
Open Access Library Journal 
2021, Volume 8, e7183 
ISSN Online: 2333-9721 

ISSN Print: 2333-9705 

 

DOI: 10.4236/oalib.1107183  Feb. 26, 2021 1 Open Access Library Journal 
 

 
 
 

The Behaviour of the Dispersion Matrix of the 
Information Matrix Test under the Wrong 
Logistic Regression Model 

Nuri H. Salem Badi 

Faculty of Science, Statistical Department, University of Benghazi, Benghazi, Libya 

 
 
 

Abstract 
The Information Matrix Tests (IMT) considers as one of the important global 
goodness of fit test. The IMT provides a unified framework for specification 
goodness of fit tests for a wide variety of distribution, multivariate or univa-
riate, discrete or continuous. Many researchers discussed the IMT in cases of 
the outcome covariate is a continuous variable which reported it has reasona-
ble behaviour. This article considers using IMT as a goodness of fit test for 
the logistic regression mode, to investigate the behaviour of this statistic un-
der the wrong model. Moreover, we are interested to examine the behaviour 
of the dispersion matrix under wrong logistic model and compute alternative 
formula of variance, empirical variance of IMT and examine it by simulation. 
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1. Introduction 

The IMT is a test for general misspecification, produced by [1] who pointed out 
that the properties of the Maximum likelihood estimator and the information 
matrix can be exploited to yield a family of useful tests for model mis-specification. 
The idea of the IMT is to compare two different estimators of the information 
matrix to assess model fit. The IMT is based on the information matrix equality 
that obtains when the model specification is correct. This equality implies the 
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asymptotic equivalence of the Hessian and the score forms of Fisher’s informa-
tion matrix [2]. As [1], points out, the IMT is designed to detect the failure of this 
equality and the failure implies the model misspecification. [3] discussed the in-
formation matrix test and showed that it is useful with binary data models. 
Many researchers, [4] [5] and [6] pointed out the behaviour of the asymptotic 
distribution of IMT statistic and dispersion matrix. The idea of the  

information matrix test is to compare 
2

TE
θ θ

 −∂
 ∂ ∂ 

  and TE
θ θ
∂ ∂ 

 ∂ ∂ 

  , as these  

differ when the model is mis-specified but not when the model is correct. [7], 
pointed out, can be estimated the covariance matrix of IMT, dependent upon the 
IMT of [1], which can be estimated without the computation of analytic third 
derivatives of the density function. [4], discussed that, the IMT is sensitive to 
non-normality. Moreover, he proposed a simple computation procedure which 
employs the Outer Product of the Gradient (OPG) covariance matrix estimator 
of IMT statistic. However, [5] argue that, such a procedure maybe give unrelia-
ble inferences, related to the stochastic nature of the covariance matrix estimator 
which uses high sample moments to estimate high population moments. [6] 
purposed a simple calculation procedure for the test statistic, for general binary 
data models, which employs the ML covariance matrix estimator instead the 
OPG estimator. Moreover, [8], computed and examined IMT and found it had 
good power for logistic model. 

Basic Idea of the IMT 
Let us consider the density function ( ),if x θ  for individual observation and 

the data are independent, identically distribution so we have  

( )| d 1f x xθ =∫  

and we consider ( ) ( )log ,f xθ θ=  to be the logarithm of a density function of 
x dependent upon p parameters θ , so the log-likelihood function in this case is  

( ) ( )
1
log ,

n

n i
i

f xθ θ
=

= ∑  

Now, as we defined the idea of the IMT to compare two different matrix of 
expected the first and second partial derivatives of the ( )n θ , we have  

( ) ( ) ( )
( )( )log || log |

d | d 0
f xf x f x

x f x x E
θθ θ

θ
θ θ θ θ

 ∂∂ ∂∂
= = = =  ∂ ∂ ∂ ∂ 
∫ ∫

  (1) 

So, according to the ML method, we have  

0.E
θ
∂  = ∂ 

  

Differentiating (1) again we get  

( ) ( ) ( ) ( ) ( )
2

T T

log | log | log |
0 | d | d

f x f x f x
f x x f x x

θ θ θ
θ θ

θθ θ θ
∂ ∂ ∂

= +
∂∂ ∂ ∂∫ ∫  (2) 

So  
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2

T T 0.E E
θθ θ θ

 ∂ ∂ ∂ + =   ∂∂ ∂ ∂  

                        (3) 

When the model is mis-specified, the above quantity will be not necessarily 
equal zero. 

Asymptotic Distribution of θ̂  
The asymptotic distribution of estimated parameters and the behaviour of the 

MLE under the wrong model discussed by [9] and more investigated considered 
by [10]. [11], pointed out the estimation the parameters of a given regression 
model. In the limit for each value of the parameter vector θ ,  

( ) ( ) ( ) ( )( )1 log | d log |nn g Y f Y Y E f Yθ θ θ− → =∫  

where ( )g Y  denoted to the true model and ( )|f Y θ  is the fitted model. Also, 
consider the Kullback-Leibler divergence (KL) from the true to the approximat-
ing model conditional on X, under the wrong model. In this case *θ̂ θ→ , where 

*θ  is the least false value (LF). Note that the least false value *θ  minimizes the 
KL divergence, because the derivative of the KL is  

( ) ( ) ( )log , log ,
= d 0.

f Y f Y
E g Y Y

θ θ
θ θ

∂ ∂ 
= 

∂ ∂ 
∫  

Also, if we need define  
2

TJ E
θ θ

 ∂
= −  

∂ ∂ 

  

and  

( )
T

log ,
var

f Y
K E

θ
θ θ θ

∂  ∂ ∂ = =   ∂ ∂ ∂  

   

these matrixes are identical when ( ) ( )log ,f Y
g Y

θ
θ

∂
=

∂
 for all Y. As explained 

in [11], the distribution of the θ̂ , in this case from the central limit theorem 
there is convergence in distribution  

( )~ 0,n pnU U N K′→  

where, ( )1 *
1 ,n

iiU n u Y θ−
=

= ∑ , which is leads to  

( ) ( )* 1 1 1ˆ ~ 0, .pn J U N J KJθ θ − − −′− →  

So, we can say, the asymptotic MLE distribution under the null hypotheses H0, 
in this case  

( )1
0

ˆ ~ ,n N Jθ θ −  

where, 0θ  is the true value. And the asymptotic distribution of θ̂  under al-
ternative hypotheses H1 is  

( )* 1 1ˆ ~ ,n N J KJθ θ − −  

So, that is meaning ( J K= ) if and only if when fitted the correct model (i.e. 
under H0). 
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2. The IMT under Missing Covariates for Logistic Regression  
Model  

In this part, we apply the procedure of the IMT statistic under missing covariates 
for a logistic regression model. If iX  is a p-dimensional vector of covariates 
draw from normal distribution and iY  is binary with  

( ) ( )T1 | expit .i i iP Y X Xα β= = +                 (4) 

In the following we treat the simple case where the fitted model is 

( ) ( )1 11 | expiti i iP Y X Xα β= = +                  (5) 

for a scalar 1X  and that the true model has 

( ) ( )1 1 2 21 | expit ,i i i iP Y X X Xα β β= = + +              (6) 

where 2X  is also a scalar. We have the log-likelihood function contribution for 
the ith element ( ),i iY X  is  

( ) ( ) ( )( )T T, log 1 expi i i i iY X Y X Xα β α β= + − + +          (7) 

and so, 

( ) 1
1

;i i
i i i i iY Y Xπ π

α β
∂ ∂

= − = −
∂ ∂
 

 

and note that we only consider fitting the model with 1X , even if the true mod-
el also includes 2X  (i.e. 2 0β ≠ ). From this we get:  

( ) ( )
( ) ( )

2

2T

1 1
1 1
i i i i ii

i i i i i i

X
X X

π π π π
π π π πθ θ

 − − − −∂
=  − − − −∂ ∂  



 

Also, 

( ) ( )
( ) ( )

2 2

2 2 2

i i i i ii i
T

i i i i i i

Y Y X

Y X Y X

π π
θ θ π π

 − −∂ ∂  =
∂ ∂  − − 

 

 

using,  

( ) ( ) ( )( )2 1 1 2 ,i i i i i i iY Yπ π π π π− − − = − −  

as 2
iY  is iY , and so we get that  

( ) ( )( )
2

1
, 1 2 .g i i i i i

i

d y Y X
X

θ π π
 
 = − −  
  

                (8) 

3. An Alternative Formulae of Variance 

In this part we are interested to find a formulae of the variance of d statistic, 
even when the model is mis-specified. To perform the IMT we need to find the 
mean and variance of  

1

1 n

gi
i

T d
n =

= ∑  
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Under H0 ( ) 0giE d = , and so the IMT could be written as  

( ) 1T varT T T−  

which will have a 2χ -distribution on ( )( )rank var T  d.f. as T is asymptotically 
Normal. However, the test statistic has to be evaluated at the MLE θ̂  and this 
introduces a complication. The MLE θ̂  is the solution to  

( )
1 1

11 1 1 0.
n n

i i i
i i i

S y
Xn n n

π
= =

 
= ∇ = ∇ = − = 

 
∑ ∑   

The expression for T is  

( )( )
1 2

1
1 1 2

n

i i i i
i

i

T y x
n x

π π
=

 
 = − −  
  

∑  

and this is clearly going to be highly correlation with S. Therefore, the appropri-
ate variance for the IMT is ( )var | 0T S = . As T and S are sums of independent 
elements, the Central limit Theorem implies that ( )T,T S  is asymptotically 
Normal and so we can use  

( ) ( ) ( ) ( ) ( )1 Tvar | 0 var cov , var cov , .T S T T S S T S−= = −         (9) 

To work out ( )var | 0T S = , so, in this case we can write  

( ) ( ) ( )1 2 1var var var ,g g gn gT d d d n d = + + + =   

and similarly  

( ) ( ) ( ) ( )1 1 1var var ,cov , cov , .gS T S d= ∇ = ∇   

3.1. The Variance of IMT under Missing Covariates for Logistic  
Regression Model 

We now need to find expressions for ( )1var gd , ( )1var ∇  and ( )1 1cov ,gd ∇   
We already have that  

( )( )
2

1
1 2g i i i i

i

d y x
x

π π
 
 = − −  
  

 

and  

( )
1

i i i
i

y
x

π
 

∇ = −  
 

  

so, the variance is  

( ) ( ) ( ) ( )T Tvar g g g g gd E d d E d E d= −                (10) 

and we have  

( ) ( )

2

2 2T 2 3

2 3 4

1
1 2

i i

g g i i i

i i i

x x
d d y x x x

x x x
π π

 
 

= − −  
 
 

             (11) 

https://doi.org/10.4236/oalib.1107183


N. H. S. Badi 
 

 

DOI: 10.4236/oalib.1107183 6 Open Access Library Journal 
 

taking expectation |Y XE  we obtain  

( ) ( )( )1
2

1
1 2g X t i

i

E d E x
x

π π π
  
  = − −  
    

               (12) 

and,  

( ) ( )( )( )

2

2T 2 2 3
1 1

2 3 4

1
1 2 1 2 .g g X t

X X
E d d E X X X

X X X
π π π π

  
  

= − + −  
  

  

    (13) 

Now we need to compute ( )cov ,gd ∇ . In fact ( ) 0E ∇ = , not only if the 
model is correct but also when evaluated at the least false value *θ  (under 
wrong model), so in this case  

( ) ( )T
1 1cov , .g gd E d∇ = ∇   

and we have  

( )( ) ( )[ ]

( ) ( )

1

T
1

2

2 2

2 3

1
1 2 1

1
1 2

g i i

i

i

i i

i i

d y x y x
x

x
y x x

x x

π π π

π π

 
 ∇ = − − − 
  
 
 = − −  
  



 

then,  

( ) ( )( )( )
1

T 2 2
1

2 3

1
1 2 1 2 .g X t

X
E d E X X

X X
π π π π

  
  ∇ = − + −  
    

        (14) 

Now we will work out ( )var ∇ , as before, since ( ) 0E ∇ = , so  

( ) ( ) ( ) ( )
( ) ( )

2 2
T

1 | 2 2 2
var X Y X

Y Y X
E E E

Y X Y X

π π

π π

 − −
 ∇ = ∇ ∇ =
 − − 

    

and note that  

( ) ( )( ) ( )2 2 2
| | 1 2 1 2 ,Y X Y X tE Y E Yπ π π π π π− = − + = − +  

where, tπ  is ( )E Y  under the true model. So,  

( )
( ) ( )( )
( )( ) ( )( )

2 2

T

2 2 2

1 2 1 2
.

1 2 1 2

t t

X

t t

X
E E

X X

π π π π π π

π π π π π π

 − + − +
 ∇ ∇ =
 − + − + 

      (15) 

Hence, the required variance (9)  

( ) ( ) ( ) ( ) ( ) ( )( )1T T T T T
g g g g g gE d d E d E d E d E E d

−
− − ∇ ∇ ∇ ∇        (16) 

and we have expressions for each component from (12), (13), (14) and (15) We 
need to evaluate these components by simulation.  
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3.2. The Dispersion Matrix under Wrong Model 

In fact, may be some elements of the covariance matrix of the IMT are linear 
combinations of others leading to singularity of the estimated covariance matrix, 
this point discussed by [1] and [12]. We are interested to compute the 

( )var | 0T S = , even when the wrong model has been fitted. We will compute 
each of the components of this variance separately. We see from Section 3.1 that 
we need to evaluate, e.g.  

( ) ( )( )
2

1
1 2X tE d E X

X
π π π

  
  = − −  
    

 

and also,  

( ) ( ) ( )

2

2T 2 2 3

2 3 4

1
1 2 1 2 .X t

X X
E dd E X X X

X X X
π π π π

  
   = − + −   
  

  

 

This cannot be done analytically so we simulate 5000 values of X and replace 
the ( )E d  by the mean of these 5000 values. In evaluating tπ  we use the val-
ues of the parameters tα , 1tβ  and 2tβ . What do we use for π ? We need to 
evaluate ( )1,π α β  at the least false values *α  and *

1β  for α  and 1β . So, 
e.g, the first element of ( )E d  is found by simulation from 

( ) ( )( ) ( )( )* * * *
1 1 2 2 1 1 1 1expit expit 1 2expitX t t tE X X X Xα β β α β α β + + − + − +   

where,  

( )
( )

2 2 1*

2 2 2 2
2

,
1 1

t t

tk

α β µ ρµ
α

β σ ρ

+ −
=

+ −
                 (17) 

( )
* 1 2
1

2 2 2 2
21 1

t t

tk

β ρβ
β

β σ ρ

+
=

+ −
                 (18) 

and X draw from bivariate normal distribution with ( )1 2,µ µ µ= , and 2 2
1 2σ σ= . 

The formulae of the least false values *α  and *β  has been discussed and cal-
culated by [10]. 

4. Empirical Variance of IMT 

The expression in (16) is the variance V of d at θ̂  but we need an estimate, V̂ . 
If we have a sample ( ){ }1, | 1, ,i iy x i n=   how can we estimate V consistently? 
One candidate would be to compute  

( )( )
2

1
ˆ ˆ1 2 , 1, ,i i i i i

i

d y x i n
x

π π
 
 = − − = 
  

  

and  

( )
1

ˆ , 1, ,i i i
i

y i n
x

π
 

∇ = − = 
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where, ˆiπ  is the fitted value from the model with just 1x . Now compute  

T T

1 1 1

1 1 1ˆ
n n n

n i i i i
i i i

W d d d d
n n n= = =

  = −   
  

∑ ∑ ∑  

and  

( )2
2

1

11ˆ ˆ ,
n

i
n i

i i i

x
B y

x xn
π

=

 
= −  

 
∑  

( ) ( )2 2

1 2 3

1
1ˆ ˆ ˆ1 2

in

n i i i i
i

i i

x
C y x x

n
x x

π π
=

 
 = − −  
  

∑  

Then use  
1 Tˆ ˆˆ ˆ ˆ

n n n nV W C B C−= −                        (19) 

as an estimate of V, we will assess this by simulation. 

5. Simulation Study 

This simulation examines the correctness of the form of the dispersion matrix V 
in (16) and (19). To achieve the aim of this simulation, we will consider a logistic 
regression model which has two covariates draw from bivariate normal distribu-
tion with mean zero and covariance matrix Σ  as:  

( )1 1 2 2expitt t t tx xπ α β β= + +  

and the fitted model is  

( )1 1expit xπ α β= +  

• Apply in two cases of logistic model,  
• The fitted is the true logistic model (i.e. 2 0tβ = )  
• The fitted model is mis-specified (i.e. 2 0tβ ≠ ).  
• Use variance ( 2 2

1 2 2σ σ= = ) and correlation 0.1ρ = .  
• We choose some different components of parameters tα , 1tβ  and 2tβ  to 

calculate tπ .  
• We compute the least false values *α  and *

1β  by formulae to calculate π .  
• We compute the true variance by simulating id  and take the variance to be 

( )var trnd V= .  
• We compute the theoretical variance ( )var Td V=  at the least false value 

and calculate ( )1E d  and ( )T
1 1E d d  as described in section 3.2.  

• Finally, for each simulation we compute the empirical variance EV  and take 
the mean over the simulations.  

• We make comparison between the diagonal elements of dispersion matrix 
,E TV V  vs. trV  respectively.  

• Apply on different sample size 500,1000n =  and 5000N =  number of 
simulations.  

6. Results and Discussion  

The results were reported in tables, which show the diagonal elements of the va-
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riance matrix: EV  denotes the empirical variance, TV  denotes the theoretical 
variance and trV  denotes the true variance. The true parameters appear as tα , 

1tβ , and 2tβ ; ERn  and TRn  denote to the rank of the covariance matrix  

empirical and theoretical respectively. The Ratio ER  and TR  are E

tr

V
V

, 

T

tr

V
V

 respectively. ( ). tS D π  denotes the standard deviation over a sample  

where tπ  is the true model. In our simulation we consider two covariates, so in 
this case the dispersion matrix of d is a 3 × 3 dimensional matrix. 

Firstly, we consider the results under true logistic model, Table 1, shows the 
results of simulation, which appeared the diagonal elements of matrix V, the 
empirical version and theoretical form comparing with true variance, which use 

0.1ρ =  in case of 2 2
1 2 2σ σ= =  by sample size 500n = . Table 2, reported the 

results by sample size 1000n = , with equal variance 2 2
1 2 2σ σ= = . We can see 

clearly, that all diagonal elements appeared small in value in two different cases 
of sample size. The first element was much closer to zero than of the rest. In al-
most cases the results appeared reasonable ratio which is meaning the theoretical 
variance and empirical variance are close to the true value. There are some 
slightly strange ratio almost in case of sample size 500n = , the reason may be 
affected by small value of standard deviation of tπ  ( ). tS D π , otherwise the ra-
tio is close to one. In case of sample size 1000n = , the behaviour of results 
shows almost the same pattern, with the ratio close to one and that is meaning 
the formulae of the variance works well. In a few cases with small values of 

( ). tS D π  which affected on the ratio where the first two elements were more 
sensitive. Overall, we have reasonable results to say that, the alternative formulae 
of variance works well and the two first elements still more sensitive which ap-
peared tend to zero. 

Secondly, we consider the results when the missing covariate logistic model 
has been fitted. That is meaning when the variance of IMT computed under H1 
and uses the least false values. Table 3, shows the results of sample size 500n = . 
Table 4, shows the results of sample size 1000. In general, the behaviour of ratio  

 
Table 1. Simulation results of the variance ( trV ), ( EV ) and ( TV ) in case of fitted true model, with sample size 500n =  and 

2 2
1 2 2σ σ= = . 

Diagonal component of variance IMT and Ratio 

tα  1tβ  tπ  ( ). tS D π  ERn  TRn  EV  TV  trV  1R  2R  

0.80 0.50 0.68 0.14 3 3 2.4323e−04 2.4817e−04 2.4979e−04 0.99 0.99 

- - - - - - 4.2714e−02 4.6277e−02 4.3906e−02 0.99 1.02 

- - - - - - 1.9446e−01 2.1171e−01 2.0659e−01 0.97 1.01 

1.20 2.20 0.63 0.36 3 3 1.4666e−03 1.6904e−03 1.6126e−03 0.95 1.02 

- - - - - - 1.8138e−02 2.0199e−02 1.9872e−02 0.96 1.01 

- - - - - - 2.5199e−02 2.9136e−02 2.8595e−02 0.94 1.01 
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Table 2. Simulation results of the variance ( trV ), ( EV ) and ( TV ) in case of fitted true model, with sample size 1000n =  and 
2 2
1 2 2σ σ= = . 

Diagonal component of variance IMT and Ratio 

tα  1tβ  tπ  ( ). tS D π  ERn  TRn  EV  TV  trV  1R  2R  

0.80 0.50 0.67 0.14 3 3 2.4038e−04 2.4441e−04 2.4915e−04 0.98 0.99 

- - - - - - 4.3783e−02 4.4257e−02 4.4706e−02 0.99 0.99 

- - - - - - 1.9858e−01 1.9486e−01 1.0478e−01 0.98 0.98 

1.20 2.20 0.64 0.35 3 3 1.5709−03 1.6876e−03 1.6469e−03 0/98 1.01 

- - - - - - 1.9049e−02 2.0225e−02 2.0199e−02 0.97 1.00 

- - - - - - 2.6726e−02 2.9664e−02 2.7877e−02 0.98 1.03 

 
Table 3. Simulation results of the variance ( trV ), ( EV ) and ( TV ) in case of fitted missing covariates model, with sample size 

500n =  and 2 2
1 2 2σ σ= = . 

Diagonal component of variance IMT and Ratio 

tα  1tβ  2tβ  tπ  ( ). tS D π  ERn  TRn  EV  TV  trV  1R  2R  

0.80 0.50 0.4 0.66 0.18 3 3 2.3400e−04 2.5316e−04 2.3730e−04 0.99 1.03 

- - - - - - - 4.3984e−02 5.1198e−02 4.5628e−02 0.98 1.05 

- - - - - - - 1.9280e−01 2.3559e−01 2.0038e−01 0.98 1.08 

1.20 2.20 0.8 0.62 0.36 3 3 1.2620e−03 1.4252e−03 1.3850e−03 0.95 1.01 

- - - - - - - 2.1819e−02 2.3741e−02 2.3411e−02 0.97 1.01 

- - - - - - - 3.2250e−02 3.5432e−02 3.6766e−02 0.94 0.98 

 
Table 4. Simulation results of the variance ( trV ), ( EV ) and ( TV ) in case of fitted missing covariates model, with sample size 

1000n =  and 2 2
1 2 2σ σ= = . 

Diagonal component of variance IMT and Ratio 

tα  1tβ  2tβ  tπ  ( ). tS D π  ERn  TRn  EV  TV  trV  1R  2R  

0.80 0.50 0.4 0.66 0.18 3 3 2.3253e−04 2.6095e−04 2.2984e−04 1.01 1.06 

- - - - - - - 4.5129e−02 4.8176e−02 4.4637e−02 1.01 1,03 

- - - - - - - 1.9837e−01 2.3374e−01 2.0511e−01 0.98 1.06 

1.20 2.20 0.8 0.59 0.36 3 3 1.3404e−03 1.4576e−03 1.4116e−03 0.97 1.01 

- - - - - - - 2.2914e−02 2.4611e−02 2.3911e−02 0.98 1.01 

- - - - - - - 3.3481e−02 3.7438e−02 3.4621e−02 0.98 1.03 

 
appeared the same behaviour which found in case of 2 0tβ = , the two cases of 
different sample size appeared reasonable ratio which is close to one. A few cases 
shows low ratio, the reason is as discussed before concerning to the small value 
of ( ). tS D π . 
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7. Conclusion 

This paper carried out to investigate the behaviour of IMT and compute the co-
variance matrix under the wrong logistic regression model. As result, we can see 
that the alternative formula of the variance appeared reasonable results under the 
true and missing covariate model. As we computed the final form of the variance of 
IMT, we can see clearly it is dependent on ( )E d . As we know, we made some 
notes on the first two elements of ( )E d , which may be quite close to zero un-
der true model and use the least false value, the ( ) ( )( ) 0t tE E Xπ π π π− = − =  
related to the log likelihood functions. So, these elements leading to singularity 
of the estimated covariance matrix, and have effect on the behaviour of the dis-
persion matrix of the IMT. 
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