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Abstract 
In this paper 2D discrete time dynamical system is presented. The fixed 
points were found. The stability of fixed points is measured by characteristic 
roots, jury criteria, Lyapunov function. All show that the system is unstable, 
and analyzing the dynamic behavior of the system finds bifurcation diagrams at 
the bifurcation parameter. Newton’s Raphson numerical method was used the 
roots of the system with the minimum error. Then, chaoticity is measured by 
the phase space; maximum Lyapunov exponent is obtain as ( max 2.394569L = ); 
Lyapunov dimension is obtain as ( 3.366413LD = ); binary test (0 - 1) is ob-
tain as (k = 0.982). All show that the system is chaotic. Finally, the adaptive 
control was performed. Moreover, theoretical and graphical results of the 
system after control show the system is stable and Lyapunov exponent is ob-
tained as: 1 0.390000L = − , 2 0.500000L = − , so the system is regular. 
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1. Introduction 

In the last two decades, the interest in dynamical systems has increased, because 
they are an important concept in describing the behavior of many models and in 
various fields. Some studies and research have focused on discrete dynamical 
systems in which the systems are described in the form of difference equations 
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[1], as intermittent dynamic systems are more appropriate in describing models, 
especially when Models have non-overlapping generations, as the computational 
techniques used in discrete dynamical systems are more effective for numerical 
simulations, unlike in continuous dynamic systems. Mathematical models have 
been studied in biology and the environment, which have been described in the 
form of food chains. Food chains is one of the basic relationships that describe 
for us the interactions that occur between societies in the field of ecology, which 
studies the interrelationships between living organisms and the environment in 
which they are. Malthus [2] presented a study on the interactions that occur in 
societies that consist of one species, which were described using difference ma-
thematical equation. There are many mathematical models in ecology that have 
been touched upon by researchers in this field. One of the most important ma-
thematical models that have received wide attention in recent years is the prey 
and predator model due to its wide scope of application. The interaction be-
tween the prey community and the predator was described by Volterra [3], 
Lutka [4]. This type of model was found in temperate regions due to its appro-
priate environment seasonality, as Holling presented [5] a more realistic model 
of prey predator describing for us the interaction of three types of societies, as 
the relationship in the intermittent dynamic systems between prey and predator 
societies was and remains one of the important topics in many studies and re-
search because of its importance. This type of the models depends on many as-
sumptions, including that prey societies grow in a limited way when the preda-
tor community is absent, and predation societies depend on the presence of prey 
in order to survive, that is, the rate of the prey community is proportional to the 
predator community, and finally, we can say that the models in the environ-
mental science are not simple and we cannot rely on the results obtained as sta-
ble and perfect results. 

Accordingly, the research was arranged as follows: system description, system 
analysis and finding fixed points [6], stability analysis [7] [8] [9] of the fixed 
points by (characteristic roots equation, jury criteria [10], Lyapunov function 
[10]), numerical behavior study and finding diagrams of bifurcation of the sys-
tem [11] [12], chaos analysis using maximum Lyapunov exponent and the Lya-
punov dimension [13] and the binary test (0 - 1) [14]-[20]. In the final section, 
adaptive control [21] [22] of the chaotic system is performed, and stability tests 
and the Lyapunov exponent test are performed. 

2. System Description 

In this work, a two-dimensional discrete time dynamical system was taken [23] 
and defined as follows: 

( )
( )

1 1 2

1 2

1t t t t t t

t t t t t

x x a x x a x y

y y a y x y
+

+

 = + − −


= + −
                  (1) 

1 22.4, 2a a= =                        (2) 
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where tx  represents the prey society and ty  represents the predator commu-
nity in discrete time (t), and that 1 2,a a  represent the parameters of the system 
and are positive, the part: ( )11 1t tx a x + −   is represents the rate of increase of 
the prey community in the absence of the predation community, and that Part 

2 t ta x y  represents the rate of decline of the prey community due to the presence 
of the predation community, and 2a  represents the predation parameter, while 
the part ( )21 tt ty a yx + −   represents the variance in the size of the predation 
population which depends on the size of the prey community. 

3. System Analysis 
3.1. Jacobian Matrix 

For 2D discrete dynamical system (1) with continuous differentiable transition 
function 1g  and 2g , given by 

( )
( )

1 1

1 2

,

,
t t t

t t t

x g x y

y g x y
+

+

=

=
 

The Jacobian Matrix of system (1) is: 

( )

1 1

1 1 2 2
,

2 2 22 2

1 2
1 2t t

t t t t t
x y

t t t

t t

g g
x y a a x a y a x

J
a y a x a yg g

x y

∂ ∂ 
 ∂ ∂ + − − −  = =    + −∂ ∂  
 ∂ ∂ 

     (3) 

3.2. Fixed Point 

In this section we find the fixed points of system (1), assume that ( )1 , tt tg x y x= , 
( )2 , tt tg x y y=  

( )1 21t t t t t tx x a x x a x y− −= +                    (4) 

( )2t t t t ty y a y x y+ −=                      (5) 

from Equations (4) and (5) we get the following fixed points: 

( )0 0,0q = , ( )1 1,0q = , 1 1
2

1 2 1 2

,
a aq

a a a a
 

=  + + 
 

Theorem (1): Let 

( ) 2
2 1 0 0a a aG λ λλ += + =                    (6) 

A characteristic equation of (3), the following cases are true: 
1) If the absolute value of the roots of Equation (6) is less than one, then the 

fixed point of the system (1) is locally asymptotically stable and is called the sink. 
2) If the absolute value of the roots of Equation (6) is greater than one, then 

the fixed point of the system (1) is unstable and is usually called the source, but 
if at least one of the values of the roots of Equation (6) is greater than one, then 
the fixed point is called the Saddle. 

3) If the absolute value of the roots of Equation (6) is equal to one, then the 
fixed point of the system (1) is called the non-hyperbolic point. But if there are 
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no roots of values equal to one, then the fixed point is called the hyperbolic 
point. 

4. Stability Analysis 

In this section, the stability of the fixed points of the system (1) using the fol-
lowing criteria:  

4.1. Characteristic Equation Roots 

Substituting the point 0q  into (3) we get: 

( )
1

0,0

1 0
0 1
a

J
+ 

=  
   

( )det 0I Jλ − =  
11 0

0
0 1

aλ
λ

− −
=

−  
And from Equation (2) we get: 

2 4. . 04 3 4λ λ + =−                        (7) 

so the roots of quadratic Equation (7) are: 1 1λ = , 2 3.4λ =  
since 1 1λ = , 2 3.4λ = , so by theorem (1) we get system (1) is unstable at 

0q , similarly we test the points 1q  and 2q , the results shown in Table 1 that 
the three points 10 2, ,q q q  are saddle. 

Lemma (1): 
Let the characteristic equation of system (1) 

( ) 2
2 1 0 0a a aG λ λλ += + =  

Then it’s jury Table 2 is: 
 

Table 1. Stability of fixed points by characteristic equation. 

the description Characteristic Equation Roots Fixed points 

unstable 1 1λ = , 2 3.4λ =  ( )0 0,0q =  

unstable 1 2.2283λ = , 2 0.6283λ =  ( )1 1,0q =  

unstable 1,2 1.2907λ =  ( )2 0.5454,0.5454q =  
 

Table 2. Jury table. 

2λ  
1λ  

0λ  

2a  1a  0a  

0a  1a  2a  

 1b  0b  

 0b  1b  

  0c  
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Such that 

0 n k
k

n k

a a
b

a a
−= , 0,1k = , 2n =  

0 1

1

n k
k

n k

b b
c

b b
− −

−

= , 0k = , 2n =  

We say that the fixed point of the system (1) is stable if the satisfies following 
conditions: 

( )1 0G >  

( ) ( )11 0n G− − >  

0 na a< , 0 1nb b −> , 0 2nc c −>  

Otherwise, fixed points are unstable. 

4.2. Jury Stability Criteria 

We test the stability of point 0q , by using lemma (1) and values from eq. (7) we 
get the jury Table 3, since the condition 0 23.4 1a a= > = , so the point 0q  is 
unstable. Similarly, we test the rest of the points 1 2,q q , which shows that they 
are unstable, so the system (1) is unstable. 

4.3. Lyapunov Function Criteria 

The fixed points are said to be stable using the criterion of the Lyapunov func-
tion if 0V∆ ≤  except for the origin, which is stable, and to study the stability 
of the fixed points of the system (1) we impose the quadratic equation of the fol-
lowing Lyapunov function:  

( ) 2 2, 0V xx y y= + >  
Where x, y are not equal to zero, and using ∆V we get: 

( ) ( ) ( )
( )( ) ( )( )

( ) ( )

2 2
1 1

2 2
1 2 2

2 2

, , ,

1

t t t t t t

t t t t t t t t t

t t

V x y V x y V x y

x a x x a x y y a y

y

x y

x

+ +∆ = −

= + − − + −+

− −

   (8) 

By substituting (2) in Equation (8) and test the point ( )2 0.5454,0.5454q =  
we get: 

 
Table 3. Jury table of the point q0. 

0λ  
1λ  

2λ  

3.4 −4.4 1 

1 −4.4 3.4 

10.56 −10.56  

−10.56 10.56  

0   
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( )
( )( )
( )( ) ( ) ( )

2

2 2 2

0.5454 2.4 0.5454 1 0.5454 2 0.5454 0.5454

0.5454 2 0.5454 0.5454 0.545

0.

4 0.5454 0.54

5454,0.5454

0.143

4

0

5

8

V∆

=

−

+ × × − − × ×

+ + × × −

= >

−

 
It is clear that V is positive definite and ∆V is positive, hence the fixed point 

2q  is unstable and so system (1) is unstable. 

5. The Graphical and Numerical Behavior of System (1) 
5.1. Newtons’ - Raphson Method 

Newton’s Raphson method is one of the important numerical methods for find-
ing the roots of the difference equations. By using a written programme on 
MATLAB we get the best result obtained for the system (1) is ( ) ( ), 0.5,0.5x y =  
with minimum error (0.0001). 

5.2. Trajectories of System (1) 

In this section the time behavior of the system (1) was studied and the parameters 
were fixed at the values 1 2.4a = , 2 2a =  with the values ( ) ( ), 0.5,0.5x y =  and 
for (1000) iterations, shown in Figure 1. It turns out that the system behaves 
unstable. 

5.3. Phase Space of System (1) 

In this section, the phase space of the system (1) was found, the parameters were 
fixed at the values 1 2.4a = , 2 2a =  with the values ( ) ( ), 0.5,0.5x y =  and 
shown in Figure 2 which show that the system behaves chaotic. In Figure 3  

 

 
Figure 1. The trajectories of state variables tx  and ty , when 1 2.4a = . 

 

 

Figure 2. The phase space of the system (1) at parameter 1 2.4a = . 
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Figure 3. The phase space of the system (1) with some values at parameter 1a . 
 

 
Figure 4. Bifurcation of parameter 1a  with variable ,t tx y . 

 
shows that the system (1) generates trajectories chaotic for tx  and ty  at some 
values parameter 1a . 

5.4. Bifurcation Diagram 

In this section the bifurcation diagrams of system (1) are found at the bifurca-
tion parameter 1a , the parameters 2 2a =  with the values ( ) ( ), 0.5,0.5x y =  
and the 1a  parameter ranging from 1.8 to 2.7 showing the behavior chaotic of 
the system (1), also the internal balance of the parameter 1a  on the period [2.6, 
2.65], as shown in Figure 4. 

6. Lyapunov Exponent and Lyapunov Dimension 

The Lyapunov exponent is one of the important tests in detecting the chaotic 
behavior of dynamic systems, as the system is said to be a chaotic system if one 
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of the values of the Lyapunov exponent is greater than zero, and by using a ma-
thematical program in MATLAB, the Lyapunov exponent of the system (1) was 
tested and the following values were obtained: 

1 2.394569L = , 2 1.011898L = −  

Since one of the values of the Lyapunov exponent of system (1) is a positive 
value, then system is chaotic, show in Figure 5. 

To calculate the Lyapunov dimension of the system (1), we use the following 
law: 

1

2

2.3945691
1.011898

3.366413L p LD
L

= + == +
 

7. Binary Test (0 - 1) 

In this section, the binary test was used to analysis the chaos of the system (1), a 
time series tx  was generated from the regularity (1) at the parameters 

1 2.4a = , 2 2a =  and the values ( ) ( ), 0.5,0.5x y =  For (1000) iterations, and 
by using a mathematical program in MATLAB, the binary selection of the sys-
tem (1), we calculate ( )cp t  with ( )cq t  for t = 100 and chose(c) is random 
value within the period (0, π), show in Figure 6(a), which shows us the behavior 
aligned to the system and similar to Brownian movement, and the average 
square displacement ( )cM t  was calculated with time k, shown in Figure 6(b), 
which shows us that the average square of the displacement ( )cM t  It is a func-
tion that grows linearly with time (t), and by finding the mean (k) of the conti-
guous growth ck  of the mean of the displacement square ( )cM t  where t = 
100 shows that the system behaves in chaotic behavior (k = 0.982) as the mean 
(k) approaches the one shown in Figure 6(c). 

8. Adaptive Control Technique 

To achieve the stability of the chaotic system (1) we will design an adaptive con-
trol law with the unknown parameter 1a . 

( )
( )

1 1 1

1 2

1 2

2
t t t t t t

t t t t t

x x a x x x y u

y y y x y u
+

+

= + − − +

= + − +
                 (9) 

where 1 2,u u  are the controllers for the adaptive and are known as follows: 
 

 
Figure 5. Lyapunov exponent of the system (1). 
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Figure 6. The binary test of system (1) with 1 2.4a = . 

 

( )
( )

1 1 1

2 2

ˆ 1 2

2
t t t t t t

t t t t t

u x a x x x y M x

u y y x y M y

= − − − + −

= − − − −
               (10) 

where 1 2,M M  are positive constants and the parameter 1̂a  is an approximate 
parameter of the parameter 1a , and by substituting (10) in (9) we get: 

( ) ( )1 1 1 1

1 2

ˆ 1t t t t

t t

x a a x x M x
y M y
+

+

= − − −

= −
                 (11) 

Let the error for the discretionary parameter be defined as follows:  

1 1̂ae a a= −                          (12) 

Substituting (12) into (11) we get:  

( )1 1

1 2

1t a t t t

t t

x e x x M x
y M y
+

+

= − −

= −
                    (13) 

8.1. Numerical Results 

In this section, we will test the stability of the fixed points of the system (1) in 
the controlled system (11) with the values ( ) ( ), 0.5,0.5x y =  and 1 0.4M = , 

2 0.5M =  and the parameter 1̂a  is an estimated parameter of the parameter 

1a , and let 1̂ 2.39a = . 

8.1.1. Characteristic Equation Roots 
From (11) the Jacobian matrix is: 

( ),

0.39 0.02 0
0 0.5

t
x y

x
J

− − 
=  − 

                 (14) 
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Table 4 shows that the testing of the 0 1 2, ,q q q  of system (11) are stable. 

8.1.2. Jury’s Test 
We test the stability of the fixed point ( )0 0,0q = , from characteristic equation 

2 0.89 0.195 0λ λ + =+  at point 0q  we get 0 0.195a = , 1 0.89a = , 2 1a =  
Then we get Jury Table 5, since, all conditions are satisfies lemma (1), there-

fore the fixed point 0q  is stable. Similarly, we test the rest of the points 1 2,q q , 
shown that all are stable. 

8.1.3. Lyapunov Function Test 

( ) ( ) ( ) ( ) ( )2 2 2 2
1 1,t t t t t tV yx y x y x+ +∆ = + − −  

From the system (11) we get 

( ) ( ) ( )( ) ( ) ( ) ( )2 2 2 2
1 1 1 2ˆ, 1t t t t t t t tx y a a x x M x yMV y x− − − −−∆ = + −

 
Substituting the parameters 1 21 1, ,ˆ ,a a M M  we obtain 

( ) ( )( ) ( ) ( ) ( )2 2 2 2, 0.01 1 0.4 0.5t t t t t t t tx y x x x y xV y− − −∆ = + − −
 

We test the fixed points 0 1 2, ,q q q , it is clear that V is positive definite and ∆V 
is negative definite, consequently the adaptive strategy success to control system 
(1), and Table 6 illustrates this. 

 
Table 4. Stability of fixed points by characteristic equation for system (11). 

the description Characteristic Equation Roots Fixed points 

stable 1 20.39, 0.5λ λ= =  ( )0 0,0q =  

stable 1 20.41, 0.5λ λ= =  ( )1 1,0q =  

stable 1 20.4008, 0.5λ λ= =  ( )2  0.5454,0.5454q =  
 

Table 5. The results Jury test of q0. 

0λ  
1λ  

2λ  

0.195 0.89 1 

1 0.89 0.195 

-0.962 -0.7165  

-0.7165 -0.962  

0.4121   

 
Table 6. Results of the Lyapunov function test of the system (11). 

the description Results of the Lyapunov function test Fixed points 

stable 0V∆ =  ( )0 0,0q =  

stable 0.84V∆ = −  ( )1 1,0q =  

stable 0.4647V∆ = −  ( )2  0.5454,0.5454q =  
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8.2. Lyapunov Exponent 

In this section, the Lyapunov exponent test of the system was performed and the 
values were obtained 1 0.390000L = − , 2 0.500000L = − , accordingly, the system 
is regular and Figure 7 shows that. 

 

 
Figure 7. Lyapunov exponent of system (11). 

9. Conclusion 

In this research, 2D discrete - time dynamical system was taken, the system was 
analyzed, fixed points were found, and the stability analyzed for fixed points us-
ing (roots characteristic equation, Jury test, Lyapunov function test). The roots 
of the system were found using Newton’s Raphson numerical method, and the 
dynamic behavior was analyzed and studied. The phase space of the system 
shows that the system is unstable at parameter 1 2.4a = . For the chaos analysis 
of the system, the bifurcation diagrams of the bifurcation parameter 1 2.4a =  
are found for the system, and the Lyapunov exponent test was used and the val-
ue ( max 2.394569L = ) was obtained, which is an indication of the chaos of the 
system. And Lyapunov dimension was calculated as ( 3.366413LD = ). When 
using the binary test (0 - 1), it was found that the value of (k = 0.982) with the 
parameter 1 2.4a =  which is an indication of the chaos of the system. Finally, 
the adaptive control of the system and the stability test of the system after the 
control was performed which showed us that the system is stable, and when we 
tested the Lyapunov exponent ( 1 0.390000L = − , 2 0.500000L = − ) shown the 
regular behavior of the system. 
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