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Abstract 
In this paper, we use the classic mathematical model SIR with the three differen-
tial equations as a non-linear system and combine it with the Runge-Kutta nu-
merical method of the fourth order and the sixth and seventh order of the same 
method to generate simulated data in each of the mentioned ranks (for suscepti-
ble people, Infected and recovered from the disease) for the epidemic disease 
COVID-19 by giving the initial values (initial conditions) for the population in a 
certain country of the world, and we chose this country that is Iraq. Through 
this work the difference between the results for the three methods (4th, 6th, and 
7th order) was observed in terms of the error value, the time taken for each step 
and the total time to implement the solution in each rank, and this has been cla-
rified in a table showing the comparison between the results for each rank for 
the numerical method. The binary test (0-1) was also used to study the chaotic 
behavior of the disease. The simulation data for the number of infected to solve 
in each rank was used to show the chaos of the dynamic system, and all methods 
of solution led to the results that the behavior of the disease is chaotic, the 
value of (Kc ≅ 1) and we explained that With a table showing the Kc values 
for the disease in each rank, also we used the Matlab system to write the im-
portant programs to obtain all the results and graphics required in this work. 
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1. Introduction 

The continuous dynamical system is very rumor in several of applied sciences 
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and engineering also computational mathematics [1]. in this paper, we will build 
a continuous dynamic system consisting of the classic three-dimensional SIR 
model, which is a model for studying and analyzing epidemic diseases [2] [3] [4] 
[5] and the known numerical method (Runge-Kutta) [5] [6], with the fourth or-
der [6], sixth order [7] [8] and the seventh order [9], where the model SIR is 
used with the 4th order, 6th order of the method (Runge-Kutta) Once and with 
the 7th rank of the same method again to generate simulated data (hypothetical) 
by taking initial values (initial conditions) from the real data of the daily statis-
tics of the epidemic disease (COVID-19) for a specific country of the world and 
using those resulting data for each rank in the chaos test of the outbreak disease 
By using the binary test method (0-1), which is one of the chaotic testing me-
thods for dynamic systems, which has the advantage that it depends mainly on 
observations of time series data, and the test result is either close to zero (which 
is the regularity state) or close to one (which is the chaotic state of the system) 
[10]-[16], The disease dynamic lamentation has been shown to be chaotic (Kcorr 
≅ 1). All figures and drawings showing the behavior of the chaotic system have 
been included. Also, programs have been built in Matlab system to apply to all 
the aforementioned operations (from finding simulation data, testing chaos, 
etc.). A program is also build to indicate which of the three ranks is better to 
study the dynamic system in terms of finding the step size, the maximum error, 
the time limit for each step, and the total time it takes to solve (in seconds). The 
results of this mathematical process have been shown in a table. At the end, a 
summary is listed containing all work results.  

2. SIR Model 

It’s an epidemiologic mathematical model that does computing the theoretic 
numbers of individuals infected with a contagious disease in a closed population 
over times. This classic model his name is derived from the fact that they involve 
coupled equations relating the number of (susceptible (S), infected (I) and re-
covered (R)). SIR model is one of the simplest models that developed by (Ker-
mack-Mckendrick) in (1927). 

Description of SIR model: 
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where: 
N: The total number of population. 
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S(t): The number of Susceptible people at time (t). 
I(t): The number of Infected people at time (t). 
R(t): The number of Recovered people at time (t). 

( )
( )

0.0845 : is a transmission rate
are constant parameters of the model in Iraq

0.07 : is recovered rate

β

γ

= 


= 
 

where: β µ γ= + , 1 Dγ = , (μ = 0.0145): is mortality rate in day, D = 14: is 
duration of disease time. 

3. Basic Reproduction Number (R0)  

Definition(R0): Represent to the average number of new infections generated 
by each infected person, the high value of (R0) means easy to transmit the dis-
ease, and the low value of (R0) means difficult to transmit the disease. (R0) is 
called threshold of disease, (the value of (R0) assumes that no pre-existing im-
munity, i.e. it mean everyone is susceptible), where Ro = β/γ. 

Lemma: If R0 > 1 then I(t) is increasing and the disease is epidemic, and if R0 < 
1 then I(t) is decreasing and the disease is endemic, It is assumed in the absence 
of a vaccine, the entire population will be susceptible to infection, meaning that 
S ≅ N, so we divide β by N. 

Proof: From the SIR model we have: ( )d dI t N S IIβ γ= ∗ −  →   
( )d d II t β γ= −  →  ( )d dI I tβ γ= −  by integral of two hand sides:  

( )ln I I I Cβ γ= − +  →  ( ) ( ) ( )e eT Ct I tI t β γ−= ⋅ , when 0t =  →  ( ) e0 CI =  
then ( ) ( ) ( ) ( )e 0 0T t I tI t Iβ γ−= ⋅ >  when d d 0I t >  then 0I Iβ γ− >  I Iβ γ>  
→  1β γ >  →  0 1R > .  

4. The Numerical Method “Runge-Kutta”  

To solve the differential equations, we will use the following Relationships: 

( )1 1 1 2d d , , , , nx t g t x x x=   

( )2 2 1 2d d , , , , nx t g t x x x=   

  

( )1 2d d , , , ,n n nx t g t x x x=   

For more simply we write: ( )d d ,y t g t x=  
Where (x) is a vector for n-dimensions, this is not an independent equation. If 

we replace the right-hand side by g(x) we will get on an independent equation. 
If the function (f) in the R.H. side is nonlinear, we will need numerical me-

thods. The Runge-Kutta methods have the same precisions in solution as the 
Taylor expansions in any order, but there is no need for derivatives. We com-
pute (x) at Xti+1 = Xti + h. 

4.1. Runge-Kutta Method with 4th Order 

The 4th order Runge-Kutta numerical method is one of the classic numerical me-
thods used to solve the ordinary differential equations of nonlinear and time-related 
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continuous dynamic systems with a number of iterations to obtain the best ap-
proximate value. 

Description Method: 

yn+1 = yn+ h * (k1 + 2k2 + 2k3 + k4)/6. 

where: Δt = h = tn+1 − tn and: 
k1 = f (tn, yn); 
k2 = f (tn + h/2, yn + h * k1/2); 
k3 = f (tn + h/2, yn + h * k2/2); 
k4 = f (tn + h, yn + h * k3). 
From system (1) we have: dS/dt = f1, dI/dt = f2, dR/dt = f3, (So, Io, Ro) = (3 × 

106, 100, 0) initial condition, to = 1,  
K1 = h * f1(to, So, Io, Ro), 
L1 = h * f2(to, So, Io, Ro), 
M1 = h * f3(to, So, Io, Ro); 
K2 = h * f1(to + h/2, So + K1/2, Io + L1/2, Ro + M1/2), 
L2 = h * f2 (to + h/2, So + K1/2, Io + L1/2, Ro + M1/2), 
M2 = h * f3(to + h/2, So + K1/2, Io + L1/2, Ro + M1/2); 
K3 = h * f1(to + h/2, So + K2/2, Io + L2/2, Ro + M2/2), 
L3 = h * f2(to + h/2, So + K2/2, Io + L2/2, Ro + M2/2), 
M3 = h * f3(to + h/2, So + K2/2, Io + L2/2, Ro + M2/2); 
K4 = h * f1(to + h, So + K3, Io + L3, Ro + M3),  
L4 = h * f2(to + h, So + K3, Io + L3, Ro + M3),  
M4 = h * f3(to + h, So + K3, Io + L3, Ro + M3); 
S1 = So + h/6 × (K1 + 2K2 + 2K3 + K4),      
I1 = Io + h/6 × (L1 + 2L2 + 2L3 + L4),           
R1 = Ro + h/6 × (M1 + 2M2 + 2M3 + M4).   
The process is repeated with (n) iterations by using Matlab program. 

4.2. The Numerical Method “Runge-Kutta” of 6th Order 

k1 = h * f(t(i); x(i), y(i), z(i)), 
l1 = h * g(t(i), x(i), y(i), z(i)), 
m1 = h * p(t(i), x(i), y(i), z(i)); 
k2 = h * f(x(i) + k1/3, y(i) + l1/3, z(i) + m1/3), 
l2 = h * g(x(i) + k1/3, y(i) + l1/3, z(i) + m1/3), 
m2 = h * p(x(i) + k1/3, y(i) + l1/3, z(i) + m1/3); 
k3 = h * f(x(i) + 2 * k2/3, y(i) + 2 * l2/3, z(i) + 2 * m2/3), 
l3 = h * g(x(i) + 2 * k2/3, y(i) + 2 * l2/3, z(i) + 2 * m2/3), 
m3 = h * p(x(i) + 2 * k2/3, y(i) + 2 * l2/3, z(i) + 2 * m2/3); 
k4 = h * f(x(i) + k1/12 + k2/3 − k3/12, y(i) + l1/12 + l2/3 − l3/12, z(i) + m1/12 

+ m2/3 − m3/12), 
l4 = h * g(x(i) + k1/12 + k2/3 − k3/12, y(i) + l1/12 + l2/3 − l3/12, z(i) + m1/12 

+ m2/3 − m3/12), 
m4 = h * p(x(i) + k1/12 + k2/3 − k3/12, y(i) + l1/12 + l2/3 − l3/12, z(i) + 
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m1/12 + m2/3 − m3/12) k5 = h * f(x(i) + 25 * k1/48 − 55 * k2/24 + 35 * k3/48 + 
15 * k4/8, y(i) + 25 * l1/48 − 55 * l2/24 + 35 * l3/48 + 15 * l4/8, z(i) + 25 * m1/48 
− 55 * m2/24 + 35 * m3/48 + 15 * m4/8); 

l5 = h * g(x(i) + 25 * k1/48 − 55 * k2/24 + 35 * k3/48 + 15 * k4/8, y(i) + 25 * 
l1/48 − 55 * l2/24 + 35 * l3/48 + 15 * l4/8, z(i) + 25 * m1/48 − 55 * m2/24 + 35 * 
m3/48 + 15 * m4/8), 

m5 = h * p(x(i) + 25 * k1/48 − 55 * k2/24 + 35 * k3/48 + 15 * k4/8, y(i) + 25 * 
l1/48 − 55 * l2/24 + 35 * l3/48 + 15 * l4/8, z(i) + 25 * m1/48 − 55 * m2/24 + 35 * 
m3/48 + 15 * m4/8); 

k6 = h * f(x(i) + 3 * k1/20 − 11 * k2/20 − k3/8 + k4/2 + k5/10, y(i) + 3 * l1/20 − 
11 * l2/20 − l3/8 + l4/2 + l5/10, z(i) + 3 * m1/20 − 11 * m2/20 − m3/8 + m4/2 + 
m5/10), 

l6 = h * g(x(i) + 3 * k1/20 − 11 * k2/20 − k3/8 + k4/2 + k5/10, y(i) + 3 * l1/20 − 
11 * l2/20 − l3/8 + l4/2 + l5/10, z(i) + 3 * m1/20 − 11 * m2/20 − m3/8 + m4/2 + 
m5/10), 

m6 = h * p(x(i) + 3 * k1/20 − 11 * k2/20 − k3/8 + k4/2 + k5/10, y(i) + 3 * l1/20 
− 11 * l2/20 − l3/8 + l4/2 + l5/10, z(i) + 3 * m1/20 − 11 * m2/20 − m3/8 + m4/2 + 
m5/10); 

k7 = h * f(x(i) − 261 * k1/260 + 33 * k2/13 + 43 * k3/156 − 118 * k4/39 + 32 * 
k5/195 + 80 * k6/39, y(i) − 261 * l1/260 + 33 * l2/13 + 43 * l3/156 − 118 * l4/39 + 
32 * l5/195 + 80 * l6/39, z(i) − 261 * m1/260 + 33 * m2/13 + 43 * m3/156 − 118 * 
m4/39 + 32 * m5/195 + 80 * m6/39), 

l7 = h * g(x(i) − 261 * k1/260 + 33 * k2/13 + 43 * k3/156 − 118 * k4/39 + 32 * 
k5/195 + 80 * k6/39, y(i) − 261 * l1/260 + 33 * l2/13 + 43 * l3/156 − 118 * l4/39 + 
32 * l5/195 + 80 * l6/39, z(i) − 261 * m1/260 + 33 * m2/13 + 43 * m3/156 − 118 * 
m4/39 + 32 * m5/195 + 80 * m6/39), 

m7 = h * p(x(i) − 261 * k1/260 + 33 * k2/13 + 43 * k3/156 − 118 * k4/39 + 32 * 
k5/195 + 80 * k6/39, y(i) − 261 * l1/260 + 33 * l2/13 + 43 * l3/156 − 118 * l4/39 + 
32 * l5/195 + 80 * l6/39, z(i) − 261 * m1/260 + 33 * m2/13 + 43 * m3/156 − 118 * 
m4/39 + 32 * m5/195 + 80 * m6/39); 

x(i + 1) = x(i) + h * (13 * k1 + 55 * k3 + 55 * k4 + 32 * k5 + 32 * k6 + 13 * 
k7)/200, 

y(i + 1) = y(i) + h * (13 * l1 + 55 * l3 + 55 * l4 + 32 * l5 + 32 * l6 + 13 * l7)/200, 
z(i + 1) = z(i) + h * (13 * m1 + 55 * m3 + 55 * m4 + 32 * m5 + 32 * m6 + 13 * 

m7)/200.  

4.3. The Numerical Method “Runge-Kutta” of 7th Order 

k1 = h * f(x(i), y(i), z(i)), 
l1 = h * g(x(i), y(i), z(i)), 
m1 = h * p(x(i), y(i), z(i)); 
k2 = h * f(t(i) + h/18, x(i) + h/18 * k1, y(i) + h/18 * l1), 
l2 = h * g(t(i) + h/18, x(i) + h/18 * k1, y(i) + h/18 * l1), 
m2 = h * p(t(i) + h/18, x(i) + h/18 * k1, y(i) + h/18 * l1);   
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k3 = h * f(t(i) + (3 * h)/36, x(i) + 1/60 * (4 * k1 + k2), y(i) + 1/60 * (4 * l1 + l2)), 
l3 = h * g(t(i) + (3 * h)/36, x(i) + 1/60 * (4 * k1 + k2), y(i) + 1/60 * (4 * l1 + l2)), 
m3 = h * p(t(i) + (3 * h)/36, x(i) + 1/60 * (4 * k1 + k2), y(i) + 1/60 * (4 * l1 + 

l2));  
k4 = h * f(t(i) + (4 * h)/36, x(i) + 1/180 * (−181 * k1 + 171 * k2 + 130 * k3), 

y(i) + 1/180 * (−181 * l1 + 171 * l2 + 130 * l3)), 
l4 = h * g(t(i) + (4 * h)/36, x(i) + 1/180 * (−181 * k1 + 171 * k2 + 130 * k3), y(i) 

+ 1/180 * (−181 * l1 + 171 * l2 + 130 * l3)), 
m4 = h * p(t(i) + (4 * h)/36, x(i) + 1/180 * (−181 * k1 + 171 * k2 + 130 * k3), 

y(i) + 1/180 * (−181 * l1 + 171 * l2 + 130 * l3)); 
k5 = h * f(t(i) + (5 * h)/36, x(i) + 1/180 * (−902 * k1 + 293 * k2 − 2040 * k3 + 

30 * k4), y(i) + 1/180 * (−902 * l1 + 293 * l2 − 2040 * l3 + 30 * l4)),  
l5 = h * g(t(i) + (5 * h)/36, x(i) + 1/180 * (−902 * k1 + 293 * k2 − 2040 * k3 + 

30 * k4), y(i) + 1/180 * (−902 * l1 + 293 * l2 − 2040 * l3 + 30 * l4)),  
m5 = h * p(t(i) + (5 * h)/36, x(i) + 1/180 * (−902 * k1 + 293 * k2 − 2040 * k3 + 

30 * k4), y(i) + 1/180 * (−902 * l1 + 293 * l2 − 2040 * l3 + 30 * l4)); 
k6 = h * f(t(i) + h/6, x(i) + 1/24 * (−15 * k1 + 48 * k2 + 31 * k3 + k4 + k5), y(i) 

+ 1/24 * (−15 * l1 + 48 * l2 + 31 * l3 + l4 + l5)), 
l6 = h * g(t(i) + h/6, x(i) + 1/24 * (−15 * k1 + 48 * k2 + 31 * k3 + k4 + k5), y(i) 

+ 1/24 * (−15 * l1 + 48 * l2 + 31 * l3 + l4 + l5)), 
m6 = h * p(t(i) + h/6, x(i) + 1/24 * (−15 * k1 + 48 * k2 + 31 * k3 + k4 + k5), 

y(i) + 1/24 * (−15 * l1 + 48 * l2 + 31 * l3 + l4 + l5)); 
k7 = h * f(t(i) + (2 * h)/6, x(i) + 1/30 * (17 * k1 − 48 * k2 + 31 * k3 − k4 − k5 + 

12 * k6), y(i) + 1/30 * (17 * l1 − 48 * l2 + 31 * l3 − l4 − l5 + 12 * l6)), 
l7 = h * g(t(i) + (2 * h)/6, x(i) + 1/30 * (17 * k1 − 48 * k2 + 31 * k3 − k4 − k5 + 

12 * k6), y(i) + 1/30 * (17 * l1 − 48 * l2 + 31 * l3 − l4 − l5 + 12 * l6)), 
m7 = h * p(t(i) + (2 * h)/6, x(i) + 1/30 * (17 * k1 − 48 * k2 + 31 * k3 − k4 − k5 

+ 12 * k6), y(i) + 1/30 * (17 * l1 − 48 * l2 + 31 * l3 − l4 − l5 + 12 * l6)); 
k8 = h * f(t(i) + (3 * h)/6, x(i) + 1/80 * (192 * k1 − 528 * k2 + 341 * k3 − 11 * 

k4 − 11 * k5 + 32 * k6 + 25 * k7), y(i) + 1/80 * (192 * l1 − 528 * l2 + 341 * l3 − 11 
* l4 − 11 * l5 + 32 * l6 + 25 * l7)), 

l8 = h * g(t(i) + (3 * h)/6, x(i) + 1/80 * (192 * k1 − 528 * k2 + 341 * k3 − 11 * 
k4 − 11 * k5 + 32 * k6 + 25 * k7), y(i) + 1/80 * (192 * l1 − 528 * l2 + 341 * l3 − 11 
* l4 − 11 * l5 + 32 * l6 + 25 * l7)), 

m8 = h * p(t(i) + (3 * h)/6, x(i) + 1/80 * (192 * k1 − 528 * k2 + 341 * k3 − 11 * 
k4 − 11 * k5 + 32 * k6 + 25 * k7), y(i) + 1/80 * (192 * l1 − 528 * l2 + 341 * l3 − 11 
* l4 − 11 * l5 + 32 * l6 + 25 * l7)); 

k9 = h * f(t(i) + (4 * h)/6, x(i) + 1/66 * (54 * k1 − 144 * k2 + 93 * k3 − 3 * k4 − 
3 * k5 + 32 * k6 − 17 * k7 + 32 * k8), y(i) + 1/66 * (54 * l1 − 144 * l2 + 93 * l3 − 3 
* l4 − 3 * l5 + 32 * l6 − 17 * l7 + 32 * l8)), 

l9 = h * g(t(i) + (4 * h)/6, x(i) + 1/66 * (54 * k1 − 144 * k2 + 93 * k3 − 3 * k4 − 
3 * k5 + 32 * k6 − 17 * k7 + 32 * k8), y(i) + 1/66 * (54 * l1 − 144 * l2 + 93 * l3 − 3 
* l4 − 3 * l5 + 32 * l6 − 17 * l7 + 32 * l8)), 

https://doi.org/10.4236/oalib.1107618


M. M. Aziz, A. S. Mahmood 
 

 

DOI: 10.4236/oalib.1107618 7 Open Access Library Journal 
 

m9 = h * p(t(i) + (4 * h)/6, x(i) + 1/66 * (54 * k1 − 144 * k2 + 93 * k3 − 3 * k4 
− 3 * k5 + 32 * k6 − 17 * k7 + 32 * k8), y(i) + 1/66 * (54 * l1 − 144 * l2 + 93 * l3 − 
3 * l4 − 3 * l5 + 32 * l6 − 17 * l7 + 32 * l8)); 

k10 = h * f(t(i) + (5 * h)/6, x(i) + 1/3960 * (−22876 * k1 + 64464 * k2 − 41633 * 
k3 + 1343 * k4 + 1343 * k5 − 656 * k6 − 460 * k7 − 40 * k8 + 1815 * k9), y(i) + 
1/3960 * (−22876 * l1 + 64464 * l2 − 41633 * l3 + 1343 * l4 + 1343 * l5 − 656 * l6 
− 460 * l7 − 40 * l8 + 1815 * l9)), 

l10 = h * g(t(i) + (5 * h)/6, x(i) + 1/3960 * (−22876 * k1 + 64464 * k2 − 41633 * 
k3 + 1343 * k4 + 1343 * k5 − 656 * k6 − 460 * k7 − 40 * k8 + 1815 * k9), y(i) + 
1/3960 * (−22876 * l1 + 64464 * l2 − 41633 * l3 + 1343 * l4 + 1343 * l5 − 656 * l6 
− 460 * l7 − 40 * l8 + 1815 * l9)), 

m10 = h * p(t(i) + (5 * h)/6, x(i) + 1/3960 * (−22876 * k1 + 64464 * k2 − 41633 
* k3 + 1343 * k4 + 1343 * k5 − 656 * k6 − 460 * k7 − 40 * k8 + 1815 * k9), y(i) + 
1/3960 * (−22876 * l1 + 64464 * l2 − 41633 * l3 + 1343 * l4 + 1343 * l5 − 656 * l6 
− 460 * l7 − 40 * l8 + 1815 * l9)); 

k11 = h * f(t(i) + h, x(i) + 1/902 * (16139 * k1 − 45120 * k2 + 29140 * k3 − 940 
* k4 − 940 * k5 + 1828 * k6 − 769 * k7 + 2752 * k8 − 1980 * k9 + 792 * k10), y(i) 
+ 1/902 * (16139 * l1 − 45120 * l2 + 29140 * l3 − 940 * l4 − 940 * l5 + 1828 * l6 − 
769 * l7 + 2752 * l8 − 1980 * l9 + 792 * l10)),  

l11 = h * g(t(i) + h, x(i) + 1/902 * (16139 * k1 − 45120 * k2 + 29140 * k3 − 940 
* k4 − 940 * k5 + 1828 * k6 − 769 * k7 + 2752 * k8 − 1980 * k9 + 792 * k10), y(i) 
+ 1/902 * (16139 * l1 − 45120 * l2 + 29140 * l3 − 940 * l4 − 940 * l5 + 1828 * l6 − 
769 * l7 + 2752 * l8 − 1980 * l9 + 792 * l10)), 

m11 = h * p(t(i) + h, x(i) + 1/902 * (16139 * k1 − 45120 * k2 + 29140 * k3 − 
940 * k4 − 940 * k5 + 1828 * k6 − 769 * k7 + 2752 * k8 − 1980 * k9 + 792 * k10), 
y(i) + 1/902 * (16139 * l1 − 45120 * l2 + 29140 * l3 − 940 * l4 − 940 * l5 + 1828 * 
l6 − 769 * l7 + 2752 * l8 − 1980 * l9 + 792 * l10));  

x(i + 1) = x(i) + (41 * k1 + 216 * k6 + 27 * k7 + 272 * k8 + 27 * k9 + 216 * k10 
+ 41 * k11)/840, 

y(i + 1) = y(i) + (41 * l1 + 216 * l6 + 27 * l7 + 272 * l8 + 27 * l9 + 216 * l10 + 41 
* l11)/840, 

z(i + 1) = z(i) + (41 * m1 + 216 * m6 + 27 * m7 + 272 * m8 + 27 * m9 + 216 * 
m10 + 41 * m11)/840. 
where: xn + 1 = xn + [(41k1 + 216k6 + 27k7 + 272k8 + 27k9 + 216k10 + 
41k11)/840]. The results of the three methods are shown in Table 1. 
 

Table 1. Shown the comparison between results of 4th, 6th, and 7th order of R-K numerical method and get more accuracy. 

The Runge-Kutta method 

Step size 
4th order 6th order 7th order 

Error Time in Second Error Time in Second error Time in Second 

dt/1 = 0.01 Inf 1.4 Inf 6.2 Inf 3.9 

Dt/2 = 0.005 2216.9968 1.4 Inf 6.0 Inf 4.2 

Dt/4 = 0.0025 174.5643 1.4 320,083.898274 6.0 319,518.685882 3.8 
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Continued 

Dt/8 = 0.00125 12.2611 1.4 2,539,526.94512 6.0 2,539,945.04633 3.8 

dt/16 = 0.000625 0.8125 1.4 1,186,189.72471 6.0 1,189,148.66528 3.9 

Dt/32 = 0.0003125 0.0523 1.4 273,214.706571 6.0 272,023.301318 3.7 

Dt/64 = 0.00015625 0.0033 2.1 217,761.337783 6.0 216,946.587361 3.9 

Dt/128 = 7.8125e−5 4.6614e−5 1.4 3204.148445892 6.0 3139.59110565 3.9 

Dt/256 = 3.90625e−5 ERROR LIMIT SATISFIED 55.9530969299 6.0 55.7923759269 3.8 

Dt/512 = 1.953125e5  2.735944731744 6.0 2.72836970305 3.8 

Dt/1024 = 9.765625e−6  ERROR LIMIT SATISFIED ERROR LIMIT SATISFIED 

Total Time to execution 12.0 66.2 42.5 

5. Chaotic Analysis  

To explain the chaotic state we will take the (0-1) test to know if the system is 
regular or chaotic.  

The Binary Test (0-1) 

Consider scalar observable ( )kφ :  

( ) ( )1 cosk
n

n k kcP φ
=

= ∑ , ( ) ( )1 sink
n

n k kcq φ
=

= ∑  

where ( )0,c∈ π , 1, 2,3, ,n L=   from behavior of Pn and qn can be computing 
the Mean Square Displacement (MSD) = M(n)  

 ( ) ( ) ( )( ) ( ) ( )( )2 2

1

1limL n n
L
k P k n P k q k n q k

L
M n →∞ =

   + − + + −    
=


∑  

where 1, 2, , 10n L=  . 

( ) ( ) ( )
( )

2 1 cos
1 cos

V
nc
c

osc n E φ= ×
−
−

   ,  

where ( ) ( )1

1lim k
n

L L
E kφ φ→∞ =

 
 
 

= ∑ . 

Then ( ) ( ) ( )D n M n Vosc n= − , 

( )
( )

log
lim

lognKcorr
Mc n

n
Kc →∞= = .      

Kc states: 
Either the value of K ≅ 0 it is signifying to regular dynamics.  
Or the value of K ≅ 1 it is signifying to chaotic dynamics, where [ ]0,1Kc∈ . 
Remark: if the motion is torus then the dynamic system is regular (non-chaotic), 

and if it behaves like a Brownian motion then the dynamic system is said it chaotic. 
the Chaotic of simulated data of the 4th order for Iraq by using Zero-one test 

shown in Figure 1, the chaotic of simulated data of 6th order for Iraq by using 
Zero-one test shown in Figure 2 and in Figure 3 shows the chaotic of simulated 
data of 7th order by Zero-one test for Iraq. 

Then the behavior of disease is chaotic (in Iraq). The results of the three me-
thods are shown in Table 2. 
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Table 2. Shown the results of kcorr of 4th, 6th and 7th order of R-Knumerical method for 
Iraq. 

Order of Method 4th 6th 7th 

Kcorr 0.912 0.9212 0.9560 

6. Graphical Analysis  

 
Figure 1. Show a chaotic of simulated data by numerical method of 4th order for Iraq. (a) 
log(M) versus log(t); (b) (M) versus (t); (c) (k) versus (c); (d) (p) versus (q). 
 

 
Figure 2. Shown chaotic system of R-K 6th order method. (a) log(M) versus log(t); (b) 
(M) versus (t); (c) (k) versus (c); (d) (p) versus (q). 
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Figure 3. Shown chaotic system of R-K 7th order method for Iraq. (a) log(M) versus 
log(t); (b) Mn versur time (t); (c) K versus C; (d) Pn versus qn. 

7. Conclusions 

We conducted a study on the error value when solving nonlinear problems and 
obtaining approximate values of the results as well as the time limit and the total 
execution time of the previously estimated error for the process of calculating a 
dynamical system consisting of ordinary differential equations and comparing 
the results which we obtained it.  

In this paper, we dealt with the SIR mathematical model to study the 
characteristics of the epidemic disease (COVID-19), and We have used the 
numerical Runge-Kutta method of order 4th, 6th, and 7th to obtain a comparison 
between the results in terms of the estimated error value, the time limits for each 
step and the total time taken to implement the process in the program. Our 
choice to the orders of the numerical method is to obtain a more accurate solu-
tion with the least error and the shortest time, and we note the difference by 
building a table of the results obtained showing us that. Initial values were used 
for the application in resolving the system which was obtained from statistics 
and data on Covid-19 for a specific population from among the world's popula-
tion, which is (Iraq). The elementary values were applied to the composite sys-
tem from the nonlinear SIR equations with the three-order numerical method 
(R-K) and it gave great benefit in the information. The binary test is used for 
separate analysis of deterministic dynamical systems and is also used to test the 
chaos of the dynamic disease system. And we have applied the test on (1-0) on 
the model for each of the 4th, the 6th, and the 7th orders, and the result for all or-
ders indicate that the behavior of the disease is chaotic (Kcorr of 4th ord. = 0.912 
≅ 1), (Kcorr of 6th ord. = 0.9212 ≅ 1) and (Kcorr of 7th ord. = 0.9560 ≅ 1). The 
result with the application of the 7th rank was better and more chaotic than the 
result of the application of the other ranks, Programs have been built in the 
Matlab system to perform all operations. Mathematical work through it and ob-

https://doi.org/10.4236/oalib.1107618


M. M. Aziz, A. S. Mahmood 
 

 

DOI: 10.4236/oalib.1107618 11 Open Access Library Journal 
 

taining all the results and required values and figures illustrate our idea to pro-
vide organized scientific research that provides researchers with a good and 
useful idea. 
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