
Open Access Library Journal
2021, Volume 8, e7520
ISSN Online: 2333-9721

ISSN Print: 2333-9705

DOI: 10.4236/oalib.1107520 Jun. 2, 2021 1 Open Access Library Journal

Repetitive Nearest Neighbor Based Simulated
Annealing Search Optimization Algorithm for
Traveling Salesman Problem

Md. Azizur Rahman1*, Hasan Parvez2

1Mathematics Discipline, Science, Engineering and Technology School, Khulna University, Khulna, Bangladesh
2Navy Anchorage School and College Khulna, Sailors’ Colony, Goalkhali, GPO, Khulna, Bangladesh

Abstract
The traveling salesman problem (TSP) is the most popular and most studied
non-deterministic polynomial (NP) hard problem that has been used in var-
ious fields of science and technology. Due to the NP-hard nature, it is very
difficult to solve this problem effectively and efficiently. For this reason, di-
verse appropriate optimization algorithms have been designed and developed
in the last few decades. Among these algorithms, heuristic algorithms are much
more suitable to tackle with this complex problem. In this paper, we propose
a hybrid heuristic algorithm to solve the symmetric TSP problem by combin-
ing the search mechanism of repetitive nearest neighbor (RNN) heuristic and
simulated annealing (SA) heuristic algorithms. In fact, a set of better routes
are generated step by step by the RNN algorithm and these routes are improved
through the iterative improvement process of the SA algorithm. The proposed
algorithm is tested on a set of benchmark symmetric TSP datasets and com-
pared with the basic RNN and SA algorithms as well as some other hybrid
algorithms existing in the literature. It is demonstrated by the experimental
results that the proposed algorithm is more effective than both the basic RNN
and SA algorithms, and the obtained optimum results are in good agreement
with the corresponding best-known optimum results. In addition, the pro-
posed algorithm outperforms some other hybrid algorithms in terms of solu-
tion quality.

Subject Areas
Intelligent Optimization Algorithm, Combinatorial Optimization

Keywords
Combinatorial Optimization, Traveling Salesman Problem, Repetitive

*Corresponding author.

How to cite this paper: Rahman, Md.A.
and Parvez, H. (2021) Repetitive Nearest
Neighbor Based Simulated Annealing Search
Optimization Algorithm for Traveling Sales-
man Problem. Open Access Library Journal,
8: e7520.
https://doi.org/10.4236/oalib.1107520

Received: May 13, 2021
Accepted: May 30, 2021
Published: June 2, 2021

Copyright © 2021 by author(s) and Open
Access Library Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://doi.org/10.4236/oalib.1107520
http://www.oalib.com/journal
https://doi.org/10.4236/oalib.1107520
http://creativecommons.org/licenses/by/4.0/

Md. A. Rahman, H. Parvez

DOI: 10.4236/oalib.1107520 2 Open Access Library Journal

Nearest Neighbor Algorithm, Simulated Annealing Algorithm,
Neighborhood Structure, Hybrid Algorithm

1. Introduction

The traveling salesman problem (TSP) is a well-known combinatorial optimiza-
tion problem that has been extensively studied in various fields of science and
technology such as mathematics, artificial intelligence, physics, operations re-
search, and biology. It is the problem of finding the possible shortest route among
a list of cities, where each city is included once and only once and finally returns
to the starting city. It is believed that the history of the TSP problem was discov-
ered in 1920 in Vienna [1]. However, a formal description of the TSP problem
was formulated by Dantzig et al. in 1954 [2]. Since then it has been used in mod-
eling diverse real-world problems, such as designing hardware devices, micro-
chips, and radio electronic devices, data association, data transmission in com-
puter networks, DNA sequencing, vehicle routing, job scheduling, clustering of
data arrays, image processing and pattern recognition, analysis of the structure
of crystals, transportation, logistics, supply chain management, etc. [3] [4]. The
TSP problem is easy to understand but often very difficult to solve as it contains
all features of the combinatorial optimization problem. In fact, it has been proven
to be a non-deterministic polynomial (NP) hard problem [5]. By NP-hard, we
mean those problems for which no polynomial time algorithm exists to effec-
tively solve them. Indeed, the executive time of any existing algorithm for solv-
ing the TSP problem is increased super-polynomially (or, perhaps exponentially)
with the number of cities [4]. Thus, the study on improving the solution algo-
rithm of the TSP problem has important theoretical, engineering, and practical
significance.

In graph theory, the TSP problem can be illustrated by a complete directed
graph (),G V E= , where V represents the set of cities also called nodes or ver-
tices and E denotes the set of edges also called the path between each pair of dis-
tinct vertices. A distance (cost) matrix ijD d= is associated with each edge

ije E∈ also called the edge weight. Depending on the distance (cost) matrix D,
the TSP problem can be categorized as symmetric or asymmetric. The graph G is
called a symmetric TSP if all the edges of G are symmetrical edges, i.e., ij jid d=

ije E∀ ∈ . On the other hand, G is called a asymmetric TSP if there exists at least
one edge ije E∈ for which ij jid d≠ . In this study, we consider the asymmetric
TSP problem. Thus, the objective function Z of the TSP problem can be formu-
lated as follows [3]:

1; if the edge is in the route
min ;

0; otherwise
ij

ij ij ij
i j

e
Z d x x

= =

∑∑ (1)

with respect to the following constrains:

https://doi.org/10.4236/oalib.1107520

Md. A. Rahman, H. Parvez

DOI: 10.4236/oalib.1107520 3 Open Access Library Journal

1
1, 1, 2,3, ,

n

ij
i

x j n
=

= =∑ � (2)

1
1, 1, 2,3, ,

n

ij
j

x i n
=

= =∑ � (3)

{ }0,1 , , 1, 2,3, ,ijx i j n∈ = � (4)

,
1, 2 2

n

ij
i j S

x S S n
∈

≤ − ≤ ≤ −∑ (5)

In the above model, Equation (1) is the total distance (cost) that needs to be
minimized and Equations (2) - (5) are the constraints’ condition of the model.
Equation (2) ensures that each location j is occupied by only one city, whereas
Equation (3) guarantees that each city i is assigned one exact position. Equation
(4) refers to the integrality constraints of variables zero-one ()0ij ijx x � . In con-
trast, Equation (5) assures that each city in the final route will be visited once
and that no sub-routes will be formed.

Due to the applicability and complexity, various researchers have been de-
signed and developed different optimization algorithms in the last few decades
to deal with the TSP problem. Among these algorithms, heuristic algorithms are
the most successful and widely used search mechanism for solving the TSP prob-
lem. Heuristic algorithms, however, offer a satisfactory solution but are often meet
with the problem of premature converge. As a result, the search process easily
falls into the trapped of local optimum condition and is unable to jump the solu-
tion into another promising search space. For this reason, many researchers
turned into developing hybrid optimization algorithms through the integration
of the superiority of two or more heuristic optimization algorithms. The aim of
this paper is to design and implement a hybrid optimization algorithm called
RNN-SA for solving symmetric TSP problem, which uses the search process of
RNN algorithm and SA algorithm. The proposed RNN-SA algorithm performs
the search procedure by two stages. It first generates a set of feasible routes step
by step based on the procedure of RNN. Then, these routes are used as the initial
solutions of the SA algorithm and are improved iteratively in an effective itera-
tive improvement process. The proposed algorithm is implemented on a collec-
tion of benchmark TSP datasets. The proposed RNN-SA gets better results than
both the RNN and SA algorithms and performs better than some other hybrid
optimization algorithms.

The rest of this paper is organized as follows. In Section 2, we review some re-
lated hybrid algorithms for solving the TSP problem. In Section 3, we briefly in-
troduce the optimization approaches under consideration in this study that make
up the proposed hybrid algorithm. In Section 4, we discuss the proposed hybrid
RNN-SA algorithm in detail. In Section 5, we present experimental results, result
analysis, and performance comparisons. The conclusion of the paper is summa-
rized in Section 6.

2. Related Work

In this section, we review some recently published hybrid optimization proce-

https://doi.org/10.4236/oalib.1107520

Md. A. Rahman, H. Parvez

DOI: 10.4236/oalib.1107520 4 Open Access Library Journal

dures that use different strategies to develop sophisticated solution methods for
solving the TSP problem. Geng et al. proposed an adaptive hybrid algorithm
called ASA-GS by combining the problem solving efforts of the SA algorithm
and greedy search (GS) mechanism to solve the symmetric TSP problem [6].
They use a greedy search strategy in the optimization procedure of general SA
algorithm to speed up the solution convergence rate. Their testing experiments
demonstrated that the ASA-GS performs well on both small and large-scale TSP
datasets and even outperforms some recently developed optimization algo-
rithms. In fact, this composite algorithm found a better trade-off between solu-
tion quality and computation time for solving symmetric TSP problem. Utilize
the benefit of the genetic algorithm (GA), SA, ant colony optimization (ACO)
and particle swarm optimization (PSO) a hybrid algorithm named GSA-ACO-PSO
is reported by Chen and Chien to tackle symmetric TSP problem [7]. In this op-
timization framework, a set of feasible solutions are generated by the ant colony
system and these feasible solutions are adopted as the initial solution of the GA
procedure. Then, the GA is executed with SA mutation techniques to achieve
better solutions. On the other hand, the role of the particle swarm optimization
process is to facilitate the exchange of pheromone information among the popu-
lations in the ant colony system after a predefined number of cycles. The expe-
rimental evaluations indicated that this hybrid algorithm exhibits better perfor-
mance than some other related optimization algorithms.

Deng et al. developed a hybrid algorithm with the help of evolutionary con-
cepts of GA, ACO and PSO algorithms to solve the symmetric TSP problem [3].
In the implementation process of this algorithm, a series of sub-optimal solu-
tions are first generated through the combination of wholeness, randomicity,
and rapidity of the PSO and GA techniques. After that, the resulting solutions
are exploited based on the ACO algorithm by utilizing the benefit of the parallel,
positive feedback and higher accuracy. Their algorithm evaluation illustrated
that it performs better than some other evolutionary TSP solving algorithms. In
[8], Zhan et al. proposed a new version of the SA algorithm named list-based SA
algorithm (LBSA) in order to solve the symmetric TSP problem. In this approach,
a list-based cooling schedule is adopted to control temperature reduction in the
basic SA algorithm. Their experimental results indicated that the LBSA finds
good approximate solutions and outperforms some other state-of-the-art algo-
rithms. A hybrid optimization algorithm by combining the superiority of the
symbiotic organism search (SOS) and SA algorithms named SOS-SA is reported
by Ezugwu et al. [9]. In this optimization framework, the initial feasible solu-
tions for the SOS algorithm are generated by applying the conventional SA algo-
rithm. After that, these solutions are modified and improved through the three
intelligent optimization phases of SOS algorithm. Comparative results demon-
strated that the SOS-SA framework can yield TSP optimal solutions and show
competitive behavior with other state-of-the-art optimization algorithms.

Hore et al. reported a hybrid variable neighborhood search (HVNS) algorithm

https://doi.org/10.4236/oalib.1107520

Md. A. Rahman, H. Parvez

DOI: 10.4236/oalib.1107520 5 Open Access Library Journal

to solve both symmetric and asymmetric TSPs [4]. They accomplish the search
procedure by two stages such as it first generates an initial feasible solution
through a route construction based greedy approach, and then improves this
solution iteratively by using various neighborhood structure with stochastic stop-
ping criteria. The algorithm evaluation found that it performs better than the
conventional optimization algorithms, and VNS-1 and VNS-2 algorithms as well.
In [10], Tsai et al. proposed a hybrid algorithm called ACOMAC by introducing
multiple ant clans (MAC) idea in the process of ACO algorithm. They also dis-
cussed ant colony system (ACS) for solving the TSP problem. In this work, mul-
tiple nearest neighbor (NN) and dual nearest neighbor (DNN) are combined
separately with both ACOMAC and ACS to enhance their performance. Their
experiments analysis indicated that the performance of both the basic ACOMAC
and ACS are enhanced significantly when they combine with NN and DNN,
meanwhile, ACOMAC + DNN performs better than the other discussed algo-
rithms.

3. Methods of Study

In this section, we give a brief introduction of the optimization techniques under
consideration in this study that make up the proposed hybrid algorithm for
solving TSP problem. The RNN optimization algorithm and the SA optimization
algorithm are briefly discussed in the following subsections consecutively.

3.1. Repetitive Nearest Neighbor Optimization Algorithm

The RNN is the route construction algorithm that is an extension of the well-
known Nearest Neighbor (NN) algorithm [11]. The NN algorithm attempts to
construct the route based on the connections of nearest neighbors. It starts with
a city chosen at random as the starting city of the route and then includes the
next city which is located closest to the last city. The performance of this algo-
rithm is highly sensitive to the choice of starting city. To remedy this, the RNN
algorithm was developed. It performs better than the NN algorithm for solving
TSP problem. However, there is time complexity of order ()3O n while the al-
gorithm running time of NN is reported as ()2O n [12]. In fact, the RNN algo-
rithm constructs a set of routes step by step through some strategies. Its route
construction procedure can be described as a sequence of the following steps.

Step-1: Let { }1 2 3, , , , nC c c c c= � be the list of n cities and (),i jd c c be the
cost/distance between the cities ic and jc , where ic represents the position
of the ith city. In the first step, the search engine generates n sub-routes and each
sub-route consists of one single city. The set of constructed sub-routes can be ex-
pressed as follows:

{ }1 ; 1, 2, ,iR c i n= = � (6)

Step-2: Each sub-route obtained from the first step is extended the network in
this step by adding a different nearest city from the remaining cities. Thus, the
set of possible n sub-routes is constructed on the basis of Equation (7).

https://doi.org/10.4236/oalib.1107520

Md. A. Rahman, H. Parvez

DOI: 10.4236/oalib.1107520 6 Open Access Library Journal

(){ }2 1; ;min , , ; ; 1, 2, ,i j i i j jR c c c R d c c c C i j j n= ∀ ∈ ∀ ∈ ≠ = � (7)

In the Equation (7), (),i jd c c is the Euclidean distance between the cities ic
and jc , which is calculated based on the formula presented in Equation (8). Let
(),i ix y and (),j jx y be the Cartesian coordinate of the location of the cities

ic and jc . Then, the formula for calculating the Euclidean distance between

ic and jc is as follows:

() ()2 2
i j i jx x y y− + − (8)

Step-3: In this step, each 2-city sub-route of 2R is enlarged through a nearest
city that is not yet in the route. Thus, the set of possible 3-city sub-routes is con-
structed as bellows:

(){ }3 2; ;min , , ; , ; 1, 2, ,i j k i j j k kR c c c c c R d c c c C i j k k n= ∀ ∈ ∀ ∈ ≠ = � (9)

where 3R n= is the total number of routes in the set 3R . In this way, the
route construction mechanism is continued until all the cities are included in
each route. After completing the nth step, we get a set of routes nR , where

nR n= and each route of nR contains n cities. To generate feasible TSP routes,
we add the starting city to the ()th1n + position of each route in nR . Finally,
we get a set of feasible n routes and from there a best route is searched out. In
this paper, the RNN method is considered to generate a set of n feasible TSP
routes.

3.2. Simulated Annealing Optimization Algorithm

The SA algorithm for solving the TSP problem was first introduced by Kirkpa-
trick et al. in 1983 [13]. It is designed based on the idea of annealing process of
metal atoms to achieve low energy states in a heat bath. Actually, metal atoms
become unstable from their initial states at high temperature and they explore
for other states. They find a lower energy state compared to their current state at
the time of cooling. Thus, the procedure consists of two steps. First, the temper-
ature of the heat bath is increased to a maximum value such that the metal atoms
melt. Then, the temperature is reduced so that the particles cool until they are
reached to a steady state. With regard to the search process, this algorithm con-
sists of two important strategies-diversification and intensification. Setting the
initial temperature high allow the exploration of the search space (diversifica-
tion). On the other hand, the particles cool themselves until they converge into a
steady state which means the search process converge to a local minimum (in-
tensification). To maintain a proper balance between diversification and intensi-
fication strategies, a suitable temperature cooling schedule is required in this al-
gorithm. We use an optimized cooling schedule in this paper which is defined in
Equation (12).

The SA algorithm starts with randomly generating a set of initial solutions.
The new candidate solutions/states are generated based on the initial solutions
and the specified neighborhood structure. The neighborhood structure for ge-
nerating new solution is briefly discussed in Subsection 3.2.1. The new solution

https://doi.org/10.4236/oalib.1107520

Md. A. Rahman, H. Parvez

DOI: 10.4236/oalib.1107520 7 Open Access Library Journal

is accepted by the algorithm when its energy/fitness value is lower than the cur-
rent solution. On the other hand, a non-improving new solution is accepted
based on the transition probability p, defined as follows:

e ,k

f
Tp

 ∆
−
 = (10)

() ()
()

,i i

i

f x f x
f

f x
′ −

∆ = (11)

where 0kT � is the temperature in the kth iteration, ()if x and ()if x′ re-
present the fitness value of the current route and new route, respectively. If

0f∆ ≤ , then the new solution ix′ is accepted. When 0f∆ > , then the system
changes the current solution ix according to the probability p. It is noted from
Equation (10) that the probability of accepting a bad solution is proportionally

decreased with the temperature T as
0

lim e 0k

f
T

T

 ∆
−

→
= . Therefore, a rigorous

temperature cooling schedule plays a vital role for the performance of the SA al-
gorithm. The following cooling schedule is utilized in this work to solve TSP
problem:

1 ,k kT Tγ+ = (12)

In the above equation, γ represents the cooling coefficient, which is also called
the temperature reduction rate. The values of γ lies between 0 and 1. The pro-
cess shows the best solution, when the temperature reaches to a predefined tem-
perature or the maximum number of iterations is met. The procedure of SA al-
gorithm is presented in the Algorithm 1.

Algorithm 1. Pseudocode of the SA algorithm.

Input: Distance matrix D, Initial temperature 0T , Cooling rate γ , Maximum iteration Maxit

Output: Best Solution
1: Generate n feasible routes randomly, { }1 2, , , nX x x x= � , compute the Euclidean

distance/fitness value of each route, () () () (){ }1 2, , , nf X f x f x f x= � , assign the value of

Maxit and the initial value of 0T and γ

2: For each iteration, it = 1 to maximum iteration
3: For each route ix , 1i = to n

4: Generate a new route ix′ by adopting neighborhood structure (described in Section 3.2.1)

5: Compute Euclidean distance/fitness value of the new route ()if x′

6: Calculate f∆ on the basis of Equation (11)

7: If 0f∆ ≤ , then update the current route ix by assigning i ix x′←
8: If 0f∆ � , then compute the acceptance probability p by using Equation (10). If p u≥ ,

then update the current route ix by assigning i ix x′← , where u is the random number

between 0 and 1
9: End for
10: Decrease the temperature based on Equation (12)
11: Update the best solution ever found
12: End for

https://doi.org/10.4236/oalib.1107520

Md. A. Rahman, H. Parvez

DOI: 10.4236/oalib.1107520 8 Open Access Library Journal

3.2.1. Neighborhood Structure of the SA Algorithm
In this paper, we use three neighborhood operators namely swap, reversion and
inversion to generate new solution from the current existing solution. The
probabilities of occurring swap, reversion and insertion are 0.5, 0.2, and 0.3, re-
spectively, while the selection method is Roulette Wheel Selection. These sets of
neighborhood operators are briefly discussed subsequently.

Swap: The swap operator randomly selects the position of two cities from a
route ix and exchanges the position of these two cities to create a new route

ix′ . Let the two positions i and j with i j≠ be randomly selected from the route

ix . Then, the swap operator generates a new route ix′ by interchanging the ci-
ties between the position i and j of ix . For example, let ()5,7,1, 2, 4,3,6ix = be
a feasible route consists of 7 cities. If second and sixth positions are selected for
swap operation, then the corresponding cities 7 and 3 of ix are exchanged and
generates a new route ()5,3,1,2,4,7,6ix′ = . The swap operation procedure is
depicted in Figure 1.

Reversion: The reversion operator firstly locates the position of two different
cities in a route randomly and then reverses the local path between these two ci-
ties. Consider a route ix and the two cut points i and j with i j≠ on ix .
Then, the reversion operator inverse the cities between the position i and j of ix
and generates a new route ix′ . To explain the reversion process, consider a route

ix with 7 cities expressed by ()5,7,1,2,4,3,6ix = . Let the position second and
fifth are randomly selected in ix , then reversion operator modifies the route ix
and creates a new route ix′ by reversing the local path (7, 1, 2, 4) between the
cities 7 and 4. After reversion operation, the modified route can be written as

()5,4,2,1,7,3,6ix′ = . This process is displayed graphically in Figure 2.
Insertion: The insertion operator firstly picks up two positions i and j with

i j≠ on ix randomly, and then the city of ith position is inserted into the city of
jth back position. To illustrate more clearly of insertion operation procedure, let ix
be a 7-city route, which is represented by ()5,7,1, 2, 4,3,6ix = . Suppose third and
sixth positions are considered in ix to perform the insertion operation. Then, the
city 1 is placed behind the city 3 for producing a new route ix′ . After performing
insertion operation on ix , the modified route ix′ can be written as

()5,7,2,4,3,1,6ix′ = . The insertion mechanism is illustrated in Figure 3.

Figure 1. Illustration of the swap procedure [14].

Figure 2. Illustration of the reversion procedure [14].

https://doi.org/10.4236/oalib.1107520

Md. A. Rahman, H. Parvez

DOI: 10.4236/oalib.1107520 9 Open Access Library Journal

Figure 3. Illustration of the insertion procedure [14].

4. Proposed Hybrid Approach (RNN-SA)

In this section, we present a hybrid method called RNN-SA for the solution of
symmetric TSP problem. The RNN algorithm is a simple and easily implement-
able constructive heuristic algorithm used to solve various optimization prob-
lems [11]. The main benefit of this algorithm is that it can produce a set of feasi-
ble solutions instead of one single solution. Logically, there is a more chance to
get a better solution from a set of solutions instead of a single solution. In addi-
tion, The RNN algorithm performs better than the NN algorithm and yields the
solution very promptly. However, its solution quality is not good enough com-
pared to other algorithms. On the other hand, the SA algorithm is a local search
based heuristic algorithm extensively utilized for finding the optimum solution
of both discrete and continuous optimization problems [13]. One of the main
advantages of this algorithm is that it accepts non-improving solutions with cer-
tain probability during the optimization process in the sense that a slightly worse
solution than the current solution may provide a better solution in the near fu-
ture. Indeed, the SA has the capability to prevent the search process from falling
into the trapped of local optimum solution by permitting the uphill moves to
search for a global optimum solution. The local optimum is a point in the search
space where all the solution points in the neighborhood are worse than the cur-
rent solution. However, the solution quality of the SA algorithm is still infected
by the randomly initializing population. To overcome this problem, we adopt
the RNN algorithm in the optimization process of the SA algorithm and enhance
its performance. Therefore, a new hybrid algorithm (RNN-SA) is proposed by
integrating the superiority of RNN and SA algorithms to effectively exploit and
explore the problem search space.

Suppose that there are n cities in the TSP problem. The proposed algorithm
accomplishes the search procedure by two stages. First, the RNN algorithm is
used to generate a set of n feasible routes step by step and these routes are fed as
the initial solution of the SA algorithm. Then, the system performs the SA algo-
rithm to obtain better solutions by adopting a robust search process through a
proper balance of diversification and intensification strategies. In fact, the feasi-
ble solutions obtained from the RNN algorithm are iteratively improved through
the SA algorithm in an iterative improvement process. In each iteration, a set of
neighborhood operators with their corresponding occurring probability are uti-
lized to generate a new solution from the current solution. The selected neigh-
borhood operator performs n moves to generate the new solutions in each itera-
tion corresponding to each current solution. Thus, the proposed algorithm starts
with generating a set of better routes by RNN and then adopts the SA algorithm

https://doi.org/10.4236/oalib.1107520

Md. A. Rahman, H. Parvez

DOI: 10.4236/oalib.1107520 10 Open Access Library Journal

to improve these routes iteratively. It stops when the maximum number of itera-
tion is achieved. The algorithm stopping condition is an important factor that
can determine the final result of the experiment. If the algorithm is stopped too
early, then the quality of the solution might not be even close to the best-known
optimum solution. In contrast, prolonging the simulation incurs a considerable
amount of unnecessary effort and time. So, it is crucial to consider the trade-off
between the quality of solution and computational time. In this paper, we set up
a fixed iteration number 1000 which is enough to get a satisfactory solution. The
pseudocode and the architecture of the proposed hybrid optimization algorithm
(RNN-SA) are offered in Algorithm 2 and Figure 4, respectively.

5. Experiments and Analysis

In this section, we evaluate the performance of the proposed hybrid RNN-SA
algorithm through various experiments. To accomplish the experimental tasks, a
set of real-world symmetric TSP datasets are considered from TSPLIB [15]. In-
deed, TSPLIB is a publicly available library that provides diverse testing datasets
for the combinatorial optimization problems. It also reports the best-known op-
timum solution for each dataset. We consider 24 benchmark symmetric TSP da-
tasets with dimension ranging from 51 to 318. The numerical value of the data-
set name represents the dimension of that dataset. The experimental results of
RNN-SA are first compared with both basic RNN and SA algorithms as well as
the best-known optimum results reported by the dada library. Then, it is compared

Algorithm 2. Pseudocode of the proposed hybrid (RNN-SA) algorithm.

Input: Distance matrix D, Initial temperature 0T , Cooling rate γ , Maximum iteration Maxit

Output: Best Solution
1: Assign the value of Maxit and the initial value of 0T and γ

2: For each city ; 1, 2, ,ic i n= � , generate a set of n sub-routes consist of one city ic

3: Add a closest city in the right end of each sub-route that is not yet in the route
4: Repeat the process of step 3 until all the cities are added in each sub-route
5: Add starting city in the right side of the last position of each sub-route to generate n feasible
routes, { }1 2, , , nX x x x= �

6: Compute the Euclidean distance/fitness value of each route, () () () (){ }1 2, , , nf X f x f x f x= �

7: For each iteration, it = 1 to maximum iteration
8: For each route ix , 1i = to n

9: Generate a new route
'
ix by adopting neighborhood structure (described in Section 3.2.1)

10: Compute Euclidean distance/fitness value of the new route ()if x′

11: Calculate f∆ on the basis of Equation (11)

12: If 0f∆ ≤ , then update the current route ix by assigning i ix x′←
13: If 0f∆ � , then compute the acceptance probability p by using Equation (10). If p u≥ , then

update the current route ix by assigning i ix x′← , where u is the random number

between 0 and 1
14: End for
15: Decrease the temperature based on Equation (12)
16: Update the best solution ever found
17: End for

https://doi.org/10.4236/oalib.1107520

Md. A. Rahman, H. Parvez

DOI: 10.4236/oalib.1107520 11 Open Access Library Journal

Figure 4. Architecture of the proposed hybrid optimization algorithm (RNN-SA).

with the results of some other hybrid algorithms existing in the literature. The
results of various experiments might be different for same TSP dataset due to
owing randomness in the optimization process of our RNN-SA algorithm. For
this reason, the algorithm runs independently 5 consecutive times for each TSP
dataset and from these 5 values the best solution, average solution, worst solu-
tion, and the standard deviation (SD) value are reported. Both basic algorithms
(RNN and SA) and proposed (RNN-SA) algorithm are coded in MATLABR2017a
programming language and executed on a standard laptop computer with In-
tel(R) Core(TM) i5-5337U CPU 1.80 GHz, 4 GB RAM and Windows 10 operat-
ing system. The maximum iteration for both SA and RNN-SA is set up as 1000
and in each run, the best solution from 1000 iterations are taken for a particular
TSP dataset. The values of the parameters are adjusted through the experiment
by trial and error method and their optimized values for both SA and RNN-SA
algorithms are presented in Table 1.

5.1. Experimental Results of the Proposed RNN-SA Algorithm

The experimental results of the proposed RNN-SA algorithm for 24 benchmark
symmetric TSP datasets are presented in Table 2. In Table 2, Scale represents
the number of cities (dimension) of the dataset, BKS denotes the best-known
optimum solution reported by the data library. Best, Average and Worst indicate
the best optimum value, average optimum value, and worst optimum value of
our algorithm among 5 optimum values. SD carries the standard deviation value
computed based on the 5 optimum values. PDbest (%) and PDav (%) denote the
percentage deviation of the computed best solution and average solution with
respect to BKS. PDbest (%) and PDav (%) are computed according to Equation

https://doi.org/10.4236/oalib.1107520

Md. A. Rahman, H. Parvez

DOI: 10.4236/oalib.1107520 12 Open Access Library Journal

Table 1. List of parameters and their optimized values for both SA and RNN-SA algo-
rithms.

S/N Parameter Value

1 Size of population n

2 Maximum Iteration 1000

3 Number of moves n

4 Initial Temperature 0.025

5 Cooling Coefficient 0.99

6 Run 5

7 Swap Probability 0.2

8 Reversion Probability 0.5

9 Insertion Probability 0.3

Table 2. Experimental results of the proposed RNN-SA optimization algorithm for the 24
symmetric benchmark TSP datasets.

S/N Datasets Scale BKS

Proposed Algorithm (RNN-SA)

Best Average Worst SD
PDbest

(%)
PDav
(%)

1 eil51 51 426 428.87 429.44 430.24 0.52 0.673709 0.807512

2 berlin52 52 7542 7544.37 7544.37 7544.37 0.00 0.031424 0.031424

3 brazil58 58 25,395 25,395 25,440.40 25,622.00 9.39 0 0.178775

4 st70 70 675 677.11 679.33 682.66 3.04 0.312593 0.641481

5 eil76 76 538 544.37 549.16 555.99 4.40 1.184015 2.074349

6 rat99 99 1211 1219.24 1229.29 1232.68 5.68 0.680429 1.510322

7 kroA100 100 21,282 21,285.44 21,285.44 21,285.44 0.00 0.016164 0.016164

8 kroE100 100 22,068 22,119.90 22,164.92 22,267.17 58.65 0.235182 0.439188

9 eil101 101 629 644.92 652.31 657.71 5.39 2.531002 3.705882

10 bier127 127 118,282 119,331.15 119,849.69 120,061.28 294.00 0.88699 1.325383

11 ch130 130 6110 6171.87 6249.18 6331.14 66.31 1.012602 2.277905

12 pr136 136 96,772 96,922.41 100,335.16 101,924.34 1979.60 0.155427 3.682015

13 ch150 150 6528 6552.30 6553.94 6556.01 1.58 0.372243 0.397365

14 kroA150 150 26,524 26,821.83 27,008.24 27,330.04 194.18 1.12287 1.825667

15 kroB150 150 26,130 26,327.09 26,577.15 26,839.20 232.5 0.754267 1.711251

16 pr152 152 73,682 73,843.09 74,669.58 76,049.93 836.59 0.218629 1.340327

17 u159 159 42,080 42,162.75 42,547.66 42,715.47 90.57 0.196649 1.111359

18 rat195 195 2323 2348.70 2361.50 2375.73 11.49 1.106328 1.65734

19 d198 198 15,780 15,852.33 15,896.40 15,945.10 34.47 0.458365 0.737643

20 kroA200 200 29,368 29,541.83 29,626.42 29,702.88 73.01 0.591903 0.879937

21 kroB200 200 29,437 29,825.16 30,033.03 30,247.70 163.02 1.318613 2.024765

22 pr264 264 49,135 49,197.32 49,375.75 49,779.63 232.85 0.126834 0.489977

23 pr299 299 48,191 48,811.49 49,003.93 49,137.65 154.58 1.287564 1.686892

24 lin318 318 42,029 42,862.50 43,041.10 43,167.09 122.01 1.983154 2.707868

Average 0.71904 1.385866

https://doi.org/10.4236/oalib.1107520

Md. A. Rahman, H. Parvez

DOI: 10.4236/oalib.1107520 13 Open Access Library Journal

(13) and Equation (14). From the Table 2, it can be observed that the proposed
RNN-SA algorithm yields the solutions very close to the BKS and the errors term
are very small. Besides, the obtained SD values are small, which means that the
proposed RNN-SA algorithm is stable to compute a satisfactory solution in each
run. The errors lie within the interval of [0, 2.53] and [0.02, 3.68] with respect to
the best and average solutions, respectively. In fact, the average errors over all
the considered 24 datasets are 0.72 and 1.39 with respect to the best and average
solutions. Therefore, it can be decided that the proposed RNN-SA algorithm is a
reliable optimization algorithm that produces the solutions very near to the best-
known optimum solutions.

() Best BKSPDbest % 100%
BKS
−

= × (13)

() Average BKSPDav % 100%
BKS

−
= × (14)

5.2. Performance Comparisons

In this subsection, we compare the performance of the proposed hybrid algo-
rithm (RNN-SA) with the basic RNN and SA algorithms as well as some other
hybrid algorithms. We code and execute the RNN-SA, RNN, and SA algorithms
under the same experimental environment to show a fair comparison. For com-
paring with other hybrid algorithms, the results of RNN-SA are compared with
the results presented in the reference articles. The side by side comparisons are
displayed in Tables 3-5. The best results among the considered algorithms are
highlighted in boldface. In addition, the average over all the considered datasets
corresponding to each comparison is presented at the bottom of each table. Ta-
ble 3 shows the comparison of RNN-SA for 24 symmetric TSP datasets with the
basic RNN and SA algorithms. According to Table 3, the proposed RNN-SA al-
gorithm shows better performance than both RNN and SA with respect to best,
average as well as worst solutions in all the tested datasets except bier127 dataset.
In bier127 dataset, our best result is inferior to SA but the average and worst re-
sults are superior to SA. Besides, the SD value of our algorithm is smaller than
SA in nearly all the datasets. This indicator suggests that our algorithm (RNN-SA)
is more stable than the SA algorithm. The average of best results, average results,
worst results and SD values over all the 24 datasets of RNN-SA are 29,017.96,
29,295.97, 29,518.39, and 190.5763, respectively, which are better than the 29,303.13,
29,688.43, 29,994.45, and 306.0842 of SA as well as 33,137.39 of RNN.

The comparison of the proposed hybrid algorithm (RNN-SA) with the other
hybrid algorithms (ACS + NN, ACOMAC + NN, ACS + DNN, and ACOMAC +
DNN) is shown in Table 4. From Table 4, it is visible that the proposed RNN-
SA algorithm is significantly dominated each of the other four hybrid algorithms
in all the four datasets. In fact, the average over all the datasets of RNN-SA is
9527.753, which is better than the 9759.98 of ACS + NN, 9612.828 of ACOMAC
+ NN, 9691.583 of ACS + DNN, and 9586.613 of ACOMAC + DNN. Table 5 shows
the performance comparison of RNN-SA with hybrid variable neighborhood

https://doi.org/10.4236/oalib.1107520

Md. A. Rahman, H. Parvez

DOI: 10.4236/oalib.1107520 14 Open Access Library Journal

Table 3. Comparison of the proposed RNN-SA algorithm with the basic RNN and SA algorithms.

S/N Datasets Scale BKS Basic RNN
Basic SA RNN-SA (Proposed)

Best Average Worst SD Best Average Worst SD

1 eil51 51 426 505.77 428.98 430.99 432.71 1.70 428.87 429.44 430.24 0.52

2 berlin52 52 7542 8182.19 7544.37 7737.86 7914.29 135.08 7544.37 7544.37 7544.37 0.00

3 brazil58 58 25,395 27,384 25,601 25,617.80 25,622.00 101.52 25,395 25,440.40 25,622.00 9.39

4 st70 70 675 761.69 686.09 691.24 706.05 8.33 677.11 679.33 682.66 3.04

5 eil76 76 538 612.66 546.83 552.61 556.91 4.64 544.37 549.16 555.99 4.40

6 rat99 99 1211 1369.53 1219.86 1238.37 1268.71 23.43 1219.24 1229.29 1232.68 5.68

7 kroA100 100 21,282 24,698.49 21,285.44 21,460.80 21,690.57 190.41 21,285.44 21,285.44 21,285.44 0.00

8 kroE100 100 22,068 24,907.02 22,289.67 22,483.09 22,694.91 162.07 22,119.90 22,164.92 22,267.17 58.65

9 eil101 101 629 736.37 650.93 653.84 658.51 3.17 644.92 652.31 657.71 5.39

10 bier127 127 118,282 133,970.65 118,846.22 120,406.43 121,564.14 1125.70 119,331.15 119,849.69 120,061.28 294.00

11 ch130 130 6110 7198.74 6214.64 6253.37 6325.50 43.09 6171.87 6249.18 6331.14 66.31

12 pr136 136 96,772 114,560.90 98,853.84 100,607.01 101,424.68 1028.30 96,922.41 100,335.16 101,924.34 1979.60

13 ch150 150 6528 7078.44 6663.92 6691.84 6721.77 23.15 6552.30 6553.94 6556.01 1.58

14 kroA150 150 26,524 31,482.02 27,236.15 27,443.91 27,694.82 220.99 26,821.83 27,008.24 27,330.04 194.18

15 kroB150 150 26,130 31,320.34 26,641.66 27,054.47 27,669.88 398.52 26,327.09 26,577.15 26,839.20 232.5

16 pr152 152 73,682 79,566.56 74,251.63 74,683.95 74,972.16 393.07 73,843.09 74,669.58 76,049.93 836.59

17 u159 159 42,080 48,586.72 42,673.89 42,733.43 42,889.49 228.33 42,162.75 42,547.66 42,715.47 90.57

18 rat195 195 2323 2628.56 2381.90 2418.75 2459.95 30.96 2348.70 2361.50 2375.73 11.49

19 d198 198 15,780 17,809.73 15,913.5 16,042.91 16,130.76 86.10 15,852.33 15,896.40 15,945.10 34.47

20 kroA200 200 29,368 34,547.69 29,988.40 30,368.15 30,777.93 331.78 29,541.83 29,626.42 29,702.88 73.01

21 kroB200 200 29,437 35,394.01 30,329.79 30,567.35 30,841.37 231.92 29,825.16 30,033.03 30,247.70 163.02

22 pr264 264 49,135 54,491.48 49,434.52 51,479.29 52,840.02 1509.60 49,197.32 49,375.75 49,779.63 232.85

23 pr299 299 48,191 58,288.15 50,309.53 50,912.02 51,422.25 422.77 48,811.49 49,003.93 49,137.65 154.58

24 lin318 318 42,029 49,215.61 43,282.27 43,992.820 44,587.451 641.39 42,862.50 43,041.10 43,167.09 122.01

Average 33,137.39 29,303.13 29,688.43 29,994.45 306.0842 29,017.96 29,295.97 29,518.39 190.5763

Table 4. Comparison of the proposed RNN-SA algorithm with the ACS + NN (Tsai et al., 2004), ACOMAC + NN (Tsai et al.,
2004), ACS + DNN (Tsai et al., 2004), and ACOMAC + DNN (Tsai et al., 2004) hybrid algorithms.

S/N Datasets Scale BKS ACS + NN [10] ACOMAC + NN [10] ACS + DNN [10] ACOMAC + DNN [10] RNN-SA (Proposed)

1 eil51 51 426 434.08 430.04 430.67 430.01 428.87

2 eil76 76 538 559.19 553.94 557.77 552.61 544.37

3 kroA100 100 21,282 21,487.95 21,433.33 21,440.09 21,408.23 21,285.44

4 d198 198 15,780 16,558.70 16,034 16,337.80 15,955.60 15,852.33

Average 9759.98 9612.828 9691.583 9586.613 9527.753

https://doi.org/10.4236/oalib.1107520

Md. A. Rahman, H. Parvez

DOI: 10.4236/oalib.1107520 15 Open Access Library Journal

Table 5. Comparison of the proposed RNN-SA algorithm with the HVNS (Hore et al., 2018) hybrid algorithms.

S/N Datasets Scale BKS
HVNS (Hore et al., 2018) [4] RNN-SA (Proposed)

Best Average Worst Best Average Worst

1 eil51 51 426 428.98 428.98 428.98 428.87 429.44 430.24

2 berlin52 52 7542 7544.37 7544.37 7544.37 7544.37 7544.37 7544.37

3 brazil58 58 25,395 25,425 25,592.72 25,664 25,395 25,440.40 25,622.0

4 st70 70 675 677.11 677.11 677.11 677.11 679.33 682.66

5 eil76 76 538 545.39 552.57 566.50 544.37 549.16 555.99

6 rat99 99 1211 1240.38 1241.26 1242.40 1219.24 1229.29 1232.68

7 kroA100 100 21,282 21,618.2 21,695.79 21,846.4 21,285.44 21,285.44 21,285.44

8 kroE100 100 22,068 22,174.6 22,193.8 22,222.36 22,119.90 22,164.92 22,267.17

9 eil101 101 629 642.31 648.27 657.91 644.92 652.31 657.71

10 bier127 127 118,282 11,8974.6 119,006.39 119,054.4 119,331.15 119,849.69 120,061.28

11 ch130 130 6110 6140.66 6153.72 6165.14 6171.87 6249.18 6331.14

12 pr136 136 96,772 97,979.11 97,985.84 98,012.75 96,922.41 100,335.16 101,924.34

13 ch150 150 6528 6639.52 6644.95 6666.66 6552.30 6553.94 6556.01

14 kroA150 150 26,524 26,943.31 26,947.17 26,962.6 26,821.83 27,008.24 27,330.04

15 kroB150 150 26,130 26,527.57 26,537.04 26,576.12 26,327.09 26,577.15 26,839.20

16 pr152 152 73,682 73,847.6 73,855.11 73,885.15 73,843.09 74,669.58 76,049.93

17 u159 159 42,080 42,436.23 42,467.61 42,467.61 42,162.75 42,547.66 42,715.47

18 rat195 195 2323 2450.14 2453.81 2464.32 2348.70 2361.50 2375.73

19 d198 198 15,780 16,075.84 16,079.28 16,085.53 15,852.33 15,896.40 15,945.10

20 kroA200 200 29,368 30,300.56 30,339.67 30,365.87 29,541.83 29,626.42 29,702.88

21 kroB200 200 29,437 30,447.30 30,453.22 30,472.42 29,825.16 30,033.03 30,247.70

22 pr264 264 49,135 51,155.38 51,197.14 51,364.2 49,197.32 49,375.75 49,779.63

23 pr299 299 48,191 50,271.69 50,373.12 50,778.86 48,811.49 49,003.93 49,137.65

24 lin318 318 42,029 43,924.08 43,964.93 44,128.35 42,862.50 43,041.10 43,167.09

Average 29,350.41 29,376.41 29,518.39 29,017.96 29,295.97 29,429.17

search (HVNS) algorithm for 24 symmetric TSP datasets. As shown in Table 5,
the proposed RNN-SA algorithm exhibits competitive behavior with HVNS in
terms of solution quality. It is observed that the HVNS finds better results in
some small scale datasets. As the scale increases, our algorithm shows better
global search capability than the HVNS algorithm. The average of best results,
average results, and worst results over all the 24 datasets of RNN-SA are 29,017.96,
29,295.97, and 29,429.17, respectively which are better than the 29,350.41, 29,376.41,
and 29,518.39 of HVNS.

6. Conclusion

We have established a hybrid heuristic algorithm called RNN-SA by integrating

https://doi.org/10.4236/oalib.1107520

Md. A. Rahman, H. Parvez

DOI: 10.4236/oalib.1107520 16 Open Access Library Journal

the RNN algorithm and the SA algorithm for finding the optimum solution of
the symmetric TSP problem. The proposed algorithm is composed of two main
stages. In the first stage, we use the RNN algorithm to construct a set of feasible
routes step by step. The concept of NN is adopted in this stage during the net-
work enhancement process. In the second stage, we improve these routes in an
iterative improvement process on the basis of the SA algorithm. Three neigh-
borhood operators are utilized to generate new solution in the process of SA.
Indeed, a set of feasible routes obtained from the RNN algorithm are fed in the
SA algorithm to avoid random initialization and increase performance. The ex-
periments are conducted with a set of benchmark symmetric TSP datasets taken
from the TSPLIB. The experimental results demonstrate that the proposed hy-
brid (RNN-SA) algorithm yields the solutions very close to the best-known op-
timum solutions and performs better than both the basic algorithms (RNN and
SA). In addition, the proposed hybrid optimization algorithm outperforms some
other hybrid optimization algorithms existing in the literature in terms of solu-
tion quality.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Applegate, D., Bixby, R., Cook, W. and Chvátal, V. (1998) On the Solution of Trav-

eling Salesman Problems. Documenta Mathematica, Extra Volume of ICM, Chapter
3, 645-656.

[2] Dantzig, G., Fulkerson, R. and Johnson, S. (1954) Solution of a Large-Scale Travel-
ing-Salesman Problem. Journal of the Operations Research Society of America, 2, 393-
410. https://doi.org/10.1287/opre.2.4.393

[3] Deng, W., Chen, R., He, B., Liu, Y., Yin, L. and Guo, J. (2012) A Novel Two-Stage
Hybrid Swarm Intelligence Optimization Algorithm and Application. Soft Compu-
ting, 16, 1707-1722. https://doi.org/10.1007/s00500-012-0855-z

[4] Hore, S., Chatterjee, A. and Dewanji, A. (2018) Improving Variable Neighborhood
Search to Solve the Traveling Salesman Problem. Applied Soft Computing, 68, 83-91.
https://doi.org/10.1016/j.asoc.2018.03.048

[5] Garey, M.R. and Johnson, D.S. (2002) Computers and Intractability: Vol. 29. Wh
Freeman, New York.

[6] Geng, X., Chen, Z., Yang, W., Shi, D. and Zhao, K. (2011) Solving the Traveling Sa-
lesman Problem Based on an Adaptive Simulated Annealing Algorithm with Greedy
Search. Applied Soft Computing, 11, 3680-3689.
https://doi.org/10.1016/j.asoc.2011.01.039

[7] Chen, S.-M. and Chien, C.-Y. (2011) Solving the Traveling Salesman Problem Based
on the Genetic Simulated Annealing ant Colony System with Particle Swarm Opti-
mization Techniques. Expert Systems with Applications, 38, 14439-14450.
https://doi.org/10.1016/j.eswa.2011.04.163

[8] Zhan, S.H., Lin, J., Zhang, Z.J. and Zhong, Y.W. (2016) List-Based Simulated An-
nealing Algorithm for Traveling Salesman Problem. Computational Intelligence and

https://doi.org/10.4236/oalib.1107520
https://doi.org/10.1287/opre.2.4.393
https://doi.org/10.1007/s00500-012-0855-z
https://doi.org/10.1016/j.asoc.2018.03.048
https://doi.org/10.1016/j.asoc.2011.01.039
https://doi.org/10.1016/j.eswa.2011.04.163

Md. A. Rahman, H. Parvez

DOI: 10.4236/oalib.1107520 17 Open Access Library Journal

Neuroscience, 2016, Article ID: 1712630. https://doi.org/10.1155/2016/1712630

[9] Ezugwu, A.E.-S., Adewumi, A.O. and Frîncu, M.E. (2017) Simulated Annealing Based
Symbiotic Organisms Search Optimization Algorithm for Traveling Salesman Prob-
lem. Expert Systems with Applications, 77, 189-210.
https://doi.org/10.1016/j.eswa.2017.01.053

[10] Tsai, C.-F., Tsai, C.-W. and Tseng, C.-C. (2004) A New Hybrid Heuristic Approach
for Solving Large Traveling Salesman Problem. Information Sciences, 166, 67-81.
https://doi.org/10.1016/j.ins.2003.11.008

[11] Rosenkrantz, D.J., Stearns, R.E. and Lewis II, P.M. (1977) An Analysis of Several
Heuristics for the Traveling Salesman Problem. SIAM Journal on Computing, 6,
563-581. https://doi.org/10.1137/0206041

[12] Johnson, D.S. and McGeoch, L.A. (1997) The Traveling Salesman Problem: A Case
Study in Local Optimization. Local Search in Combinatorial Optimization, 1, 215-310.

[13] Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P. (1983) Optimization by Simulated
Annealing. Science, 220, 671-680. https://doi.org/10.1126/science.220.4598.671

[14] Wang, Y., Wu, Y.W. and Xu, N. (2019) Discrete Symbiotic Organism Search with
Excellence Coefficients and Self-Escape for Traveling Salesman Problem. Comput-
ers & Industrial Engineering, 131, 269-281. https://doi.org/10.1016/j.cie.2019.04.008

[15] TSPLIB. http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

https://doi.org/10.4236/oalib.1107520
https://doi.org/10.1155/2016/1712630
https://doi.org/10.1016/j.eswa.2017.01.053
https://doi.org/10.1016/j.ins.2003.11.008
https://doi.org/10.1137/0206041
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1016/j.cie.2019.04.008
http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/

	Repetitive Nearest Neighbor Based Simulated Annealing Search Optimization Algorithm for Traveling Salesman Problem
	Abstract
	Subject Areas
	Keywords
	Nearest Neighbor Algorithm, Simulated Annealing Algorithm, Neighborhood Structure, Hybrid Algorithm
	1. Introduction
	2. Related Work
	3. Methods of Study
	3.1. Repetitive Nearest Neighbor Optimization Algorithm
	3.2. Simulated Annealing Optimization Algorithm
	3.2.1. Neighborhood Structure of the SA Algorithm

	4. Proposed Hybrid Approach (RNN-SA)
	5. Experiments and Analysis
	5.1. Experimental Results of the Proposed RNN-SA Algorithm
	5.2. Performance Comparisons

	6. Conclusion
	Conflicts of Interest
	References

