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Abstract 
The traveling salesman problem (TSP) is the most popular and most studied 
non-deterministic polynomial (NP) hard problem that has been used in var-
ious fields of science and technology. Due to the NP-hard nature, it is very 
difficult to solve this problem effectively and efficiently. For this reason, di-
verse appropriate optimization algorithms have been designed and developed 
in the last few decades. Among these algorithms, heuristic algorithms are much 
more suitable to tackle with this complex problem. In this paper, we propose 
a hybrid heuristic algorithm to solve the symmetric TSP problem by combin-
ing the search mechanism of repetitive nearest neighbor (RNN) heuristic and 
simulated annealing (SA) heuristic algorithms. In fact, a set of better routes 
are generated step by step by the RNN algorithm and these routes are improved 
through the iterative improvement process of the SA algorithm. The proposed 
algorithm is tested on a set of benchmark symmetric TSP datasets and com-
pared with the basic RNN and SA algorithms as well as some other hybrid 
algorithms existing in the literature. It is demonstrated by the experimental 
results that the proposed algorithm is more effective than both the basic RNN 
and SA algorithms, and the obtained optimum results are in good agreement 
with the corresponding best-known optimum results. In addition, the pro-
posed algorithm outperforms some other hybrid algorithms in terms of solu-
tion quality. 
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1. Introduction 

The traveling salesman problem (TSP) is a well-known combinatorial optimiza-
tion problem that has been extensively studied in various fields of science and 
technology such as mathematics, artificial intelligence, physics, operations re-
search, and biology. It is the problem of finding the possible shortest route among 
a list of cities, where each city is included once and only once and finally returns 
to the starting city. It is believed that the history of the TSP problem was discov-
ered in 1920 in Vienna [1]. However, a formal description of the TSP problem 
was formulated by Dantzig et al. in 1954 [2]. Since then it has been used in mod-
eling diverse real-world problems, such as designing hardware devices, micro-
chips, and radio electronic devices, data association, data transmission in com-
puter networks, DNA sequencing, vehicle routing, job scheduling, clustering of 
data arrays, image processing and pattern recognition, analysis of the structure 
of crystals, transportation, logistics, supply chain management, etc. [3] [4]. The 
TSP problem is easy to understand but often very difficult to solve as it contains 
all features of the combinatorial optimization problem. In fact, it has been proven 
to be a non-deterministic polynomial (NP) hard problem [5]. By NP-hard, we 
mean those problems for which no polynomial time algorithm exists to effec-
tively solve them. Indeed, the executive time of any existing algorithm for solv-
ing the TSP problem is increased super-polynomially (or, perhaps exponentially) 
with the number of cities [4]. Thus, the study on improving the solution algo-
rithm of the TSP problem has important theoretical, engineering, and practical 
significance. 

In graph theory, the TSP problem can be illustrated by a complete directed 
graph ( ),G V E= , where V represents the set of cities also called nodes or ver-
tices and E denotes the set of edges also called the path between each pair of dis-
tinct vertices. A distance (cost) matrix ijD d=  is associated with each edge  

ije E∈  also called the edge weight. Depending on the distance (cost) matrix D, 
the TSP problem can be categorized as symmetric or asymmetric. The graph G is 
called a symmetric TSP if all the edges of G are symmetrical edges, i.e., ij jid d=  

ije E∀ ∈ . On the other hand, G is called a asymmetric TSP if there exists at least 
one edge ije E∈  for which ij jid d≠ . In this study, we consider the asymmetric 
TSP problem. Thus, the objective function Z of the TSP problem can be formu-
lated as follows [3]:  

1; if the edge is in the route
min ;

0; otherwise
ij

ij ij ij
i j

e
Z d x x

= = 


∑∑         (1) 

with respect to the following constrains: 
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In the above model, Equation (1) is the total distance (cost) that needs to be 
minimized and Equations (2) - (5) are the constraints’ condition of the model. 
Equation (2) ensures that each location j is occupied by only one city, whereas 
Equation (3) guarantees that each city i is assigned one exact position. Equation 
(4) refers to the integrality constraints of variables zero-one ( )0ij ijx x � . In con-
trast, Equation (5) assures that each city in the final route will be visited once 
and that no sub-routes will be formed. 

Due to the applicability and complexity, various researchers have been de-
signed and developed different optimization algorithms in the last few decades 
to deal with the TSP problem. Among these algorithms, heuristic algorithms are 
the most successful and widely used search mechanism for solving the TSP prob-
lem. Heuristic algorithms, however, offer a satisfactory solution but are often meet 
with the problem of premature converge. As a result, the search process easily 
falls into the trapped of local optimum condition and is unable to jump the solu-
tion into another promising search space. For this reason, many researchers 
turned into developing hybrid optimization algorithms through the integration 
of the superiority of two or more heuristic optimization algorithms. The aim of 
this paper is to design and implement a hybrid optimization algorithm called 
RNN-SA for solving symmetric TSP problem, which uses the search process of 
RNN algorithm and SA algorithm. The proposed RNN-SA algorithm performs 
the search procedure by two stages. It first generates a set of feasible routes step 
by step based on the procedure of RNN. Then, these routes are used as the initial 
solutions of the SA algorithm and are improved iteratively in an effective itera-
tive improvement process. The proposed algorithm is implemented on a collec-
tion of benchmark TSP datasets. The proposed RNN-SA gets better results than 
both the RNN and SA algorithms and performs better than some other hybrid 
optimization algorithms.  

The rest of this paper is organized as follows. In Section 2, we review some re-
lated hybrid algorithms for solving the TSP problem. In Section 3, we briefly in-
troduce the optimization approaches under consideration in this study that make 
up the proposed hybrid algorithm. In Section 4, we discuss the proposed hybrid 
RNN-SA algorithm in detail. In Section 5, we present experimental results, result 
analysis, and performance comparisons. The conclusion of the paper is summa-
rized in Section 6. 

2. Related Work 

In this section, we review some recently published hybrid optimization proce-
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dures that use different strategies to develop sophisticated solution methods for 
solving the TSP problem. Geng et al. proposed an adaptive hybrid algorithm 
called ASA-GS by combining the problem solving efforts of the SA algorithm 
and greedy search (GS) mechanism to solve the symmetric TSP problem [6]. 
They use a greedy search strategy in the optimization procedure of general SA 
algorithm to speed up the solution convergence rate. Their testing experiments 
demonstrated that the ASA-GS performs well on both small and large-scale TSP 
datasets and even outperforms some recently developed optimization algo-
rithms. In fact, this composite algorithm found a better trade-off between solu-
tion quality and computation time for solving symmetric TSP problem. Utilize 
the benefit of the genetic algorithm (GA), SA, ant colony optimization (ACO) 
and particle swarm optimization (PSO) a hybrid algorithm named GSA-ACO-PSO 
is reported by Chen and Chien to tackle symmetric TSP problem [7]. In this op-
timization framework, a set of feasible solutions are generated by the ant colony 
system and these feasible solutions are adopted as the initial solution of the GA 
procedure. Then, the GA is executed with SA mutation techniques to achieve 
better solutions. On the other hand, the role of the particle swarm optimization 
process is to facilitate the exchange of pheromone information among the popu-
lations in the ant colony system after a predefined number of cycles. The expe-
rimental evaluations indicated that this hybrid algorithm exhibits better perfor-
mance than some other related optimization algorithms. 

Deng et al. developed a hybrid algorithm with the help of evolutionary con-
cepts of GA, ACO and PSO algorithms to solve the symmetric TSP problem [3]. 
In the implementation process of this algorithm, a series of sub-optimal solu-
tions are first generated through the combination of wholeness, randomicity, 
and rapidity of the PSO and GA techniques. After that, the resulting solutions 
are exploited based on the ACO algorithm by utilizing the benefit of the parallel, 
positive feedback and higher accuracy. Their algorithm evaluation illustrated 
that it performs better than some other evolutionary TSP solving algorithms. In 
[8], Zhan et al. proposed a new version of the SA algorithm named list-based SA 
algorithm (LBSA) in order to solve the symmetric TSP problem. In this approach, 
a list-based cooling schedule is adopted to control temperature reduction in the 
basic SA algorithm. Their experimental results indicated that the LBSA finds 
good approximate solutions and outperforms some other state-of-the-art algo-
rithms. A hybrid optimization algorithm by combining the superiority of the 
symbiotic organism search (SOS) and SA algorithms named SOS-SA is reported 
by Ezugwu et al. [9]. In this optimization framework, the initial feasible solu-
tions for the SOS algorithm are generated by applying the conventional SA algo-
rithm. After that, these solutions are modified and improved through the three 
intelligent optimization phases of SOS algorithm. Comparative results demon-
strated that the SOS-SA framework can yield TSP optimal solutions and show 
competitive behavior with other state-of-the-art optimization algorithms. 

Hore et al. reported a hybrid variable neighborhood search (HVNS) algorithm 
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to solve both symmetric and asymmetric TSPs [4]. They accomplish the search 
procedure by two stages such as it first generates an initial feasible solution 
through a route construction based greedy approach, and then improves this 
solution iteratively by using various neighborhood structure with stochastic stop-
ping criteria. The algorithm evaluation found that it performs better than the 
conventional optimization algorithms, and VNS-1 and VNS-2 algorithms as well. 
In [10], Tsai et al. proposed a hybrid algorithm called ACOMAC by introducing 
multiple ant clans (MAC) idea in the process of ACO algorithm. They also dis-
cussed ant colony system (ACS) for solving the TSP problem. In this work, mul-
tiple nearest neighbor (NN) and dual nearest neighbor (DNN) are combined 
separately with both ACOMAC and ACS to enhance their performance. Their 
experiments analysis indicated that the performance of both the basic ACOMAC 
and ACS are enhanced significantly when they combine with NN and DNN, 
meanwhile, ACOMAC + DNN performs better than the other discussed algo-
rithms. 

3. Methods of Study 

In this section, we give a brief introduction of the optimization techniques under 
consideration in this study that make up the proposed hybrid algorithm for 
solving TSP problem. The RNN optimization algorithm and the SA optimization 
algorithm are briefly discussed in the following subsections consecutively. 

3.1. Repetitive Nearest Neighbor Optimization Algorithm 

The RNN is the route construction algorithm that is an extension of the well- 
known Nearest Neighbor (NN) algorithm [11]. The NN algorithm attempts to 
construct the route based on the connections of nearest neighbors. It starts with 
a city chosen at random as the starting city of the route and then includes the 
next city which is located closest to the last city. The performance of this algo-
rithm is highly sensitive to the choice of starting city. To remedy this, the RNN 
algorithm was developed. It performs better than the NN algorithm for solving 
TSP problem. However, there is time complexity of order ( )3O n  while the al-
gorithm running time of NN is reported as ( )2O n  [12]. In fact, the RNN algo-
rithm constructs a set of routes step by step through some strategies. Its route 
construction procedure can be described as a sequence of the following steps. 

Step-1: Let { }1 2 3, , , , nC c c c c= �  be the list of n cities and ( ),i jd c c  be the 
cost/distance between the cities ic  and jc , where ic  represents the position 
of the ith city. In the first step, the search engine generates n sub-routes and each 
sub-route consists of one single city. The set of constructed sub-routes can be ex-
pressed as follows:  

{ }1 ; 1, 2, ,iR c i n= = �                       (6) 

Step-2: Each sub-route obtained from the first step is extended the network in 
this step by adding a different nearest city from the remaining cities. Thus, the 
set of possible n sub-routes is constructed on the basis of Equation (7).  
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( ){ }2 1; ;min , , ; ; 1, 2, ,i j i i j jR c c c R d c c c C i j j n= ∀ ∈ ∀ ∈ ≠ = �      (7) 

In the Equation (7), ( ),i jd c c  is the Euclidean distance between the cities ic  
and jc , which is calculated based on the formula presented in Equation (8). Let 
( ),i ix y  and ( ),j jx y  be the Cartesian coordinate of the location of the cities 

ic  and jc . Then, the formula for calculating the Euclidean distance between 

ic  and jc  is as follows:  

( ) ( )2 2
i j i jx x y y− + −                      (8) 

Step-3: In this step, each 2-city sub-route of 2R  is enlarged through a nearest 
city that is not yet in the route. Thus, the set of possible 3-city sub-routes is con-
structed as bellows:  

( ){ }3 2; ;min , , ; , ; 1, 2, ,i j k i j j k kR c c c c c R d c c c C i j k k n= ∀ ∈ ∀ ∈ ≠ = �    (9) 

where 3R n=  is the total number of routes in the set 3R . In this way, the 
route construction mechanism is continued until all the cities are included in 
each route. After completing the nth step, we get a set of routes nR , where  

nR n=  and each route of nR  contains n cities. To generate feasible TSP routes, 
we add the starting city to the ( )th1n +  position of each route in nR . Finally, 
we get a set of feasible n routes and from there a best route is searched out. In 
this paper, the RNN method is considered to generate a set of n feasible TSP 
routes. 

3.2. Simulated Annealing Optimization Algorithm 

The SA algorithm for solving the TSP problem was first introduced by Kirkpa-
trick et al. in 1983 [13]. It is designed based on the idea of annealing process of 
metal atoms to achieve low energy states in a heat bath. Actually, metal atoms 
become unstable from their initial states at high temperature and they explore 
for other states. They find a lower energy state compared to their current state at 
the time of cooling. Thus, the procedure consists of two steps. First, the temper-
ature of the heat bath is increased to a maximum value such that the metal atoms 
melt. Then, the temperature is reduced so that the particles cool until they are 
reached to a steady state. With regard to the search process, this algorithm con-
sists of two important strategies-diversification and intensification. Setting the 
initial temperature high allow the exploration of the search space (diversifica-
tion). On the other hand, the particles cool themselves until they converge into a 
steady state which means the search process converge to a local minimum (in-
tensification). To maintain a proper balance between diversification and intensi-
fication strategies, a suitable temperature cooling schedule is required in this al-
gorithm. We use an optimized cooling schedule in this paper which is defined in 
Equation (12). 

The SA algorithm starts with randomly generating a set of initial solutions. 
The new candidate solutions/states are generated based on the initial solutions 
and the specified neighborhood structure. The neighborhood structure for ge-
nerating new solution is briefly discussed in Subsection 3.2.1. The new solution 
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is accepted by the algorithm when its energy/fitness value is lower than the cur-
rent solution. On the other hand, a non-improving new solution is accepted 
based on the transition probability p, defined as follows:  

e ,k

f
Tp

 ∆
−  
 =                         (10) 

( ) ( )
( )

,i i

i

f x f x
f

f x
′ −

∆ =                     (11) 

where 0kT �  is the temperature in the kth iteration, ( )if x  and ( )if x′  re- 
present the fitness value of the current route and new route, respectively. If  

0f∆ ≤ , then the new solution ix′  is accepted. When 0f∆ > , then the system 
changes the current solution ix  according to the probability p. It is noted from 
Equation (10) that the probability of accepting a bad solution is proportionally  

decreased with the temperature T as 
0

lim e 0k

f
T

T

 ∆
−  
 

→
= . Therefore, a rigorous  

temperature cooling schedule plays a vital role for the performance of the SA al-
gorithm. The following cooling schedule is utilized in this work to solve TSP 
problem:  

1 ,k kT Tγ+ =                        (12) 

In the above equation, γ  represents the cooling coefficient, which is also called 
the temperature reduction rate. The values of γ  lies between 0 and 1. The pro- 
cess shows the best solution, when the temperature reaches to a predefined tem-
perature or the maximum number of iterations is met. The procedure of SA al-
gorithm is presented in the Algorithm 1. 
 
Algorithm 1. Pseudocode of the SA algorithm. 

Input: Distance matrix D, Initial temperature 0T , Cooling rate γ , Maximum iteration Maxit 

Output: Best Solution 
1: Generate n feasible routes randomly, { }1 2, , , nX x x x= � , compute the Euclidean 

distance/fitness value of each route, ( ) ( ) ( ) ( ){ }1 2, , , nf X f x f x f x= � , assign the value of 

Maxit and the initial value of 0T  and γ  

2: For each iteration, it = 1 to maximum iteration 
3: For each route ix , 1i =  to n 

4: Generate a new route ix′  by adopting neighborhood structure (described in Section 3.2.1) 

5: Compute Euclidean distance/fitness value of the new route ( )if x′  

6: Calculate f∆  on the basis of Equation (11) 

7: If 0f∆ ≤ , then update the current route ix  by assigning i ix x′←  
8: If 0f∆ � , then compute the acceptance probability p by using Equation (10). If p u≥ , 

then update the current route ix  by assigning i ix x′← , where u is the random number 

between 0 and 1 
9: End for 
10: Decrease the temperature based on Equation (12) 
11: Update the best solution ever found 
12: End for 
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3.2.1. Neighborhood Structure of the SA Algorithm 
In this paper, we use three neighborhood operators namely swap, reversion and 
inversion to generate new solution from the current existing solution. The 
probabilities of occurring swap, reversion and insertion are 0.5, 0.2, and 0.3, re-
spectively, while the selection method is Roulette Wheel Selection. These sets of 
neighborhood operators are briefly discussed subsequently. 

Swap: The swap operator randomly selects the position of two cities from a 
route ix  and exchanges the position of these two cities to create a new route 

ix′ . Let the two positions i and j with i j≠  be randomly selected from the route 

ix . Then, the swap operator generates a new route ix′  by interchanging the ci-
ties between the position i and j of ix . For example, let ( )5,7,1, 2, 4,3,6ix =  be 
a feasible route consists of 7 cities. If second and sixth positions are selected for 
swap operation, then the corresponding cities 7 and 3 of ix  are exchanged and 
generates a new route ( )5,3,1,2,4,7,6ix′ = . The swap operation procedure is 
depicted in Figure 1. 

Reversion: The reversion operator firstly locates the position of two different 
cities in a route randomly and then reverses the local path between these two ci-
ties. Consider a route ix  and the two cut points i and j with i j≠  on ix . 
Then, the reversion operator inverse the cities between the position i and j of ix  
and generates a new route ix′ . To explain the reversion process, consider a route 

ix  with 7 cities expressed by ( )5,7,1,2,4,3,6ix = . Let the position second and 
fifth are randomly selected in ix , then reversion operator modifies the route ix  
and creates a new route ix′  by reversing the local path (7, 1, 2, 4) between the 
cities 7 and 4. After reversion operation, the modified route can be written as 

( )5,4,2,1,7,3,6ix′ = . This process is displayed graphically in Figure 2. 
Insertion: The insertion operator firstly picks up two positions i and j with 

i j≠  on ix  randomly, and then the city of ith position is inserted into the city of 
jth back position. To illustrate more clearly of insertion operation procedure, let ix  
be a 7-city route, which is represented by ( )5,7,1, 2, 4,3,6ix = . Suppose third and 
sixth positions are considered in ix  to perform the insertion operation. Then, the 
city 1 is placed behind the city 3 for producing a new route ix′ . After performing 
insertion operation on ix , the modified route ix′  can be written as  

( )5,7,2,4,3,1,6ix′ = . The insertion mechanism is illustrated in Figure 3. 
 

 
Figure 1. Illustration of the swap procedure [14]. 

 

 

Figure 2. Illustration of the reversion procedure [14]. 
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Figure 3. Illustration of the insertion procedure [14]. 

4. Proposed Hybrid Approach (RNN-SA) 

In this section, we present a hybrid method called RNN-SA for the solution of 
symmetric TSP problem. The RNN algorithm is a simple and easily implement-
able constructive heuristic algorithm used to solve various optimization prob-
lems [11]. The main benefit of this algorithm is that it can produce a set of feasi-
ble solutions instead of one single solution. Logically, there is a more chance to 
get a better solution from a set of solutions instead of a single solution. In addi-
tion, The RNN algorithm performs better than the NN algorithm and yields the 
solution very promptly. However, its solution quality is not good enough com-
pared to other algorithms. On the other hand, the SA algorithm is a local search 
based heuristic algorithm extensively utilized for finding the optimum solution 
of both discrete and continuous optimization problems [13]. One of the main 
advantages of this algorithm is that it accepts non-improving solutions with cer-
tain probability during the optimization process in the sense that a slightly worse 
solution than the current solution may provide a better solution in the near fu-
ture. Indeed, the SA has the capability to prevent the search process from falling 
into the trapped of local optimum solution by permitting the uphill moves to 
search for a global optimum solution. The local optimum is a point in the search 
space where all the solution points in the neighborhood are worse than the cur-
rent solution. However, the solution quality of the SA algorithm is still infected 
by the randomly initializing population. To overcome this problem, we adopt 
the RNN algorithm in the optimization process of the SA algorithm and enhance 
its performance. Therefore, a new hybrid algorithm (RNN-SA) is proposed by 
integrating the superiority of RNN and SA algorithms to effectively exploit and 
explore the problem search space. 

Suppose that there are n cities in the TSP problem. The proposed algorithm 
accomplishes the search procedure by two stages. First, the RNN algorithm is 
used to generate a set of n feasible routes step by step and these routes are fed as 
the initial solution of the SA algorithm. Then, the system performs the SA algo-
rithm to obtain better solutions by adopting a robust search process through a 
proper balance of diversification and intensification strategies. In fact, the feasi-
ble solutions obtained from the RNN algorithm are iteratively improved through 
the SA algorithm in an iterative improvement process. In each iteration, a set of 
neighborhood operators with their corresponding occurring probability are uti-
lized to generate a new solution from the current solution. The selected neigh-
borhood operator performs n moves to generate the new solutions in each itera-
tion corresponding to each current solution. Thus, the proposed algorithm starts 
with generating a set of better routes by RNN and then adopts the SA algorithm 
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to improve these routes iteratively. It stops when the maximum number of itera-
tion is achieved. The algorithm stopping condition is an important factor that 
can determine the final result of the experiment. If the algorithm is stopped too 
early, then the quality of the solution might not be even close to the best-known 
optimum solution. In contrast, prolonging the simulation incurs a considerable 
amount of unnecessary effort and time. So, it is crucial to consider the trade-off 
between the quality of solution and computational time. In this paper, we set up 
a fixed iteration number 1000 which is enough to get a satisfactory solution. The 
pseudocode and the architecture of the proposed hybrid optimization algorithm 
(RNN-SA) are offered in Algorithm 2 and Figure 4, respectively. 

5. Experiments and Analysis 

In this section, we evaluate the performance of the proposed hybrid RNN-SA 
algorithm through various experiments. To accomplish the experimental tasks, a 
set of real-world symmetric TSP datasets are considered from TSPLIB [15]. In-
deed, TSPLIB is a publicly available library that provides diverse testing datasets 
for the combinatorial optimization problems. It also reports the best-known op-
timum solution for each dataset. We consider 24 benchmark symmetric TSP da-
tasets with dimension ranging from 51 to 318. The numerical value of the data-
set name represents the dimension of that dataset. The experimental results of 
RNN-SA are first compared with both basic RNN and SA algorithms as well as 
the best-known optimum results reported by the dada library. Then, it is compared  
 
Algorithm 2. Pseudocode of the proposed hybrid (RNN-SA) algorithm. 

Input: Distance matrix D, Initial temperature 0T , Cooling rate γ , Maximum iteration Maxit 

Output: Best Solution 
1: Assign the value of Maxit and the initial value of 0T  and γ  

2: For each city ; 1, 2, ,ic i n= � , generate a set of n sub-routes consist of one city ic  

3: Add a closest city in the right end of each sub-route that is not yet in the route 
4: Repeat the process of step 3 until all the cities are added in each sub-route 
5: Add starting city in the right side of the last position of each sub-route to generate n feasible 
routes, { }1 2, , , nX x x x= �  

6: Compute the Euclidean distance/fitness value of each route, ( ) ( ) ( ) ( ){ }1 2, , , nf X f x f x f x= �  

7: For each iteration, it = 1 to maximum iteration 
8: For each route ix , 1i =  to n 

9: Generate a new route 
'
ix  by adopting neighborhood structure (described in Section 3.2.1) 

10: Compute Euclidean distance/fitness value of the new route ( )if x′  

11: Calculate f∆  on the basis of Equation (11) 

12: If 0f∆ ≤ , then update the current route ix  by assigning i ix x′←  
13: If 0f∆ � , then compute the acceptance probability p by using Equation (10). If p u≥ , then 

update the current route ix  by assigning i ix x′← , where u is the random number 

between 0 and 1 
14: End for 
15: Decrease the temperature based on Equation (12) 
16: Update the best solution ever found 
17: End for 
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Figure 4. Architecture of the proposed hybrid optimization algorithm (RNN-SA). 
 
with the results of some other hybrid algorithms existing in the literature. The 
results of various experiments might be different for same TSP dataset due to 
owing randomness in the optimization process of our RNN-SA algorithm. For 
this reason, the algorithm runs independently 5 consecutive times for each TSP 
dataset and from these 5 values the best solution, average solution, worst solu-
tion, and the standard deviation (SD) value are reported. Both basic algorithms 
(RNN and SA) and proposed (RNN-SA) algorithm are coded in MATLABR2017a 
programming language and executed on a standard laptop computer with In-
tel(R) Core(TM) i5-5337U CPU 1.80 GHz, 4 GB RAM and Windows 10 operat-
ing system. The maximum iteration for both SA and RNN-SA is set up as 1000 
and in each run, the best solution from 1000 iterations are taken for a particular 
TSP dataset. The values of the parameters are adjusted through the experiment 
by trial and error method and their optimized values for both SA and RNN-SA 
algorithms are presented in Table 1. 

5.1. Experimental Results of the Proposed RNN-SA Algorithm 

The experimental results of the proposed RNN-SA algorithm for 24 benchmark 
symmetric TSP datasets are presented in Table 2. In Table 2, Scale represents 
the number of cities (dimension) of the dataset, BKS denotes the best-known 
optimum solution reported by the data library. Best, Average and Worst indicate 
the best optimum value, average optimum value, and worst optimum value of 
our algorithm among 5 optimum values. SD carries the standard deviation value 
computed based on the 5 optimum values. PDbest (%) and PDav (%) denote the 
percentage deviation of the computed best solution and average solution with 
respect to BKS. PDbest (%) and PDav (%) are computed according to Equation  
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Table 1. List of parameters and their optimized values for both SA and RNN-SA algo-
rithms. 

S/N Parameter Value 

1 Size of population n 

2 Maximum Iteration 1000 

3 Number of moves n 

4 Initial Temperature 0.025 

5 Cooling Coefficient 0.99 

6 Run 5 

7 Swap Probability 0.2 

8 Reversion Probability 0.5 

9 Insertion Probability 0.3 

 
Table 2. Experimental results of the proposed RNN-SA optimization algorithm for the 24 
symmetric benchmark TSP datasets. 

S/N Datasets Scale BKS 

Proposed Algorithm (RNN-SA) 

Best Average Worst SD 
PDbest 

(%) 
PDav 
(%) 

1 eil51 51 426 428.87 429.44 430.24 0.52 0.673709 0.807512 

2 berlin52 52 7542 7544.37 7544.37 7544.37 0.00 0.031424 0.031424 

3 brazil58 58 25,395 25,395 25,440.40 25,622.00 9.39 0 0.178775 

4 st70 70 675 677.11 679.33 682.66 3.04 0.312593 0.641481 

5 eil76 76 538 544.37 549.16 555.99 4.40 1.184015 2.074349 

6 rat99 99 1211 1219.24 1229.29 1232.68 5.68 0.680429 1.510322 

7 kroA100 100 21,282 21,285.44 21,285.44 21,285.44 0.00 0.016164 0.016164 

8 kroE100 100 22,068 22,119.90 22,164.92 22,267.17 58.65 0.235182 0.439188 

9 eil101 101 629 644.92 652.31 657.71 5.39 2.531002 3.705882 

10 bier127 127 118,282 119,331.15 119,849.69 120,061.28 294.00 0.88699 1.325383 

11 ch130 130 6110 6171.87 6249.18 6331.14 66.31 1.012602 2.277905 

12 pr136 136 96,772 96,922.41 100,335.16 101,924.34 1979.60 0.155427 3.682015 

13 ch150 150 6528 6552.30 6553.94 6556.01 1.58 0.372243 0.397365 

14 kroA150 150 26,524 26,821.83 27,008.24 27,330.04 194.18 1.12287 1.825667 

15 kroB150 150 26,130 26,327.09 26,577.15 26,839.20 232.5 0.754267 1.711251 

16 pr152 152 73,682 73,843.09 74,669.58 76,049.93 836.59 0.218629 1.340327 

17 u159 159 42,080 42,162.75 42,547.66 42,715.47 90.57 0.196649 1.111359 

18 rat195 195 2323 2348.70 2361.50 2375.73 11.49 1.106328 1.65734 

19 d198 198 15,780 15,852.33 15,896.40 15,945.10 34.47 0.458365 0.737643 

20 kroA200 200 29,368 29,541.83 29,626.42 29,702.88 73.01 0.591903 0.879937 

21 kroB200 200 29,437 29,825.16 30,033.03 30,247.70 163.02 1.318613 2.024765 

22 pr264 264 49,135 49,197.32 49,375.75 49,779.63 232.85 0.126834 0.489977 

23 pr299 299 48,191 48,811.49 49,003.93 49,137.65 154.58 1.287564 1.686892 

24 lin318 318 42,029 42,862.50 43,041.10 43,167.09 122.01 1.983154 2.707868 

Average 0.71904 1.385866 
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(13) and Equation (14). From the Table 2, it can be observed that the proposed 
RNN-SA algorithm yields the solutions very close to the BKS and the errors term 
are very small. Besides, the obtained SD values are small, which means that the 
proposed RNN-SA algorithm is stable to compute a satisfactory solution in each 
run. The errors lie within the interval of [0, 2.53] and [0.02, 3.68] with respect to 
the best and average solutions, respectively. In fact, the average errors over all 
the considered 24 datasets are 0.72 and 1.39 with respect to the best and average 
solutions. Therefore, it can be decided that the proposed RNN-SA algorithm is a 
reliable optimization algorithm that produces the solutions very near to the best- 
known optimum solutions.  

( ) Best BKSPDbest % 100%
BKS
−

= ×                 (13) 

( ) Average BKSPDav % 100%
BKS

−
= ×                (14) 

5.2. Performance Comparisons 

In this subsection, we compare the performance of the proposed hybrid algo-
rithm (RNN-SA) with the basic RNN and SA algorithms as well as some other 
hybrid algorithms. We code and execute the RNN-SA, RNN, and SA algorithms 
under the same experimental environment to show a fair comparison. For com-
paring with other hybrid algorithms, the results of RNN-SA are compared with 
the results presented in the reference articles. The side by side comparisons are 
displayed in Tables 3-5. The best results among the considered algorithms are 
highlighted in boldface. In addition, the average over all the considered datasets 
corresponding to each comparison is presented at the bottom of each table. Ta-
ble 3 shows the comparison of RNN-SA for 24 symmetric TSP datasets with the 
basic RNN and SA algorithms. According to Table 3, the proposed RNN-SA al-
gorithm shows better performance than both RNN and SA with respect to best, 
average as well as worst solutions in all the tested datasets except bier127 dataset. 
In bier127 dataset, our best result is inferior to SA but the average and worst re-
sults are superior to SA. Besides, the SD value of our algorithm is smaller than 
SA in nearly all the datasets. This indicator suggests that our algorithm (RNN-SA) 
is more stable than the SA algorithm. The average of best results, average results, 
worst results and SD values over all the 24 datasets of RNN-SA are 29,017.96, 
29,295.97, 29,518.39, and 190.5763, respectively, which are better than the 29,303.13, 
29,688.43, 29,994.45, and 306.0842 of SA as well as 33,137.39 of RNN. 

The comparison of the proposed hybrid algorithm (RNN-SA) with the other 
hybrid algorithms (ACS + NN, ACOMAC + NN, ACS + DNN, and ACOMAC + 
DNN) is shown in Table 4. From Table 4, it is visible that the proposed RNN- 
SA algorithm is significantly dominated each of the other four hybrid algorithms 
in all the four datasets. In fact, the average over all the datasets of RNN-SA is 
9527.753, which is better than the 9759.98 of ACS + NN, 9612.828 of ACOMAC 
+ NN, 9691.583 of ACS + DNN, and 9586.613 of ACOMAC + DNN. Table 5 shows 
the performance comparison of RNN-SA with hybrid variable neighborhood  
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Table 3. Comparison of the proposed RNN-SA algorithm with the basic RNN and SA algorithms. 

S/N Datasets Scale BKS Basic RNN 
Basic SA RNN-SA (Proposed) 

Best Average Worst SD Best Average Worst SD 

1 eil51 51 426 505.77 428.98 430.99 432.71 1.70 428.87 429.44 430.24 0.52 

2 berlin52 52 7542 8182.19 7544.37 7737.86 7914.29 135.08 7544.37 7544.37 7544.37 0.00 

3 brazil58 58 25,395 27,384 25,601 25,617.80 25,622.00 101.52 25,395 25,440.40 25,622.00 9.39 

4 st70 70 675 761.69 686.09 691.24 706.05 8.33 677.11 679.33 682.66 3.04 

5 eil76 76 538 612.66 546.83 552.61 556.91 4.64 544.37 549.16 555.99 4.40 

6 rat99 99 1211 1369.53 1219.86 1238.37 1268.71 23.43 1219.24 1229.29 1232.68 5.68 

7 kroA100 100 21,282 24,698.49 21,285.44 21,460.80 21,690.57 190.41 21,285.44 21,285.44 21,285.44 0.00 

8 kroE100 100 22,068 24,907.02 22,289.67 22,483.09 22,694.91 162.07 22,119.90 22,164.92 22,267.17 58.65 

9 eil101 101 629 736.37 650.93 653.84 658.51 3.17 644.92 652.31 657.71 5.39 

10 bier127 127 118,282 133,970.65 118,846.22 120,406.43 121,564.14 1125.70 119,331.15 119,849.69 120,061.28 294.00 

11 ch130 130 6110 7198.74 6214.64 6253.37 6325.50 43.09 6171.87 6249.18 6331.14 66.31 

12 pr136 136 96,772 114,560.90 98,853.84 100,607.01 101,424.68 1028.30 96,922.41 100,335.16 101,924.34 1979.60 

13 ch150 150 6528 7078.44 6663.92 6691.84 6721.77 23.15 6552.30 6553.94 6556.01 1.58 

14 kroA150 150 26,524 31,482.02 27,236.15 27,443.91 27,694.82 220.99 26,821.83 27,008.24 27,330.04 194.18 

15 kroB150 150 26,130 31,320.34 26,641.66 27,054.47 27,669.88 398.52 26,327.09 26,577.15 26,839.20 232.5 

16 pr152 152 73,682 79,566.56 74,251.63 74,683.95 74,972.16 393.07 73,843.09 74,669.58 76,049.93 836.59 

17 u159 159 42,080 48,586.72 42,673.89 42,733.43 42,889.49 228.33 42,162.75 42,547.66 42,715.47 90.57 

18 rat195 195 2323 2628.56 2381.90 2418.75 2459.95 30.96 2348.70 2361.50 2375.73 11.49 

19 d198 198 15,780 17,809.73 15,913.5 16,042.91 16,130.76 86.10 15,852.33 15,896.40 15,945.10 34.47 

20 kroA200 200 29,368 34,547.69 29,988.40 30,368.15 30,777.93 331.78 29,541.83 29,626.42 29,702.88 73.01 

21 kroB200 200 29,437 35,394.01 30,329.79 30,567.35 30,841.37 231.92 29,825.16 30,033.03 30,247.70 163.02 

22 pr264 264 49,135 54,491.48 49,434.52 51,479.29 52,840.02 1509.60 49,197.32 49,375.75 49,779.63 232.85 

23 pr299 299 48,191 58,288.15 50,309.53 50,912.02 51,422.25 422.77 48,811.49 49,003.93 49,137.65 154.58 

24 lin318 318 42,029 49,215.61 43,282.27 43,992.820 44,587.451 641.39 42,862.50 43,041.10 43,167.09 122.01 

Average 33,137.39 29,303.13 29,688.43 29,994.45 306.0842 29,017.96 29,295.97 29,518.39 190.5763 

 
Table 4. Comparison of the proposed RNN-SA algorithm with the ACS + NN (Tsai et al., 2004), ACOMAC + NN (Tsai et al., 
2004), ACS + DNN (Tsai et al., 2004), and ACOMAC + DNN (Tsai et al., 2004) hybrid algorithms. 

S/N Datasets Scale BKS ACS + NN [10] ACOMAC + NN [10] ACS + DNN [10] ACOMAC + DNN [10] RNN-SA (Proposed) 

1 eil51 51 426 434.08 430.04 430.67 430.01 428.87 

2 eil76 76 538 559.19 553.94 557.77 552.61 544.37 

3 kroA100 100 21,282 21,487.95 21,433.33 21,440.09 21,408.23 21,285.44 

4 d198 198 15,780 16,558.70 16,034 16,337.80 15,955.60 15,852.33 

Average 9759.98 9612.828 9691.583 9586.613 9527.753 
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Table 5. Comparison of the proposed RNN-SA algorithm with the HVNS (Hore et al., 2018) hybrid algorithms. 

S/N Datasets Scale BKS 
HVNS (Hore et al., 2018) [4] RNN-SA (Proposed) 

Best Average Worst Best Average Worst 

1 eil51 51 426 428.98 428.98 428.98 428.87 429.44 430.24 

2 berlin52 52 7542 7544.37 7544.37 7544.37 7544.37 7544.37 7544.37 

3 brazil58 58 25,395 25,425 25,592.72 25,664 25,395 25,440.40 25,622.0 

4 st70 70 675 677.11 677.11 677.11 677.11 679.33 682.66 

5 eil76 76 538 545.39 552.57 566.50 544.37 549.16 555.99 

6 rat99 99 1211 1240.38 1241.26 1242.40 1219.24 1229.29 1232.68 

7 kroA100 100 21,282 21,618.2 21,695.79 21,846.4 21,285.44 21,285.44 21,285.44 

8 kroE100 100 22,068 22,174.6 22,193.8 22,222.36 22,119.90 22,164.92 22,267.17 

9 eil101 101 629 642.31 648.27 657.91 644.92 652.31 657.71 

10 bier127 127 118,282 11,8974.6 119,006.39 119,054.4 119,331.15 119,849.69 120,061.28 

11 ch130 130 6110 6140.66 6153.72 6165.14 6171.87 6249.18 6331.14 

12 pr136 136 96,772 97,979.11 97,985.84 98,012.75 96,922.41 100,335.16 101,924.34 

13 ch150 150 6528 6639.52 6644.95 6666.66 6552.30 6553.94 6556.01 

14 kroA150 150 26,524 26,943.31 26,947.17 26,962.6 26,821.83 27,008.24 27,330.04 

15 kroB150 150 26,130 26,527.57 26,537.04 26,576.12 26,327.09 26,577.15 26,839.20 

16 pr152 152 73,682 73,847.6 73,855.11 73,885.15 73,843.09 74,669.58 76,049.93 

17 u159 159 42,080 42,436.23 42,467.61 42,467.61 42,162.75 42,547.66 42,715.47 

18 rat195 195 2323 2450.14 2453.81 2464.32 2348.70 2361.50 2375.73 

19 d198 198 15,780 16,075.84 16,079.28 16,085.53 15,852.33 15,896.40 15,945.10 

20 kroA200 200 29,368 30,300.56 30,339.67 30,365.87 29,541.83 29,626.42 29,702.88 

21 kroB200 200 29,437 30,447.30 30,453.22 30,472.42 29,825.16 30,033.03 30,247.70 

22 pr264 264 49,135 51,155.38 51,197.14 51,364.2 49,197.32 49,375.75 49,779.63 

23 pr299 299 48,191 50,271.69 50,373.12 50,778.86 48,811.49 49,003.93 49,137.65 

24 lin318 318 42,029 43,924.08 43,964.93 44,128.35 42,862.50 43,041.10 43,167.09 

Average 29,350.41 29,376.41 29,518.39 29,017.96 29,295.97 29,429.17 

 
search (HVNS) algorithm for 24 symmetric TSP datasets. As shown in Table 5, 
the proposed RNN-SA algorithm exhibits competitive behavior with HVNS in 
terms of solution quality. It is observed that the HVNS finds better results in 
some small scale datasets. As the scale increases, our algorithm shows better 
global search capability than the HVNS algorithm. The average of best results, 
average results, and worst results over all the 24 datasets of RNN-SA are 29,017.96, 
29,295.97, and 29,429.17, respectively which are better than the 29,350.41, 29,376.41, 
and 29,518.39 of HVNS. 

6. Conclusion 

We have established a hybrid heuristic algorithm called RNN-SA by integrating 
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the RNN algorithm and the SA algorithm for finding the optimum solution of 
the symmetric TSP problem. The proposed algorithm is composed of two main 
stages. In the first stage, we use the RNN algorithm to construct a set of feasible 
routes step by step. The concept of NN is adopted in this stage during the net-
work enhancement process. In the second stage, we improve these routes in an 
iterative improvement process on the basis of the SA algorithm. Three neigh-
borhood operators are utilized to generate new solution in the process of SA. 
Indeed, a set of feasible routes obtained from the RNN algorithm are fed in the 
SA algorithm to avoid random initialization and increase performance. The ex-
periments are conducted with a set of benchmark symmetric TSP datasets taken 
from the TSPLIB. The experimental results demonstrate that the proposed hy-
brid (RNN-SA) algorithm yields the solutions very close to the best-known op-
timum solutions and performs better than both the basic algorithms (RNN and 
SA). In addition, the proposed hybrid optimization algorithm outperforms some 
other hybrid optimization algorithms existing in the literature in terms of solu-
tion quality. 
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