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Abstract 
To produce hydrogen (H2) and oxygen (O2), electrolytic water splitting 
(EWS) emerges as one of the most encouraging techniques in which to har-
ness intermittent renewable power sources and store the energy these provide 
as a clean-burning and sustainable fuel. Nevertheless, efficacious formation of 
H2 and O2 is of little usage if such products cannot be kept separate and there 
are major dares linked with preserving suitable separation between H2 and O2 
during electrolysis driven by intermittent renewable sources. In this work, a 
short view of fresh advance in the field of decoupled electrolysis for water 
splitting is presented and the potential that this technique has for enabling a 
range of other sustainable chemical processes is explored. Between such 
chemical processes, electrochemical disinfection (ED) remains a great prom-
ise in disinfecting water. This work suggests the application of ED in the EWS 
compartment producing O2 besides the other compartment producing H2. 
Similarities between the two processes include that both of them use electric 
current for their realization. For the first one, H2 and O2 are produced sepa-
rately in two cells. The suggested idea here is to use EWS device for produc-
ing H2 in one cell and producing O2 in the second cell in which water may be 
disinfected by the electric field application and the electric current passage. 
Disinfection efficiency would be enhanced by the presence of O2. Practical 
examinations have to be conducted to determine the best scheme in terms of 
dimensions and disinfection efficiencies. 
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Hydrogen (H2), Electrochemical Disinfection (ED), Microorganisms (MOs) 

 

1. Introduction 

Now, fossil fuels (as coal, oil, and natural gas) stay the world’s main sources of 
energy [1]. Nevertheless, greenhouse gases (like CO2) that are produced through 
burning such fuels are related to general temperature augmentation [2] [3], 
shrinking ice sheets [4], ocean acidification [5], and extreme weather events [6]. 
Because the pollution rate and global energy demand persist to augment [7] [8] 
[9], suggesting energy solutions that do not depend on fossil fuels remains of vi-
tal significance. Renewable energy sources (like wind, solar, and tidal energy) 
form the most encouraging of such clean energy solutions, even if they are irre-
gular [10]. As a result, supplying directly power from such sources could not be 
related to meet immediate energy demands [11]. Consequently, a technique of 
storing the energy produced by such renewable sources is fundamental for deal-
ing with renewably generated power [1]. 

In such circumstances, hydrogen (H2) is frequently presented as an encourag-
ing “carbon neutral” energy carrier (i.e., fuel) [1]. In this system, renewably 
formed electricity is employed to electrolyze water (H2O) to produce H2 and 
oxygen (O2). The O2 could be let out to the atmosphere whereas the H2 is stored 
as a fuel. This H2 is later oxidized (either by burning or in a fuel cell) to regene-
rate H2O and to liberate energy. In fact, H2 is not a perfect fuel; however, it pos-
sesses several interesting features like its minimum poisoning, capacity to be 
transported safely over long distances via pipeline [12], and its elevated energy 
density per unit mass (three times bigger than that of gasoline) [13]. Further, 
sustainably sourced H2 may be utilized to decrease CO2 or nitrogen (N2) from 
the atmosphere to form carbon-neutral fuels and commodity chemicals (like 
hydrocarbons and ammonia). In several viewpoints, H2 could be adopted as the 
solution to a sustainable energy cycle [1]. 

This work suggests a short view of fresh advance in the field of decoupled 
electrolysis for water splitting is presented and the potential that this technique 
has for enabling a range of other sustainable chemical processes is explored. Be-
tween such chemical processes, electrochemical disinfection (ED) remains a 
great promise in disinfecting the air, water, and special surfaces of different na-
ture such as drinking water, wastewater, pool water, and other water qualities or 
surfaces. An obvious direction on engineering details is intended especially those 
related to research on complex liquid systems, consideration of hazards observed 
from disinfection by-product generation, and interest to ameliorate cell design 
and disinfection technology. More interest is accorded to hybrid techniques to 
inspire originality, to utilize synergistic effects and to satisfy the needs of real 
system treatment under practical circumstances. This work suggests the applica-
tion of ED in the EWS compartment producing O2 besides the other compart-

https://doi.org/10.4236/oalib.1107445


D. Ghernaout, N. Elboughdiri 
 

 

DOI: 10.4236/oalib.1107445 3 Open Access Library Journal 
 

ment producing H2. 

2. Electrochemical Water Splitting (EWS) 
2.1. Electrochemical Storage of Renewable Energy 

Electrolyzing water could be viewed in matter of its two half-reactions: the hy-
drogen evolution reaction (HER) and the oxygen evolution reaction (OER) [1]. 
Such half-equations vary slightly following the pH at which the electrolysis is 
performed. At low pH, the HER and OER proceed as follows (all potentials are 
vs. the standard hydrogen electrode, SHE): 

( )0
22H 2e H HER pH 0,E 0.00V+ −+ = =→            (1) 

( )0
2 22H O O 4H 4e OER pH 0,E 1.23V+ −→ + + = =         (2) 

While, below alkaline circumstances, the half-reactions take place 

( )0
2 24OH O 2H O 4e OER pH 14,E 0.40V− −→ + + = =        (3) 

( )0
2 24OH O 2H O 4e OER pH 14,E 0.40V− −→ + + = =        (4) 

As a result, there is an important electrical energy demand to operate H2O 
electrolysis [1]. In the ordinary circumstances, a potential difference of 1.23 V is 
the thermodynamic minimum requested to electrolyze H2O. Nevertheless, to 
conquer different kinetic and resistance barriers (and thus to operate considera-
ble currents to flow for the OER and HER), more voltage is needed. Such sup-
plementary voltage is known as overpotential that is a sum of the various addi-
tional potentials relating to concentration, ohmic resistances in the electrolyzer, 
and to the kinetic overpotentials for the individual HER and OER half-reactions 
[14]. One from the previous overpotentials, the overpotential demand for the 
OER has a tendency to control because the formation of O2 is a kinetically de-
manding four-electron, four-proton process [15] [16]. As a result, the OER is 
frequently viewed as the major kinetic bottleneck for the electrolytic production 
of H2 from H2O [1]. 

2.2. From Traditional to Decoupled Electrolysis 

Water electrolysis happens below the effect of a direct current between two elec-
trodes in a single cell [1]. Such crude form furnishes numerous disadvantages, 
the most undesirable of which remains the absence of isolation of the formed H2 
and O2. As seen in Reactions (1)-(4), two moles of H2 are produced for every 
mole of O2 formed. Such gas-evolving reactions take place together, possibly ge-
nerating a highly explosive mixture [17]. Industrially, this is avoided by em-
ploying membranes (or diaphragms) that isolate the compartment into anodic 
and cathodic cells. Big scale water electrolysis at high pH is performed utilizing a 
liquid alkaline electrolyte (concentrated aqueous KOH solution), at moderate 
temperatures (20˚C - 80˚C) with an asbestos diaphragm [18]. In such context, 
the anodic and cathodic pressures should be carefully regulated to prohibit gas 
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permeation across the separator [19] [20] [21]. Great advance has been lately 
noted in fabricating solid polymer membrane electrolyzers in which an anion or 
proton exchange membrane (like Nafion) is utilized within a compressed cell 
stack [22] [23]. Even if comparatively costly, such cell designs could work at 
considerable pressure differentials, at outstanding running current densities, and 
without the necessity of caustic electrolytes. In such devices, the product streams 
are preserved separate, as gas crossover rates across the membranes are low [18] 
[21] [24]. 

The problem of separating the H2 and O2 of electrolysis begins to be more 
complicated when utilizing renewable energy sources, where the power inputs 
are usually variable and/or low [1]. In these situations, the low current densities 
that are reached correspond to low rates of gas formation. Further, such rates of 
gas generation could in turn start to attain the rates of gas crossover for some 
membranes, potentially leading to safety problems. A current density of 100 
A/m2 is adopted as a useful benchmark for solar-driven electrolyzers, since this 
is the approximate current density expected of a water splitting device operating 
at 10% solar-to-fuels efficiency under “1 Sun” illumination (AM 1.5, 100 mW/ 
cm2) [25]. In such context, crossover of H2 into the anodic cell would be a real 
probability and may be mostly dangerous, because the lower explosion limit of 
H2 in O2 is only 4 mol% H2 in O2 [26] [27] [28]. Moreover, although effective 
and safe gas separation may be obtained, any solar-to-hydrogen apparatus, in 
which the half-reactions of water splitting stay coupled (like in a traditional 
electrolyzer, as shown Figure 1), will be subjected to the fact that the rate of the 
comparatively easy HER would remain be restricted by the more sluggish OER. 
In such scenario, harnessing low pressures of H2 gas safely and efficiently from 
large solar-to-hydrogen arrays is nontrivial and stays an unsolved dare. 

To this objective, fresh progresses have been observed to “decouple” such 
processes utilizing redox mediators [1]. Indeed, a mediator with a suitable redox 
potential could be used such that the OER is coupled with the reduction of the 
mediator, rather than the direct formation of H2. Likewise, the HER can be rea-
lized independently of the OER, via coupling H2 production to the re-oxidation of 
the mediator, rather than to water oxidation (Figure 1). With each half-reaction 
taking place separately, the HER could be performed at much enhanced rates  

 

 
Figure 1. Conventional (a) vs. decoupled ((b), (c)) water electrolysis under general acidic conditions [1]. 
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compared to that feasible in traditional water electrolysis. Further, the possibility 
to carry out the HER and OER both in different spaces (“spatial separation”) and 
at different times (“temporal separation”) considerably enhances flexibility for 
harvesting H2 efficiently and safely and greatly decreases the demand for any gas 
purification stages. The features requested of a suitable mediator are stability in 
both the oxidized and reduced forms and a reversible redox couple with a poten-
tial that resides between the onset potentials of the OER and HER. Consequent-
ly, decoupled electrolysis could be described as any process where the ultimate 
anodic and cathodic products of electrolysis are formed under at least one of the 
next situations: 1) at rates that are not intrinsically related to each other, 2) at 
different times to each other, or 3) in entirely different electrochemical cells to 
each other (Figure 2). 

Since its beginning during 2013 [29], the field of decoupled electrolysis has 
progressed rapidly. However, few short reviews have been devoted to the subject 
to date. The first one being a short discussion by Wallace and Symes [30], the 
second being a short section in larger overview on water electrolysis by You and 
Sun [31] and the third a short review by Liu et al. [32]. McHugh et al. [1] pre-
sented a thorough discussion of this thrilling field, highlighting the opportuni-
ties for decoupled electrolysis in energy storage, energy conversion, and chemi-
cal synthesis. 

 

 
Figure 2. Alternative decoupling strategies. (a) Girault’s dual-circuit vanadium-cerium flow system for flexible hydrogen produc-
tion or energy storage. Purple dashed lines show the chemical discharge route via O2 and H2 while black dotted lines correspond to 
operation as a redox flow battery. (b) Decoupled water electrolysis using nickel (oxy) hydroxides as a solid-state redox mediator. 
(c) Walsh’s bipolar electrode strategy for decoupled electrolysis. Two outer Pt electrodes (gray) drive the water-splitting 
half-reactions in two separate cells, where electrical and electrochemical contact is maintained via the ferricyanide redox couple 
and the two carbon electrodes (green) connected by a wire [30]. 
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2.3. Decoupled Electrochemical Water Splitting (EWS):  
Dares & Perspectives 

In their discussion, McHugh et al. [1] presented the present state-of-the-art in 
decoupled electrolysis for water splitting, following the development of the field 
from its conceptualization in 2013 through to the several refinements of de-
coupled electrolysis that have since been improved [1]. During this march, cru-
cial stages have been realized. Such steps comprised 1) the proof of solar-driven 
H2 generation employing decoupling techniques, 2) the invention of decoupling 
agents that could be involved to carry out one of the half-reactions of water 
splitting spontaneously (such as through manipulation of the temperature or via 
convenient selection of electrodes and/or catalysts), 3) the expansion of robust 
solid-state decoupling agents, 4) the conjunction of decoupling techniques with 
bipolar electrolysis, and 5) the implementation of decoupling techniques to reac-
tions beyond water splitting (like coupling H2 generation with organic upgrading 
oxidation reactions or carrying out organic hydrogenation reactions utilizing 
protons and electrons obtained from water). In addition, decoupling could be 
utilized both for electrolytic processes (i.e., those needing a net energy input like 
water splitting) and galvanic processes (where spontaneous chemical reactions 
are harnessed to generate electrical power like in fuel cells). 

However, numerous decisive dares stay in the expansion of decoupled elec-
trolysis in terms of device complexity and overall system stability. In terms of 
the second, materials compatibility among the decoupling agents and different 
cell components (such as membrane separators) and the stability of the agents 
themselves to repeated redox cycling frequently stay unproven. This is attributed 
mostly to a shortage of information on the long-term efficiency of decoupled 
systems. Viable information on long-term system stability has to be acquired 
before commercial usages become certain. For the present, decoupled electroly-
sis systems frequently give rise to augmented demands for extra balance of plant 
(and thus require bigger complexity) contrasted to easier, coupled approaches 
[1]. 

3. Electrochemical Disinfection (ED) 
3.1. Presentation and Descriptions 

Electrochemical disinfection (ED) may be viewed as a physicochemical technol-
ogy of disinfecting water via applying electrochemistry [33] [34] [35]. ED is 
generally a small-scale technique applied decentralized [36] [37] [38]. Disinfec-
tant formation and distribution inside water could be realized discontinuously 
or continuously in flow-through mode or as chemicals’ injection to the devices 
from storage tanks [39] [40] [41]. Such technology is viewed as being sophisti-
cated, not difficult to command, and avoiding storage and handling of toxic 
chemicals [42] [43] [44]. 

ED is generally founded on the oxidation power of disinfectants in the elec-
trode layer or the bulk of electrolytes [45] [46]. Usually, harm to the intracellular 
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enzyme system is referred to as the major cause for demobilizing microorgan-
isms (MOs) [47] [48] [49]. According to Bergmann [33], electrical field contri-
butions and pH-based impact could be disregarded in most ED situations. Sev-
eral authors [50] [51] [52] [53] found that ED process, especially in the case of 
electrocoagulation (EC) [54] [55] [56], is greatly dependent on electric field and 
pH. 

Pulsed electrical field technique, moderate electrical field handling, ohmic 
heating, plasma-related water treatment [57] [58], and ship body cleaning using 
conductive paintings are classified as special electrical field management and not 
discussed here [33]. 

MOs could as well be neutralized at relatively low electrode potentials in elec-
tron exchange reactions when they are closely adsorbed to electrodes [59] [60] 
[61]. Such technique remains time-consuming and not effective [33]. The more 
recent method is that of adsorbing MOs integrated with electrochemical oxida-
tion [49] [62] [63]. At bigger potentials, oxidation and neutralizing of fixed MOs 
are likely if radicals are formed by electrodes possessing bigger oxygen overvol-
tage [64] [65] [66]. 

The function of direct oxidation by hydroxyl radicals (●OH) is frequently 
lower than anticipated. This is may be related to short radical lifetime, reaction 
competition, and when a relatively small number of MOs is adsorbed at the elec-
trode [33] [67]. 

In the situation of gas (i.e., H2 from cathode and O2 from anode) production, 
MOs could be physically eliminated from the water (i.e., electroflotation [68] 
[69]) and electrode surfaces [33] [70]. 

The plurality of disinfectant-producing methods may be performed in water, 
the synthesis of ferrates as powerful oxidants could be carried out in a molten 
electrolyte or in water [71] [72] [73] [74]. 

3.2. Usual Killing Agents Encountered in Electrochemical  
Disinfection (ED) Device 

Killing agents may be produced via anodic reactions and rarer in cathodic reac-
tions [33]. Table 1 lists the most important of them. 

3.3. By-Product Troubles 

As in chemical disinfection, taking into account by-products formation in ED is 
more and more imposed [98] [99] [100]. Table 2 summarizes by-product cate-
gorization [33]. 

3.4. Cell Designs 

Cell geometries could be categorized in separator-divided or undivided cells with 
immersed electrodes, parallel plate electrodes, 3D-flow-by and flow-through elec-
trodes, rods, and tubular electrodes in monopolar, bipolar, or mixed arrange-
ment [75]. Lately, a multicylindrical cell design was announced, possessing six  
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Table 1. Disinfectants formed in an ED apparatus [33]. 

Disinfectant Description 

Chlorine 

For Cl2-founded ED, fresh tendencies were noted to substitute pressurized Cl2 with chlorine containing solutions formed via 
electrochemical technology [75] [76] [77], frequently running at Cl− < 1 g/L. Chlorine species mixture could include dissolved 
chlorine (Cl2,dis), hypochlorous acid (HOCl), and hypochlorite ions (OCl−) jointly known as free active chlorine. Inorganic 
chloramines may be included in the bonded active chlorine and are viewed as undesirable by-products, as well as organic 
chloramines [78] [79] [80]. The simple and cost-effective anodic production, storability, and long-term residual effect 
interpret the excellent significance of Cl2-founded disinfection until now [81]. The technology is common and mostly 
employed in potable water disinfection, swimming pool water and seawater treatment [82] [83]. Supplementary disinfecting 
power may be attributed to another component, dichlorine monoxide (Cl2O) [84], even if additional investigation remains 
required. 

Chlorine dioxide 
(ClO2) 

The progressive replacement of Cl2 as a disinfectant is more and more pronounced [85] [86] [87]. Chlorine dioxide (ClO2) 
forming fewer by-products and odor has been adopted in such approach [77]. Electrochemically, ClO2 could be formed onsite 
using undivided electrochemical or divided 2- or 3-compartment cells by anodic chlorite oxidation or cathodic chlorate 
reduction, ore from both processes [33] [88] [89]. At the commercial level, small cells having ion-exchange membranes have 
been proposed. The starting chlorite solution is in the domain of g/L concentration. ClO2 is formed in the g/h domain with 
performances bigger than 80% at pH 4 - 6. Bergmann [33] suggested two procedures of generating ClO2 for surface 
disinfection via adding scavengers to the chlorite solution at mg/L level domain. Under regulated parameters, total efficiencies 
could be attained in undivided cells [33]. For instance, when a chlorite solution is mixed with ozone solutions (formed 
electrochemically or by silent discharge) [90], a defined molar ratio exists, conducting to nearly complete chlorite-to-chlorine 
dioxide conversion (Figure 3). In such situation, a scavenger avoids secondary reactions of the intermediate 3O− . 

Ozone (O3) 

It was ultramodern to generate ozone (O3) on PbO2, Platinum, SnO2, and other anodes [91] [92]. Recent Boron Doped 
Diamond (BDD) anodes in divided cells are more performant, furnishing O3 at bigger levels and formation rates of 10−4 - 10−3 
g/h∙cm2 [93]. The credible onsite analysis of single oxidants inside a combination of O3 and different oxidants stays an 
unsolved difficulty. 

Hydrogen 
peroxide (H2O2) 

Methods employing oxygen-reducing cathodes could lead to ~2% (weight) H2O2: 
O2 + 2H+ + 2e− → H2O2 (5) 
This is much more juxtaposed to the anodic formation of two hydroxyl radicals on noncatalytic BDD pursued by their 
reaction to H2O2. Reaction between OCl− and H2O2 could lead to singlet and triplet oxygen production [94]. 

Others 
Additional disinfectants and technologies may be noted such as peroxodisulfate [95] [96], chloramination [97], bromine, and 
ferrates [35] [39] [71] even if without large industrial use. 

 

 
Figure 3. Generation of ClO2 (recalculated) obtained from reacting different volumes of 0.5 mM ozone solution with 3.9 mM 
chlorite solution at 5˚C, scavenger ethanol, and analysis by UV spectroscopy. The maximum reveals that nearly all chlorite can be 
converted to ClO2 [33]. 
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Table 2. By-product classification [33]. 

By-product class Description 

Electrolysis 
By-Products 

(EBPs) 

Electrolysis by-products (EBPs) are the consequence of undesirable 
electrochemical reactions such as the anodic chlorate and the cathodic nitrite 
and ammonia formation [101]: 
6HClO + 3H2O → 2ClO3

− + 4Cl− + 12H+ + 3/2O2 + 6e− (6) 

3NO−  + H2O + 2e− → 2NO−  + 2OH− (7) 

2NO−  + 5H2O + 6e− → NH3 + 7OH− (8) 

Disinfection 
By-Products 

(DBPs) 

As portion of electrolytes, organic matter is mainly classified as Natural Organic 
Matter (NOM) [102] [103] [104], Total Organic Carbon (TOC) [105] [106] 
[107], and Dissolved Organic Carbon (DOC) [108] [109] [110]. They are typical 
precursors for the famous “Disinfection By-Products (DBPs)” [110] [111] [112]. 
Familiar from chemical disinfection [113] [114] [115], DBPs are generated from 
reacting disinfectants with pollutants present in water [116]. In ED for drinking 
water, identical DBPs were detected when juxtaposed to chemical chlorination 
[53] [116] [117]. Reacting pathogen cell mater could be a supplementary source 
of DBPs (Figure 4) [118] [119] [120]. 

Reaction 
By-Products 

(RBPs) 

Reaction By-Products (RBPs) constitute all residual reactions in the electrode 
layers and bulk of solution. As an illustration is the chemical chlorate generation 
from free active chlorine species or from chlorite ions [118]. 

 

 
Figure 4. Cross section of embedded MOs before treatment and after treatment with 
H2O2 and active Cl2 from electrolysis. The starting concentrations and treatment times 
are indicated: (a), Escherichia coli untreated sample, 1 × 108 colony forming units 
(CFU)/mL; (b), E. coli, 1 × 108 CFU/mL, 3% H2O2, 1 min; (c), Bacillus subtilis, 1 × 108 
CFU/mL, 7.5% H2O2, 120 min; (d), E. coli, 1 × 108 CFU/mL, 19 ppm Cl2, 120 min [118]. 

 
cylindrical graphite electrodes [121]. Diverse innovation divulges from literature 
on suggesting 3D-BDD foam electrodes [33] [122] [123]. 

Mesh-like electrode structures are also developed [124] [125]. Recently, 3D 
activated carbon electrodes are exemplary for the mostly 2-step technique of 
electro-adsorption [33]. 

3.5. Mathematical Modeling 

In applied electrochemistry, mathematical modeling emerged since several dec-
ades [33]. Now, strong simulation programs are accessible. Relating to ED im-
plementations, the next usual modeling targets could be practically categorized: 
1) quantification of disinfection findings concerning disinfectant formation and 
decomposition [126] [127], 2) current density distribution for reducing cell vol-
tage [128], 3) averting electrode deterioration and by-product formation [33], 4) 
quantification of non-ideal flow behavior and, 5) assessment of probable reac-
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tion paths [129], etc. 

3.6. Perspectives 

In latest ED investigation, three main trends could be recognized: 1) augmented 
attempts in study for by-products and their likely poisoning, 2) application of 
fresh materials, frequently at the nanoscale [130], 3) process integrations/design 
of hybrid ED techniques [33] [131]. 

In electrochemical engineering, amelioration of electrode materials in terms of 
structure, yield, lifetime, and different indicators remains a main objective. In-
deed, material issues concerning assistive, pre-treatment and post-treatment me-
thods are more and more discussed as illustrated in nanotechnology-based elec-
trode structuring [96] [124] [132], filter selectivity improvement [33] [133], and 
for numerous additional technology components. 

Inventions are foremost related to hybrid processes [33]. For wastewaters 
[134] [135], adopting the direct ED is not suitable due to an uncontrolled reac-
tion scheme with unknown intermediates and final products [136] [137] [138]. 
This is why coupling single treatment methods to integrated ones, as typical for 
Advanced Oxidation Processes (AOPs) [63] [64] [139], has been adopted [49] 
[61] [62]. 

Individual processes could be integrated in a minimum of two fashions: step-
wise one after the other (in one or two devices), and combined into one (Table 
3). As an illustration, in terms of by-product generation, it is logical to irradiate 
water in an initial stage and then, in a second stage, to treat using a chlorination 
method; in contrast, the irradiation of formerly chlorinated water could form  

 
Table 3. Most important hybrid processes dealing with electrochemical disinfection (ED) [33]. 

Hybrid processes Description 

Electrocoagulation 
(EC)/Electro-Fenton (EF) 

Electrocoagulation (EC) process has the potential to kill pathogens efficiently and economically as the cost for 
electrode materials (Fe, Al) are relatively minor [143] [144] [145]. Several researchers merged EC with other 
techniques [146] [147] [148]. Other scientists juxtaposed EC to different techniques like Electro-Fenton (EF) 
[33]. EF with an in situ formation of ●OH is affiliated to AOPs and frequently proposed for treating wastewater 
[139]. Comparatively to EC, researches depicted better disinfection impacts of the EF method [149] [150]. 

ED/filtration 

Filtration could be used with filters possessing defined pore size distribution as with nanopore-filters [151] [152] 
[153]. This permits filtration of organic matter and MOs [154] [155]. If pursued by ED, disinfection performance 
could be attained and by-product generation will be reduced. Supplementary adsorption after filtration may 
ameliorate the yields [33]. Different original design is using reactive membranes [156] [157] [158]. 
Membrane-integrated electrodes could participate to membrane disinfection from time to time or add 
disinfecting species to the water flowing through [159] [160]. 

ED/adsorption 

High surfaces of adsorbing materials help them to adsorb MOs on uncharged or charged surfaces [161] [162]. In 
reverse or changed electrode potential, MOs could be repulsed and electrochemically demobilized [163]. Last 
essential functionality is once more the adsorption of products and by-products after a first-step ED procedure 
[164]. 

ED/photocatalysis 

The semiconductor composition of Mixed Metal Oxide (MMO) electrode material makes it interesting for being 
merged with irradiation (electro-photocatalytic disinfection [165] [166] [167]. Researchers examined usual 
issues, concepts and tendencies [165] [166]. Scientists focused on efficiency estimation [167], usage of 
nanomaterials and novel electrode design [33], disinfection by-products, and Cl2 generation [33]. 
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more by-products. One more benefit is the reservoir effect that could not be at-
tained by sole UV disinfection [140] [141] [142]. 

4. A Bridge between Electrochemical Water Splitting (EWS) 
and Electrochemical Disinfection (ED) 

We have briefly discussed EWS and ED techniques. Similarities between the two 
processes include that both of them use electric current for their realization. For 
the first one, H2 and O2 are produced separately in two cells. Such gases may be 
produced in ED especially for electroflotation and EC processes. The suggested 
idea here is to use EWS device for producing H2 in one cell and producing O2 in 
the second cell in which water may be disinfected by the electric field application 
and the electric current passage. Disinfection efficiency would be enhanced by 
the presence of O2. 

As shown previously, Figure 2 illustrates three alternative decoupling strate-
gies. Configurations (a) and (b) (Figure 2) seem to be more suitable for produc-
ing H2 and O2 as well treating water. In Figure 2(b), decoupled water electrolysis 
using nickel (oxy)hydroxides as a solid-state redox mediator is presented; and in 
Figure 2(c), Walsh’s bipolar electrode strategy for decoupled electrolysis is de-
picted. 

5. Conclusions 

To produce H2 and O2, electrolytic water splitting (EWS) emerges as one of the 
most encouraging techniques in which to harness intermittent renewable power 
sources and store the energy these provide as a clean-burning and sustainable 
fuel. Lately, this has conducted to an eruption in publications on EWS, most of 
them worked on increasing the productivity of the electrochemical reactions 
themselves. Decoupled electrolysis presents a solution to numerous of such 
dares through authorizing O2 and H2 to be formed at different times, at different 
rates, and even in completely different electrochemical cells. In this work, a short 
view of fresh advance in the field of decoupled electrolysis for water splitting is 
presented. On the other hand, ED remains a great promise in disinfecting water. 
This work suggests the application of ED in the decoupled electrolysis compart-
ment producing O2 besides the other compartment producing H2. The main 
conclusions drawn are listed below: 

1) During the last seven years, decoupled electrolysis for water splitting has 
known an outstanding expansion following the development of the field from its 
conceptualization [1]. Decoupling could be utilized both for electrolytic processes 
and for galvanic processes. However, numerous decisive dares stay in the expan-
sion of decoupled electrolysis in terms of device complexity and overall system 
stability. In terms of the second, materials compatibility among the decoupling 
agents and different cell components and the stability of the agents themselves to 
repeated redox cycling frequently stay unproven. This is attributed mostly to a 
shortage of information on the long-term efficiency of decoupled systems. Via-
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ble information on long-term system stability has to be acquired before com-
mercial usages become certain. For the present, decoupled electrolysis systems 
frequently give rise to augmented demands for extra balance of plant contrasted 
to easier, coupled approaches [1]. 

2) ED is very innovative and developing technology domain. Even with all 
advance noted in fundamental study, pilot investigations, and usage, the matur-
ity for numerous disinfection techniques stays weak and some issues could not 
be managed such as [33]: a) ED processes remain not often famous; b) applica-
tion circumstances require preliminary investigations for selecting optimally the 
disinfection devices and method, and for pre-treatment and post-treatment 
stages; c) strictest rules and demands occur in the potable water industry with 
limiting by-product concentration at μg/L level span especially for highly-oxid- 
ative anodes and; d) fresh ED processes could be costly what renders them un-
competitive and restricts their diffusion. 

3) We have briefly discussed EWS and ED techniques. Similarities between 
the two processes include that both of them use electric current for their realiza-
tion. For the first one, H2 and O2 are produced separately in two cells. Such gases 
may be produced in ED especially for electroflotation and EC processes. The 
suggested idea here is to use EWS device for producing H2 in one cell and pro-
ducing O2 in the second cell in which water may be disinfected by the electric field 
application and the electric current passage. Disinfection efficiency would be en-
hanced by the presence of O2. Practical examinations have to be conducted to de-
termine the best scheme in terms of dimensions and disinfection efficiencies. 
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