risk 
factors have been associated with the development of LC, including hepatitis vi-
ruses, cirrhosis obesity and fatty liver disease [8]. The tumor microenvironment 
(TME) plays an important role in tumor progression and metastasis which con-
tributes to tumor cell proliferation, survival, migration, and invasion [9]. More 
and more studies have revealed that TME has critical roles in the progression of 
LC [10]. 

There are several treatment options for LC including chemotherapy, surgery, 
radiation and immunotherapy [11]. Unfortunately, each of the treatment options 
suffers some drawbacks. Chinese medicines (CMs) have potential to both pre-
vent LC occurrence and retard LC progression. The actions of CMs on LC may 
include tumor growth inhibition, antimetastatic activities, anti-inflammation, 
anti-LC stem cells, reversal on multi-drug resistance and induction/reduction of 
oxidative stress [12]. As a traditional Chinese medicine, ASH shows hepatopro-
tective property, and there is no effective therapy available to treat LC at present, 
which is expected to have a certain effect in the treatment of LC. 

2. Methods 

2.1. The Putative Targets of ASH 

“Artemisiae scopariae Herba” was used as a keyword in the traditional Chinese 
medicine system pharmacology database and analysis platform (TCMSP, 
http://tcmspw.com/tcmsp.php) to get the ingredients of ASH and the parameters 
for the selection of active ingredients were set as follows: oral bioavailability 
(OB) ≥ 30% and drug-likeness (DL) ≥ 0.18 [13]. In addition, potential targets of 
active ingredients were obtained from the TCMSP database, then the target pro-
teins were imported into the UniProt database (https://www.uniprot.org/) to 
obtain the gene names.  
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2.2. Related Targets of LC and Prediction of Potential Targets of 
ASH against LC 

Liver cancer related genes were retrieved from Genecards  
(https://www.genecards.org/), OMIM (https://omim.org/) and TTD  
(http://db.idrblab.net/ttd/) database. The search results from each database were 
combined and duplicates were removed. 

Online software Venny 2.1  
(https://bioinfogp.cnb.csic.es/tools/venny/index.html) was used to obtain the 
common targets between ASH and LC. The “drug-ingredient-disease-target” 
network of ASH anti-LC was constructed by using Cytoscape software (v3.7.2).  

2.3. Functional Enrichment Analysis 

The common targets were used for GO and KEGG pathway enrichment with the 
Cluster Profiler package in R software (v3.6.3), and the “ggplot2” package was 
used to visualize the GO and KEGG enrichment results [14]. 

2.4. Protein-Protein Interaction (PPI) Network Construction and 
Hub Genes Screening 

The PPI network was retrieved from STRING Version 11.0 (https://string-db.org/) 
by selecting Homo sapiens as the organism, and a confidence score > 0.9 (high-
est confidence) was set as significant [15]. PPI network was then visualized by 
Cytoscape software (v3.7.2), CytoNCA plugin of Cytoscape was used to screen 
hub genes based on three criteria: degree centrality (DC), betweenness centrality 
(BC) and closeness centrality (CC) [16].  

2.5. Molecular Docking Simulation 

The molecular docking was performed to further investigate interactions between 
hub targets and their correspondent active ingredients. The structures of hub 
target proteins were obtained from the PDB database (https://www.rcsb.org/) 
and processed with PyMOL software. The 2D structure of the active ingredients 
was downloaded from PubChem (https://pubchem.ncbi.nlm.nih.gov) and energy 
minimised using MM2 in Chem3D. Afterwards, both the ligand and the receptor 
were converted to the PDBQT format using AutoDock Tools (ADT 1.5.6), and 
the docking is performed by running Vina. If the binding energy is less than −5 
kJ∙mol−1, it indicated that the target has certain binding activity with the ingre-
dient, the lower the binding energy value, the stronger the binding to the target 
protein [17].  

3. Results 
3.1. Active Compounds and Targets of ASH 

A total of 13 active ingredients of ASH were screened from TCMSP database, the 
correspondent target proteins of each active ingredient were also obtained 
(Table 1). After removing duplicated targets, we obtained 169 standard gene 
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names (based on UniProt annotation).  

3.2. Gene Targets of LC and Potential Targets of ASH against LC 

A total of 1004 targets for LC were collected from the GeneCards database by 
setting relevance score > 20, we identify 493 and 13 LC-related targets from the 
OMIM and TTD databases. After merging and deleting the duplicate genes, we 
collected 1410 LC-related target genes.  

Venn diagram was generated through the online tool Venny 2.1 and acquired 
103 genes about ASH against LC (Figure 1). To further discover the mechanism 
of ASH against LC, the PPI network of targets for ASH anti-LC was shown as 
Figure 2. 
 
Table 1. Active ingredients in Artemisiae scopariae Herba (ASH). 

Mol ID Molecule Name OB (%) DL 

MOL008045 4’-Methylcapillarisin 72.18 0.35 

MOL008047 Artepillin A 68.32 0.24 

MOL008043 capillarisin 57.56 0.31 

MOL008039 Isoarcapillin 57.4 0.41 

MOL008046 Demethoxycapillarisin 52.33 0.25 

MOL000354 isorhamnetin 49.6 0.31 

MOL004609 Areapillin 48.96 0.41 

MOL000098 quercetin 46.43 0.28 

MOL008040 Eupalitin 46.11 0.33 

MOL008041 Eupatolitin 42.55 0.37 

MOL005573 Genkwanin 37.13 0.24 

MOL000358 beta-sitosterol 36.91 0.75 

MOL007274 Skrofulein 30.35 0.3 

 

 
Figure 1. Venn diagram of the targets in LC and ASH. Blue indicates LC targets, yellow 
indicates ASH targets, the intersection in yellow shaded indicates the common targets 
between LC and ASH. 
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Figure 2. PPI network of targets for ASH against LC (yellow diamonds represent 13 active ingredients in ASH; blue nodes 
represent intersection targets between ASH and LC targets). 

3.3. Enrichment Analysis 

1775 GO terms were obtained with p.adjust < 0.01, there are 1665 terms of bio-
logical process (BP), 24 terms of cell composition (CC) and 86 terms of molecu-
lar function (MF), accounting for 93.8%, 1.4% and 4.8% respectively. Then the 
top 5 BP, CC, MF terms are visualized (Table 2, Figure 3).  

In total, 131 KEGG pathways were significantly enriched (p.adjust < 0.01), 
and the top 10 were visualized (Table 3, Figure 4), involved in the prostate can-
cer, hepatitis B, bladder cancer, kaposi sarcoma-associated herpesvirus infection, 
hepatitis C, AGE-RAGE signaling pathway in diabetic complications, small cell 
lung cancer, fluid shear stress and atherosclerosis, IL-17 signaling pathway, hu-
man cytomegalovirus infection.  
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Table 2. Gene Ontology (GO) enrichment. 

Ontology ID Description p.adjust Count 

BP GO:0000302 response to reactive oxygen species 6.19456E−25 27 

BP GO:0034599 cellular response to oxidative stress 6.64222E−25 29 

BP GO:0032496 response to lipopolysaccharide 5.39618E−24 29 

BP GO:0006979 response to oxidative stress 5.39618E−24 32 

BP GO:0002237 response to molecule of bacterial origin 1.07768E−23 29 

MF GO:0044389 ubiquitin-like protein ligase binding 1.00158E−08 16 

MF GO:0005126 cytokine receptor binding 1.92422E−08 15 

MF GO:0004879 nuclear receptor activity 2.36334E−08 8 

MF GO:0098531 
transcription factor activity, direct ligand 
regulated sequence-specific DNA binding 

2.36334E−08 8 

MF GO:0005125 cytokine activity 3.44479E−08 13 

CC GO:0005667 transcription factor complex 1.72032E−07 15 

CC GO:0000307 
cyclin-dependent protein kinase  

holoenzyme complex 
2.39584E−07 7 

CC GO:1902911 protein kinase complex 4.47512E−07 9 

CC GO:0045121 membrane raft 5.05468E−07 13 

CC GO:0098857 membrane microdomain 5.05468E−07 13 

 

 
Figure 3. GO enrichment analysis (adjusted p value < 0.01). The y-axis represents GO categories identified in the GO analysis, 
and the x-axis represents the significance [−log10 (p.adjust)]. Blue, red, and green boxes represent GO BP, CC, and MF, respec-
tively. 
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Figure 4. KEGG pathway enrichment analysis (adjusted p value < 0.01). The y-axis shows the pathway term, 
and the x-axis shows the Gene Ratio of each KEGG pathway. The color indicates the significance [−log10 
(p.adjust)], and the size of the circle represents the number of genes enriched in the corresponding pathways. 

 
Table 3. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment. 

ID Description p.adjust Count 

hsa05215 Prostate cancer 9.57346E−25 25 

hsa05161 Hepatitis B 1.86759E−24 29 

hsa05219 Bladder cancer 1.12109E−22 18 

hsa05167 
Kaposi sarcoma-associated  

herpesvirus infection 
1.63617E−22 29 

hsa05160 Hepatitis C 1.63617E−22 27 

hsa04933 
AGE-RAGE signaling pathway in  

diabetic complications 
4.08257E−22 23 

hsa05222 Small cell lung cancer 4.42098E−20 21 

hsa05418 Fluid shear stress and atherosclerosis 4.43383E−20 24 

hsa04657 IL-17 signaling pathway 5.61179E−20 21 

hsa05163 Human cytomegalovirus infection 1.03173E−19 28 

3.4. PPI Network and Hub Genes 

The PPI network was constructed by STRING at a confidence value of 0.9 and it 
included 100 nodes and 434 edges (Figure 5, Table 4). Nodes which had high 
degree were identified as the hub nodes in the PPI network, hub genes with de-
gree ≥ 20 were selected (AKT1, TP53, JUN, MAPK1, TNF, RELA, IL6). 
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Figure 5. Protein-protein interaction (PPI) network of common genes. The nodes 
represent genes, and the size and color represent the degree value (the higher the degree, 
the larger the node and the brighter of the color). The thickness and color of the edges 
display the combined-score between two genes, the higher the score, the wider the edge 
and the darker of the color. 

 
Table 4. Topological information of 7 hub targets. 

Gene DC BC CC 

AKT1 34 1480.8927 0.26052633 

TP53 32 1257.4023 0.2578125 

JUN 30 932.47144 0.26052633 

MAPK1 28 1087.2823 0.25647667 

TNF 27 659.35925 0.25 

RELA 24 334.47003 0.25 

IL6 22 522.2917 0.24029127 

3.5. Molecular Docking 

Molecular docking results showed that hub protein targets and active ingredients 
showed good binding interactions (Table 5). Among them, the compound 
quercetin and MAPK1 displayed the lowest binding energy (−8.9), which sug-
gests that quercetin demonstrated the best docking score against MAPK1 
(Figure 6).  

https://doi.org/10.4236/oalib.1107739


W. H. Guo et al. 
 

 

DOI: 10.4236/oalib.1107739 9 Open Access Library Journal 
 

Table 5. The binding energy of the hub targets bound to the active ingredients. 

Target Ingredient Binding Energy/kJ∙mol−1 

AKT1 quercetin −6.9 

TP53 quercetin −7.2 

JUN beta-sitosterol −7.9 

 quercetin −8.8 

MAPK1 quercetin −8.9 

TNF quercetin −5.2 

RELA isorhamnetin −7.1 

 quercetin −7.7 

IL6 quercetin −7.6 

 

 
Figure 6. MAPK1-quercetin docking. Quercetin forms 4 hydrophobic interactions with 
VAL37, ILE82, LEU154, forms 5 H-bonds with LYS52, GLN103, MET106, LYS112, 
ASP165. 

4. Discussion 

In this study, a total of 13 active ingredients were obtained from Artemisiae 
scopariae Herba, including flavonoids, chromones and phytosterols. Flavonoids 
are well known for their physiological anti-inflammatory and antitumor activi-
ties, flavonoids may modulate almost all key processes involved in carcinogene-
sis including apoptosis, proliferation, angiogenesis and metastatic progression 
[18] [19]. In recent years, various flavonoids have been recognized as having po-
tential protective activity against artificially induced-liver damage [20]. Chro-
mones have been reported to possess antimicrobial, antiviral, and antitumoral 
activities and the ability to inhibit several enzymes, it also affects the function 
and activity of liver-metabolizing enzymes [21]. Phytosterols possess hepatopro-
tective effect, and the anti-cancer effect of phytosterols are achieved by inhibi-
tion of cell cycle progression, promotion of cellular apoptosis, inhibition of cell 
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invasion, migration and adhesion, as well as stimulation of the immune function 
[22].  

The PPI network showed that the targets of ASH against LC do not work 
alone but instead is a complex interconnected network, according to degree val-
ue we finally screened out 7 hub genes (AKT1, TP53, JUN, MAPK1, TNF, RELA, 
IL6). AKT1 belongs to the family of serine/threonine protein kinases (AKT1, 
AKT2, and AKT3) known as AKT kinases, AKT is closely associated with cell 
survival, proliferation, apoptosis, migration and angiogenesis in hepatocellular 
carcinoma (HCC) [23] [24]. AKT1 participates in the initiation, progression and 
metastasis of malignant tumors, silencing AKT1 significantly stimulated apopto-
sis and suppressed the cell cycle, whereas increasing AKT1 expression promoted 
HCC cells proliferation [24]. 

TP53 is the most widely studied tumor suppressor gene, playing an important 
role in inhibiting tumor development, the function of it is to inhibit cell prolife-
ration in response to DNA damage. By regulating target genes, TP53 induces a 
variety of cellular responses, including growth arrest, senescence, and apoptosis 
[25]. JUN encodes c-Jun protein which has essential influence in cell prolifera-
tion, survival, and death [26] [27]. Hepatitis C virus infection stimulates c-Jun 
signaling via protein kinase R to promote proliferation of HCC [27].  

MAPK1 plays a votal role in cancer progression, especially in cancer metasta-
sis, and in HCC development, simultaneous activation of the MAPK1 pathways 
has been shown to enhance cell-cycle progression [28]. Tumor necrosis factor 
(TNF) is a mediator of the acute phase response in the liver and can initiate pro-
liferation and cause cell death in hepatocytes, participates in many forms of he-
patic pathology, including ischemia/reperfusion injury, alcoholic and viral hepa-
titis, and injury by hepatotoxins [29] [30]. Study has shown that TNF-α expres-
sion in HCC is significantly higher than that in normal hepatic tissue, positively 
related with the proliferation and invasion ability of HCC cells [31].  

RELA, a member of the NF-κB family, work as a potential factor in the onset 
and progression of cancers through regulating the expression of genes linked to 
cell proliferation, migration, invasion, etc. [32] [33]. Clinically, RelA expression 
has been associated with a lower degree of apoptosis and cirrhosis in the livers of 
patients with hepatitis C, and liver RelA mRNA levels were inversely associated 
with severe liver damage and mortality [34]. IL-6 is a cytokine produced by var-
ious cells serve a key function in the proliferation, apoptosis, recurrence and 
metastasis of liver cancer cells [35]. High IL6 level linked with patients’ mortality 
in cirrhotic patients caused by hepatitis B virus and hepatitis C virus infection. 
Similarly, high serum level of IL6 was associated with liver-related mortality in 
chronic HCV patients [36].  

5. Conclusion 

In this study, we adopted network pharmacology and molecular docking tech-
nology to explore the mechanism of ASH anti-LC. The results indicated that 
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ASH may interact with hub genes such as AKT1, TP53, JUN, etc., regulates he-
patitis B, hepatitis C and other signaling pathways, which exerts anticancer ef-
fects. Although we lacked experimental validation, it also provides theoretical 
basis for the treatment of LC in the future. 
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