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Abstract 
Peatland ecosystem plays an important role in the global climate change be-
cause they act as a pool or sink of the gasses. There are several factors which 
influence the environmental consequences of peatland especially in relation 
to climate change. The main influences are: 1) carbon dioxide, 2) methane 
flux, 3) nitrous oxide (N2O) and 4) others environmental factors. These at-
mospheric gases concentrates constitute roughly 73 percent of the overall 
positive energy flux variation. Carbon dioxide is the greenhouse gas consi-
dered most consequential in Anthropocene climate change. Methane is a po-
tent greenhouse gas with a global warming potential 34 times greater than 
carbon dioxide in natural wetlands and the majority of these emissions are 
from peatlands. Nitrous oxide is one of the main pollutants in the ecosystem 
of peatlands and can cause eutrophication. This paper is a brief review on en-
vironmental factors influences to climate change in peatland ecosystems. It 
highlights the need for minimizing the negative effects of climate change on 
wetland ecosystem through proper management of peatlands. 
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1. Introduction 

Wetland ecosystems cover roughly 6% - 9% of the earth’s terrestrial surface. 
They are present in multiple regions across the globe, but are most abundant in 
the boreal and subarctic regions, where temperatures are cooler and precipita-
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tion amounts are favorable [1]. Wetlands have many characteristics which are 
notable in the presence of standing water, uniquely soil conditions and species, 
especially vegetation, that are adapted to and tolerant of saturated soils during 
the growing season. Hydrological conditions and the role of wetlands as eco-
tones between land and water systems are unique [2]. In nearly every part of the 
world, wetlands are located and while many cultures have lived among wetlands 
for several centuries, and even depended on them, modern wetland history until 
the 1970s was full of misunderstanding and fear. During the developing world, 
wetlands were destroyed at alarming rates. The preservation of wetlands in many 
parts of the world has thus become normal. They are sometimes referred to as 
landscape kidneys and “supermarkets” for the ecological services and habitat 
values they provide [2]. Peatlands are wetlands where development levels go 
above breakdown levels and protected beneath the living plants [3]. The widely 
accepted definition of a peatland is, “a wetland on which extensive organic ma-
terial has accumulated” [4]. Peat is a plant material partially decomposed. The 
most common of the peatlands are in the boreal regions, but also in temperate, 
tropical and mountainous regions [5] [6] [7]. Peatlands minimum peat mass of 
40 cm is required in the United States for classification as a grass, which catego-
rizes it as Histosol. Peatlands with a minimum thickness of 30 cm have been 
identified internationally [8]. Peatlands Have bogs and fens spread mostly in 
cold boreal areas throughout the world with ample over moisture. Bogs and fens 
can be formed in several ways, originating either from aquatic systems, as in 
flow through succession or quaking bogs, or from terrestrial systems, as with 
blanket bogs. Although many types of peatlands are identifiable, classification 
according to chemical conditions usually defines three types: 1) minerotrophic 
(true fens), 2) ombrotrophic (raised bogs), and 3) transition (poor fens). Fea-
tures of many peatlands include acidity caused by cation exchange with mosses, 
oxidation of sulfur compounds, and organic acids, low nutrients and primary 
productivity, slow decomposition, adaptive nutrient-cycling pathways, and peat 
accumulation. Peatlands collectively are the largest terrestrial storage of carbon 
on the planet and are seen as potential sources of carbon to the atmosphere if 
they are disturbed hydrologically or if climate shifts. Many of these lake basins 
were formed by the last glaciation, and the peatlands are considered to be a late 
stage of a filling-in process. The various characteristics of peatlands have been 
examined in multiple [9] [10]. However, most of the literature tends to be fo-
cused on peatland ecosystem function, especially their ability to sequester a large 
amount of Carbon in the soil [11]. Dead plant material in undisturbed peatlands 
does not decompose as rapidly as it accumulates as peat; making natural peat-
lands long term sinks of carbon. Moreover, on shorter time scales, natural peat-
lands are source or sink of carbon depending on the weather conditions of a 
given year [12] [13]. The carbon and water budgets of peatlands are intricately 
linked [14]. Disturbances that impact water storage and flows such as climate 
change or anthropogenic activities (e.g. peat extraction) lead to changes in peat-
land carbon cycle processes. The two dominant greenhouse gases exchanged 
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with the atmosphere from the surface of peatlands are carbon dioxide CO2 and 
methane CH4, both of which contribute significantly to global warming [15]. 
Around two thirds of photosynthesis carbon dioxide are produced in cellular 
respiration [16]. Approximately one third of the carbon is used in cell mainten-
ance and biomass processing. The bio-masses that have been produced contain 
starch, organic foods, amino acids, polysaccharides, enzymes, lipids and cellu-
loses. When your plant falls or dies biomass, labial carbon compounds can be 
quickly split up by microbes. Decomposed carbon compounds leave the system 
in the form of CO2, CH4 or DOC. Recalcitrant carbon compounds such as lignin 
are harder to decompose and will last a long time in the system. The decomposi-
tion rates of the microbial community are highly affected. Under the growing 
greenery, high water levels provide an anoxic environment. This anoxic zone 
helps the formation of peat through oxygen reduction during microbial degra-
dation, as an electron acceptor. Bacteria have been found to exploit rich minerals 
while fungi have occupied ombrotrophic sites [17]. Microbial communities have 
a stronger tolerance of acidic conditions [18]. Some bacteria can degrade lignin, 
but its effectiveness is limited. Related, peatlands are thus defined not necessarily 
by their climate or anyone floristic species, but by the physical and chemical 
properties that allow the long-term accumulation of incompletely decomposed 
plant material. Also, the high-water table effect to lowers soil organic carbon 
decomposition rates by anoxic conditions and the peatland further grows in 
depth [19]. Here, this review paper illustrated the effects of environmental fac-
tors and climate change on peatlands ecosystem, focusing on the effects of varia-
tion in carbon dioxide, methane flux, nitrous oxide and changes the environ-
mental factors in atmosphere composition on peatlands ecosystem. It highlights 
the need for minimizing the negative effects of climate change on wetland eco-
system through proper management of peatlands. 

2. Effect of Environmental Factors on the Peatland  
Ecosystem 

The Intergovernmental Panel on Climate Change (IPCC), has continuously 
analyzed and synthesized thousands of scientific data lines and advanced simu-
lations at different scales, as well as several research teams worldwide, to assert 
that not only are compelling signs of accelerated climate change, but also that 
strong evidence of anthropogenic behaviors are responsible for altering global 
temperature patterns. The IPCC (2013) [20] report indicates that global temper-
ature rise is predicted by 0.3˚C to 4.8˚C, over 1986-2005 by the end of the cen-
tury. The ever-increasing additions of gases to the atmosphere from burning of 
fossil fuels, where atmospheric gases concentrations have increased from 40% 
above pre-industrial levels, tend to accelerate these patterns [20]. Such atmos-
pheric gases concentrates constitute roughly 73 percent of the overall positive 
energy flux variation [21] [22], estimated by the latest global climate change of 
0.85˚C from 1880 to 2012 [20]. The cumulative impacts (temperature, atmos-
pheric gases and precipitation) of these climate change influences are likely to 
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alter peat environments around the world, disrupting many critical ecological 
mechanisms and functions [23]. As a result, several research goals for assessing 
the individual and interactive impact of these climate change influences on spe-
cific peatland ecosystem processes [24]. For example, by 2100 high latitude re-
gions are predicted to be up to 11˚C warmer than recent averages, about 7˚C war-
mer than the projected global average warming [20]. Accordingly, an important re-
search goal of winter peatlands is to consider the effect of climate change on struc-
ture and operation of the peatlands habitats in high-latitude environments [25]. In 
future climactic conditions, these increased climatic conditions are expected to 
cause many high latitude habitats to become warmer and drier in an unprecedented 
way than many other habitats across the globe, particularly in combination.  

3. Effect of Carbon Dioxide (CO2) 

Carbon dioxide is the greenhouse gas considered most consequential in Anth-
ropocene climate change [26]. Plants, cyanobacteria, and algae capture and de-
rive energy from atmospheric CO2 through photosynthesis; all aerobic organ-
isms produce CO2 through respiration. CO2 emissions from peatlands as well as 
that produced through decomposition [27] [28]. The physiological differences in 
peatlands must be considered. Temperature, water table and availability of or-
ganic substrates have been shown to be controlling factors of CO2 emissions 
from peatlands [29] [30]. The effect of water table height on CO2 has been 
shown in a number of peatland studies. Freeman et al. (1993) [31] found that 
CO2 emissions increased during a simulated drought in Welsh peatland of wales. 
Funk et al. (1994) [32] also found that CO2 emissions tripled when the water ta-
ble was lowered below the peat surface in microcosm cores of a bog near Fair-
banks, Alaska in March 1991. Chimner and Cooper (2003) [30] observed that 
CO2 fluxes were highest when temperature was high within the lowest water ta-
ble in Colorado subalpine fen in early June 1998. They attributed this to increas-
es in mineralization of plant material in the aerobic environment. No high cor-
relations were found between CO2 fluxes and any variable measured (depth, age, 
pH, water temperature, wind speed, transparency, etc.) in a number of lakes, 
rivers in peatlands of Candia [33]. CO2 flux has consistently increased in at-
mospheric during the modern era [34], and is critical to Earth’s present and fu-
ture climatic conditions. Related, a previous research demonstrates the varia-
tions of CO2 emissions from peatlands such as Draper et al. (2014) [35] has 
shown in 2014 the variation of carbon dioxide in Amazonian peatlands forests, 
USA was 3.14 g∙C∙m−2∙yr−1 (Table 1). Lloyd (2006) [36] in meadow peatland of 
Tadham, UK between 2000 to 2003 has shown the variation was 59 g∙C∙m−2∙yr−1 
(Table 1). Syed et al. (2006) [37] in Boreal fen of Alberta, Canada shows the var-
iation of carbon dioxide between (2002-2003) is −144 g∙C∙m−2∙yr−1 (Table 1). A 
number of novel methods, notably the cuvette method, were developed to meas-
ure CO2 exchange in both laboratory settings and in situ prior to modern mi-
crometeorological technology [38]. Based on Table 1, the emergence of an ap-
preciable body of literature on carbon exchange in fen peatlands using eddy  
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Table 1. Carbon dioxide observations from peatlands ecosystems around the world. 

Year Country Site Type 
Value  

g∙C∙m−2∙yr−1 
Source 

2014 Amazonian peatlands, USA  peatland forests 3.14 Draper et al. (2014) [35] 

2002 Tadham.UK 
5181202600N, 
2849’4300W 

meadow 59 Lloyd (2006) [36] 

2003-2004 Alberta, Canada 54.95˚N, −112.47˚E Boreal fen −144 Syed et al. (2006) [37] 

2014-2016 Newfoundland, Canada 48.26˚N, −58.67˚E Boreal bog −46 ± 35 Wang et al. (2018) [46] 

2004-2005 Pirkanmaa, Finland 61.83˚N, 24.19˚E Boreal fen −111 Aurela et al. (2007) [41] 

1997-2002 Lapland, Finland 69.13˚N, 27.28˚E Subarctic fen −21.5 ± 19.8 Aurela et al. (2004) [47] 

2012-2013 Bavaria, Germany 47.80˚N, 11.32˚E Temperate bog pine −62 Hommeltenberg et al. (2014) [48] 

2002-2012 Kerry, Ireland 51.92˚N, 9.92˚E Atlantic blanket Bog −55.7 ± 18.9 McVeigh et al. (2014) [49] 

4.5-year record Norwegian, Norway 69.13˚N, 16.01˚E Boreal blanket bog −19.5 ± 18.3 Lund et al. (2015) [50] 

2005-2006 Skåne, Sweden 56.25˚N, 13.55˚E Temperate bog −21 ± 5.4 Lund et al. (2009) [51] 

2009-2011 Minnesota, USA 47.51˚N, −93.49˚E Temperate poor fen −19 Olson et al. (2013) [52] 

2006-2007 Ontario, Canada 45.41˚N, −75.48˚E Cool-temperate bog −40.2, −104 Strilesky and Humphreys (2012) [53] 

 
covariance techniques in Lapland, Finland in 1997s and 2002s was found −21.5 
± 19.8 g∙C∙m−2∙yr−1. Related, researchers have elicited several important factors 
or drivers of peatland CO2 exchange, including but not limited to plant commu-
nity structure and composition [38] [39]; weather conditions [40] [41]; volume-
tric soil moisture [42] [43]; and water table position [44] [45]. Table 1 illustrated 
the carbon dioxide has an effect on different kinds of peatland. 

4. Effect of Methane Flux (CH4) 

Methane is a potent greenhouse gas with a global warming potential 34 times 
greater than carbon dioxide in natural wetlands [54] [55] [56]. The majority of 
these emissions are from tropical wetlands and peatlands [57]. Anaerobic condi-
tions of peatlands as well as accumulation of large amounts of organic matter 
provide a favorable environment for CH4 production [58]. Methane production 
is inhibited by sulfate as sulfate-reducing bacteria out-compete methanogenic 
bacteria for organic substrates [59]. Global CH4 cycling is driven naturally by 
microbial activity underneath the earth’s soil surface of the peatland area [60]. If 
the soil of a wetland is not completely inundated, CH4 will be consumed via oxi-
dation by methanotrophic bacteria in the aerobic layer (vadose zone) of the soil. 
Methanogenic Archaea convert fermented organic matter into CH4 through the 
acetate pathway (acetogenic microorganisms) or the hydrogen pathway (hydro-
genic microorganisms); though acetogenesis is more common worldwide and in 
fens, hydrogenesis tends to dominate in ombrotrophic bogs lacking acetate from 
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vascular vegetation [60] [61]. Once produced by these anaerobes, CH4 gas can 
reach the atmosphere by three processes: direct diffusion through the soil, epi-
sodic ebullition events releasing “bubbles” of CH4 gas; and root transport 
through the aerenchyma vessels of plants such as Typha [55] [62] [63]. Domi-
nant determinants of CH4 emissions from peatlands are water table position, soil 
temperature, quality and availability of substrate, and mode of gas transport to 
the atmosphere [64]. Freeman et al. (1993) [31] observed decreased CH4 flux in 
peat microcosms during a simulated drought but poor correlations were found 
between CH4 flux and water table height. Methanogenesis is the process by 
which certain Archaea produce CH4 in anaerobic environments, such as in 
flooded wetlands below the water table. A meta-review of 87 peatland studies by 
Abdalla et al. (2016) [65] found the primary controls of peatland CH4 flux to be 
soil pH, vegetation composition, and water table depth. Methane also has sec-
ondary impacts on ambient aerosols, ozone and other compounds [66]. Table 2 
demonstrates positive correlations between CH4 flux and different kinds of 
peatlands ecosystem, in 1998-2004, the concentration of atmospheric CH4 is 0.06 
- 0.08 µmol∙m−2∙s−1 in bog peatland of Canada. In 2005, the concentrations of 
CH4 are 0.02 - 0.06 µmol∙m−2∙s−1 in Blanket peat of England [67] fluxes in a 
northern peatland. The various natural CH4 sinks and sources may significantly 
contribute to global change in CH4 abundance. From 2011-2014, the variation of 
methane flux in Minnesota peatland of USA is 0.3 - 0.5 µmol∙m−2∙s−1 [68]. 
 

Table 2. Methane flux observations from peatlands ecosystems around the world. 

Year Country Site Type 
Value 

µmol∙m−2∙s−1 
Source 

2006-2007 Scotland 55˚480N, 3˚14035W Peatlands 0.10 ± 0.02 Dinsmore et al. (2009) [69] 

1995 Scotland 55˚050N Bog 0.01 Clymo et al. (1995) [70] 

2003-2005 Ireland 51˚550N Bog 0.2 Laine et al. (2007) [71] 

2003-2008 Ireland 51˚550N Bog 0.01 Koehler et al. (2011) [72] 

2011-2014 USA N47˚30.4760; W93˚27.162 Minnesota peatland 0.3 - 0.5 Hanson et al. (2016) [68] 

2009-2011 USA 47.505N, −93.489W Fen 0.22 - 0.29 Olson et al. (2013) [52] 

2008-2011 USA 46˚190N, 86˚030W Fen 0.002 - 0.011 Ballantyne et al. (2014) [73] 

2002-2003 Canada 45˚250N, 75.48˚W Bog 0.7 Moore et al. (2011) [74] 

2009-2010 Canada 45.41˚N, 75.52˚W Bog 0.6 Lai et al. (2014) [75] 

1998-2004 Canada 45.411N, 75.481W Bog 0.06 - 0.08 Roulet et al. (2007) [12] 

2003-2004 Canada 45˚410N Bog 0.01 - 0.03 (Blodau et al. 2007) [76] 

1998 Canada 45˚330N, 66.49W fen and bog 0.17 Moore and Knowles (1990) [77] 

2005 England 54˚650N, 2˚45’W Blanket peat 0.02 - 0.06 McNamara et al. (2008) [67] 
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5. Effect of Evapotranspiration (ET) 

High biodiversity and hydrological functions including flood control, low flux 
support, nutrient cycling, and ground water recharge have become increasingly 
recognized in wetlands. Hydrology of peatlands is a key driving force for the en-
vironment, its development and its continued existence for water quality as-
sessment, the exact calculation of water loss from ET is quite relevant [78], 
making proper water resources plans [79]. However, Different types of peatlands 
are difficult, expensive and seldom available to direct ET measurement. A num-
ber of studies have been carried out on peatlands evapotranspiration, due to the 
different conditions of peatland and the methods used, the results have differed 
greatly [79] [80] [81]. Researchers explored the available methods for quantify-
ing evapotranspiration and concluded that covariance of eddies is an especially 
promising instrument. Recent advances in the reliability of eddy covariance de-
vices have allowed long-term eddy covariance data to be collected above several 
types of vegetation [82] [83], including wetlands [84] [85]. 

ET is released from molecular diffusion, boiling and plant transportation to 
the atmosphere [86]. Many factors affect ET flux mechanisms, including water 
conditions [87] [88], and latent heat flux (LE), the largest consumer of incoming 
energy [89] [90]. With increasing temperatures and precipitation, peatlands have 
undergone significant climate change. Environmental factors that increase ET in 
the atmosphere affect the composition and productivity of plant species [91]. 
Figure 1 illustrated the daily variation of ET was 0.028 from January till end of 
march 2018 in Dajiuhu peatland in central china and agree with a previous study 
in a bog peatland in southern Ontario of Canada, and the results indicate a 
number of characteristics of the association of ET ratio for all days was 0.517 
mm/hr, this results suggesting there was strong surface control on daily ET at 
this site [88]. Cao et al. (2020) [92] illustrated, the daily ET in growing periods 
varied from 0.28 to 4.73 mm/hr in the Qinghai Lake basin, of northwest China. 
ET has flux to the atmospheric due to a variation of environmental variables and 
peat respiration. 
 

 
Figure 1. Daily variation of evapotranspiration from January 
until March of 2018 in peatland of Central China. 
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6. Effect of Nitrous Oxide (N2O) 

Nitrous oxide is one of the main pollutants in the ecosystem of peatlands and 
can cause eutrophication, affect water-borne oxygen levels and increase the aq-
uatic species toxicity. Nitrous oxide exists in wetlands ecosystem an inorganic 
forms and recognized the inadequacy in the number. Groffman et al. (1998) [93] 
studies relating high denitrification rates and N2O emissions in riparian areas 
and further suggests that N2O emissions may be low due to the highly anaerobic 
conditions found in many riparian zone soils. Table 3 demonstrated increased 
in nitrous oxide emissions in permafrost of Finland in 2012 and the values are 
2.81 ± 0.6 mg∙m−2∙d−1 [94]. In a review by Saunders and Kalff (2001) [95] denitri-
fication accounted for 63% of total N2O removal in lakes. Combined studies of 
denitrification and N2O emissions are lacking and the contribution of N2O emis-
sions from prairie wetlands is not well defined but is expected to be low as the 
water-saturated environment would promote the formation of N2 rather than 
N2O as N2 is the dominant gas produced when the waterfilled pore space exceeds 
80% [96].  

The few existing N2O estimates from water bodies come from an extensive 
study by Tremblay et al. (2005) [33] in which 125 water bodies were sampled for 
greenhouse gases N2O and other nitrogen oxides are formed during nitrification 
and denitrification processes at suboptimal conditions [97]. Martikainen et al. 
(1993) [98] demonstrate N2O emission may be affected by various operating pa-
rameters and environmental conditions such as Dissolved oxidation, oxida-
tion-reduction potential and water temperature, among other factors in 1992 of 
Finland peatland. The formation of nitrogen oxides can be avoided by high 
BOD/N ratio and low O2/NOx ratios for denitrification, long denitrification res-
idence time, and avoiding simultaneous NH4 oxidation and NO2-reduction [97]. 
Arai et al. (2014) [99] explained the change affects microbial biomass and fluxes 
of carbon dioxide and nitrous oxide in tropical peatlands of Indonesia and the 
value is 26.06 mg∙m−2∙d−1 between 2009-2011 (Table 3). A previous research by  
 

Table 3. Nitrous Oxide observations from peatlands ecosystems around the world. 

Year Country Site Type 
Value 

mg∙m−2∙d−1 
Source 

1992 Finland 62.51N, 30.53E peatland 2.5 - 8.6 Martikainen et al. (1993) [98] 

1977-2006 Russian 671030N, 621570E permafrost peatlands 0.9 - 0.1 Marushchak et al. (2011) [101] 

1998-1999 Malaysia  Tropical peatlands 1.04 Hadi et al. (2000) [102] 

1961-1990 Finland 
60˚21˚N, 25˚03˚E, −61˚23˚N, 

25˚03˚E, 125 
forest peatlands 0.945 - 0.246 Huttunen et al. (2003) [103] 

1991-1996 Finland 61˚48˚N, 24˚19˚E, boreal peatland 1.7 Nykänen et al. (2002) [104] 

2012 Finland 68˚89’N, 21˚05’E permafrost 2.81 ± 0.6 Voigt et al. (2017) [94] 

2009-2011 Indonesia 
2˚17’ - 2˚21’S,  

113˚54’ - 114˚01’E 
tropical peatlands 26.06 Arai et al. (2014) [99] 
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Khirul et al. (2020) [100] approved that the total nitrogen and slightly increased 
nitrate/nitrite, probably due to the facilitation of microbial degrading activity in 
the southeast coast of South Korea. 

7. Conclusion 

This paper is brief review to illustrate the effects of environmental factors and 
climate change on wetlands ecosystem. Principal processes leading to the pro-
duction and sinking of carbon dioxide, methane flux and Nitrous oxide in peat-
land ecosystem of china are presented and discussed mainly. The cumulative 
impacts atmospheric gases of these climate change influences are likely to alter 
peat environments around the world, disrupting many critical ecological me-
chanisms and functions. It is apparent that there is need for continued short and 
long-term research to better understand peatlands ecosystem and how they af-
fect our climate. This will hopefully provide the basis for predicting better what 
could happen under various scenarios.  
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