
Open Access Library Journal
2020, Volume 7, e6799
ISSN Online: 2333-9721

ISSN Print: 2333-9705

DOI: 10.4236/oalib.1106799 Sep. 23, 2020 1 Open Access Library Journal

Parallel Self-Timed Adder
with Lookahead-Carry
Generator

Mohammad Ashfak Habib

Department of Computer Science and Engineering, Chittagong University of Engineering and Technology, Chittagong,
Bangladesh

Abstract
Parallel self-timed adder (PASTA) is a newly introduced asynchronous adder.
It shows appreciable average-case performance without any special speedup
circuitry or look-ahead schema, but its worst-case performance is almost sim-
ilar to that of ripple carry adder. It is therefore an important research issue to
find a technique to improve its worst-case performance without any signifi-
cant compromise in its other performances. This paper investigates the possi-
bility of such performance improvement of the basic architecture of PASTA
by changing its carry propagation schema. The existing ripple fashioned carry
propagation schema is replaced by four different lookahead-carry generators.
Four different implementations of PASTA with four different types of loo-
kahead-carry generators are presented. The carry propagation delays of the
proposed implementations are compared with that of the basic implementa-
tion of PASTA. More impressive worst case performances are found for the
proposed implementations. The amount of improvement is minimum 45.25%
and maximum 61.09%. The proposed designs are regular and do not have any
practical limitations of fan-ins or fan-outs. Simulation-based results validate
the practicality as well as the superiority of the proposed architecture over the
existing architecture of PASTA.

Subject Areas
Computer Architecture, Digital Electronics

Keywords
Arithmetic Circuit, Binary Adder, Asynchronous Circuit, Self-Timed Adder,
Parallel Prefix Adder

How to cite this paper: Habib, M.A.
(2020) Parallel Self-Timed Adder with
Lookahead-Carry Generator. Open Access
Library Journal, 7: e6799.
https://doi.org/10.4236/oalib.1106799

Received: September 7, 2020
Accepted: September 20, 2020
Published: September 23, 2020

Copyright © 2020 by author(s) and Open
Access Library Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://doi.org/10.4236/oalib.1106799
http://www.oalib.com/journal
https://doi.org/10.4236/oalib.1106799
http://creativecommons.org/licenses/by/4.0/

M. A. Habib

DOI: 10.4236/oalib.1106799 2 Open Access Library Journal

1. Introduction

Statistical analysis shows that, in a prototypical RISC machine, 72 percent of the
instructions perform addition (or subtraction) in the datapath [1] [2]. It is even
reported to reach 80 percent in ARM processors [3]. Therefore, binary addition
is one of the most common arithmetic operations that a computer processor
performs. According to the hardware design principal, make the common case
fast [4], faster hardware for addition operation can achieve faster processor. De-
signing a faster binary adder is therefore an interesting research issue.

Researchers are thoroughly investigating the addition operation since the be-
ginning of modern computing [5] and they are still working on it. Recently the
architecture and performance of a new adder PASTA have been discussed by
Rahman et al. [6], which uses recursive process for generating the final result.
Though PASTA is an asynchronous adder and uses ripple fashioned carry prop-
agation technique, its performance is compared with various reputed synchron-
ous and asynchronous adders and shown competitive in all respect [6]. The
mentionable achievements of PASTA are: simple design (area and interconnec-
tion-wise equivalent to ripple carry adder), logarithmic average time perfor-
mance and highly practical and efficient completion detection unit.

PASTA is a self-timed adder and it has a completion detection mechanism.
An adder which can announce the completion of its operation can take the ad-
vantage of the shorter average-case propagation delay and, in turn, exhibit aver-
age case performance [7]. Some recent studies [8] [9] [10] [11] [12] further in-
vestigated the architecture of PASTA but none of those studies changed its carry
propagation technique. Though PASTA has appreciable average case perfor-
mance, improving its worst case performance can make it more acceptable. This
paper presents four different enhanced architectures of PASTA with modified
carry propagation technique. This modification makes its worst case delay nearly
half without adversely degrading its other performances. The proposed imple-
mentations are not only appropriate for asynchronous systems but also suitable
for Globally Asynchronous Locally Synchronous (GALS) systems [13] because of
their improved worst case performance and efficient completion detection me-
chanism. For the ease of explanation, the term Enhanced Parallel Self-Timed
Adder (EPASTA) is used to indicate the proposed adder circuits.

2. Methods

Total nine different 16-bit adders are implemented. Five of them are existing
adders and the remaining four are the four different varieties of the proposed
EPASTA. The carry propagation delays of the proposed adders are compared
with the delays of the existing adders.

2.1. Existing Adders

The basic architecture of an n-bit PASTA is adopted from [6] and it is illustrated
in Figure 1. One can intuitively understand, by examining the architecture of

https://doi.org/10.4236/oalib.1106799

M. A. Habib

DOI: 10.4236/oalib.1106799 3 Open Access Library Journal

Figure 1. General block diagram of PASTA [6].

PASTA, that the carry propagation mechanism of this adder is similar to that of
the basic ripple carry adder. Its operation is divided into two phases namely Ini-
tial Phase and Recursive Phase. The common selector (SEL) sends signal for all
the 2 × 1 multiplexers. It determines the appropriate phase. In initial phase SEL
= 0 and in recursive phase SEL = 1. In initial phase the multiplexer in the ith bit
position allows ai and bi to go to the corresponding half adder and the half adder
produces the initial values of the sum (Si) and the output carry (1iC +) bits. In the
recursive phase, the feedback path allows the initial sum to be added to the input
carry Ci recursively. The values of the sum and the output carry bits are recalcu-
lated for every recursion cycle. The recursion is terminated when the stopping
criterion is met. The completion detection unit produces an asserted Terminate
signal for indicating the completion of operation.

The lookahead-carry generation techniques of four well known tree-like pa-
rallel synchronous adders are used in the EPASTA. Chosen parallel synchronous
adders are: Block Carry Lookahead Adder (BCLA), Kogge Stone Adder (KSA),
Brent-Kung Adder (BKA) and Sklansky’s Conditional Sum Adder (SCSA).
These adders are well known and have preferable worst-case performances. The
basic structures of these adders were explained in [14] [15] [16] [17]. Four types
of sub-circuits are repeatedly used in these adders. For the ease of explanation,
these sub-circuits are termed in this paper as modules and are represented by
four different symbols. These sub-circuits and their corresponding symbols are
shown in Figure 2. Here, i, j and k indicate the bit positions, where i ≥ j ≥ k. The
X-module is used in all four types of adders. This module of the ith bit position
computes the following outputs:

 , i i iCarry Propagate p a b= ⊕ (1)

 , i i iCarry Generate g a b= ⋅ (2)

, i i i iSum S a b c⊕ ⊕= (3)

Here, ai and bi are the ith bit of the n-bit operands A and B respectively. The
symbol, Ci represents input carry of ith position or the carry output of the (i-1)th
position. For all these expressions 0,1, , 1i n= − . The BCLA uses the Y-module
that computes the carry bits. It also computes the block-carry-propagate and the
block-carry-generate signals as follows:

https://doi.org/10.4236/oalib.1106799

M. A. Habib

DOI: 10.4236/oalib.1106799 4 Open Access Library Journal

Figure 2. Four repeatedly used sub-circuits and their corresponding symbols.

, , 1, , i k i j j kBlock Carry Propagate P P P −= (4)

, , , 1, , i k i j i j j kBlock Carry Propagate G G P G −= + (5)

1, 1,, j j k j k kCarry C G P C− −= + (6)

where, ,i i iP p= and ,i i iG g= .
The other three adders (KSA, BKA and SCSA) use gray-module and

white-module in addition with X-module. These adders also operate on the
principle of Block Carry Propagate and Block Carry Generate [14] [15]. The
gray-module and the white-module are the subdivisions of the Y-module of
BCLA. The gray-module computes the Block Carry Propagate and Block Carry
Generate whereas the white-module computes the carry Cj. The internal circuits
of the gray-module and the white-module are shown in Figure 2(c) and Figure
2(d) respectively.

2.2. Enhanced Parallel Self-Timed Adder (EPASTA)

The basic architecture of PASTA has a uniform design. An n-bit PASTA is con-
structed from n+1 similar blocks of circuitry. In the rest of this paper the circui-
try of each block of PASTA is termed as a PASTA-block. Structure of a
PASTA-block is shown in Figure 3(a). This PASTA-block is used in the pro-
posed architecture. In order to increase the visibility of the EPASTA architec-
ture, a symbol is defined to represent this PASTA-block as shown in Figure
3(b). The new symbol is termed as EP-module. For the sake of simplicity of the
figure, the SEL terminal is not shown in the EP-module.

Carry propagation in PASTA is similar to that of ripple carry adder. Therefore
the worst case computation time of PASTA is not so satisfactory. Adders having
lower worst case computation time, computes carry earlier by using lookahead

https://doi.org/10.4236/oalib.1106799

M. A. Habib

DOI: 10.4236/oalib.1106799 5 Open Access Library Journal

Figure 3. PASTA-block and a symbol to represent it in the EPASTA.

carry generation techniques. Any carry can be computed by using only two le-
vels of basic logic gates [4], but the size of the circuit increases exponentially
with the size of the operands. For large operands (n > 4) it is impractical and in-
efficient to use two level of logic for carry computation because of the limitation
of fan-in and fan-out, irregular structure, use of many long wires, etc. [1] [18].
Therefore, the practical carry-lookahead schemas usually use tree-like circuits
that have simple regular structures [1] [16] [19] [20] [21]. Four different archi-
tectures of EPASTA, having four different lookahead-carry generation schemes,
are presented below.

The 0
iS and the 0

1iC + terminals of the EP-module, in the initial phase, can
be expressed as 0

i i iS a b⊕= and 0
1i i iC a b+ = ⋅ . These outputs are same as the

ip , ig outputs of the X-module. In the first cycle of iterative phase, the Sum
terminal of the EP-module will produce 1 0

i i i i i iS S C a b C⊕= =⊕ ⊕ . This output
is exactly same the Sum output of the X-module. Therefore, the EP-module is
equivalent to the X-module. The EPASTA circuits are implemented by replacing
the X-modules of the four selected tree-like parallel adder circuits. The first of
the four architectures of 16-bit EPASTA, which is constructed by replacing the
X-modules of BCLA with the EP-modules, is shown in Figure 4. In order to
store the correct value of Cout an additional EP-module is attached after the most
significant bit position. Moreover for sensing the completion of operation a
completion detection unit similar to that of PASTA is attached. This version of
EPASTA uses the lookahead-carry generator of BCLA for computing the carry
bits.

It has been shown that the X-module and the EP-module are interchangeable.
So, the second version of EPASTA, which uses the lookahead-carry generator of
KSA, can be constructed easily by replacing the X-modules of KSA with the
EP-modules. Similar to the previous version of EPASTA an additional
EP-module should be added for storing the correct value of Cout. A completion
detection unit should be added for sensing the completion of operation. Figure
5 illustrates the architecture of a16-bit EPASTA with lookahead-carry generator
of KSA.

Similar procedure is followed to construct the other two versions of EPASTA.
The X-modules of the BKA and SCSA are replaced by the EP-modules. Both the

https://doi.org/10.4236/oalib.1106799

M. A. Habib

DOI: 10.4236/oalib.1106799 6 Open Access Library Journal

Figure 4. Architecture of a 16-bit EPASTA with lookahead-carry generator of BCLA.

Figure 5. Architecture of a 16-bit EPASTA with lookahead-carry generator of KSA.

implementations require an additional EP-module for capturing the final value
of Cout. The completion detection unit is also included in both the implementa-
tions for realizing the completion of operations. The EPASTA implementations
with the lookahead-carry generators of BKA and SCSA are illustrated in Figure
6 and Figure 7 respectively.

https://doi.org/10.4236/oalib.1106799

M. A. Habib

DOI: 10.4236/oalib.1106799 7 Open Access Library Journal

Figure 6. Architecture of a 16-bit EPASTA with lookahead-carry generator of BKA.

Figure 7. Architecture of a 16-bit EPASTA with lookahead-carry generator of SCSA.

https://doi.org/10.4236/oalib.1106799

M. A. Habib

DOI: 10.4236/oalib.1106799 8 Open Access Library Journal

3. Results

In this section the simulation results are presented for all the adders that are
discussed in this paper. Though the illustrated adders are 16-bit adders, actually
32-bit versions of those adders are implemented for simulation. All the simula-
tion are done by using an industry standard software tool and executed on 64 bit
Linux platform. Simulation is performed for three different TSMC processes.

Three different types of adder operation are analyzed and those are: worst-case,
best-case and average case. The best-case addition does not involve any carry
propagation and hence incurs only a single bit adder delay for producing the re-
sult. The worst-case involves maximum carry propagation cascaded delays due
to the propagation length of 32-bits. The average case shows how the separate
carry propagation is limited within their individual propagation chain and can
progress simultaneously with the other carry propagation chains. Some
test-cases, representative of these cases, are chosen. The dataset used for this ex-
periment is summarized in Table 1. The expected carry chain length for n-bit
binary numbers is established in [22]. A carry chain length indicates the maxi-
mum number of consecutive PASTA-blocks that propagate a carry bit (1). While
adding two n-bit binary numbers, a carry chain length m indicates that a carry
bit will propagate through maximum of m consecutive PASTA-blocks for at
least once in the whole n-bit addition operation. Since carry chain length is a
factor, five different random numbers are chosen. Among these numbers, three
have maximum carry chain length of 5 and two have maximum carry chain
length of 6. Thus they represent an average carry chain length of 5.4. The delay is
measured at 70% transition point for the related signals.

The delay performances of different adders are shown in Table 2. It is divided
into three parts to differentiate between conventional synchronous parallel ad-
ders, basic architecture of PASTA and four versions of EPASTA. The top part
shows the results for conventional adders (i.e. BKA, BCLA, KSA and SCSA).
Worst-case delay is important for these adders because they do not have any
completion sensing mechanism. The adders in the middle and the bottom part

Table 1. Dataset for comparing different adders.

Test Case Operand A Operand B
Maximum Carry

Chain Length

Worst Case FFFF FFFF 0000 0001 32

Average Case 1 0501 6A44 FC3F 0499 6

Average Case 2 3F05 0FC0 0130 0041 6

Average Case 3 0902 6A44 F83E 0499 5

Average Case 4 3E05 0F80 0230 0081 5

Average Case 5 0052 40A2 57C5 0F84 5

Bast Case 55E1 9D5C AA1E 62A3 0

https://doi.org/10.4236/oalib.1106799

M. A. Habib

DOI: 10.4236/oalib.1106799 9 Open Access Library Journal

Table 2. Spice timing report for different 32-bit adders.

Process
TSMC 0.35μ (Vdd = 3.3V) TSMC 0.25μ (Vdd = 2.5V) TSMC 0.18μ (Vdd = 1.8V)

Best (ns) Avg. (ns) Worst (ns) Best (ns) Avg. (ns) Worst (ns) Best (ns) Avg. (ns) Worst (ns)

BKA 0.3090 1.4493 2.8693 0.2251 1.2158 2.4743 0.1342 0.8497 1.7939

BCLA 0.2039 1.3224 2.6980 0.1432 1.1601 2.3761 0.0796 0.8207 1.7342

KSA 0.3245 1.3423 1.7786 0.2383 1.1238 1.5254 0.1468 0.7823 1.0931

SCSA 0.3094 1.4563 2.5772 0.2254 1.2232 2.2399 0.1346 0.8580 1.6168

PASTA 0.6313 2.0387 9.0872 0.9593 1.9673 8.1748 1.8610 2.8601 7.6258

EPASTA-BKA 1.1919 3.1586 4.4193 1.2188 2.8962 3.9819 2.9017 2.8594 4.1784

EPASTA-BCLA 1.0021 2.8991 4.0468 1.0444 2.6826 3.6860 2.5684 2.6333 3.7517

EPASTA-KSA 1.1957 3.2059 3.6728 1.2244 2.9455 3.3933 2.9138 2.8426 2.9672

EPASTA-SCSA 1.1903 3.2221 4.5280 1.2270 2.9578 4.0840 2.8942 2.9153 3.8388

are asynchronous adders which have completion detection mechanism and
whose complete operation is divided into two phase (initial phase and recursive
phase). So for computing the delay of these adders the following relation is used:

total initial recursivet t t= +

Here tinitial represents the time required for the state transition of the initial
phase and trecursive represents the delay between SEL and the Terminate signals.
The value of ttotal is listed in Table 2. Since the major concern of this study is to
analyze the performance of the proposed adders with respect to PASTA, the
minimum delays of the asynchronous adders are shown in bold face.

Table 2 shows that all of the four proposed architectures of EPASTA give
better worst-case delay compared to that of PASTA and the amount of im-
provement is minimum 3.45 nS and maximum 4.66 nS (i.e. minimum 45.25%
and maximum 61.09%). Though, with respect to PASTA, the best-case and av-
erage case delays of EPASTA increase most of the time, the amount of this in-
crement is not so high (maximum 1.18 nS).

Among the four proposed architectures, EPASTA with lookahead-carry gene-
rator of KSA gives best result for the worst case. For the other two cases (best
case and average case), EPASTA with lookahead-carry generator of CLA per-
forms better than the other architectures of EPASTA.

4. Conclusion

The major objective of this paper was to analyze the practicality of using the
lookahead-carry generator with the newly introduced self-timed adder PASTA.
Moreover, this study also investigates a probable solution to improve the worst
case performance of PASTA. The results show that the proposed architecture
gives better worst case performance than the basic architecture of PASTA with-

https://doi.org/10.4236/oalib.1106799

M. A. Habib

DOI: 10.4236/oalib.1106799 10 Open Access Library Journal

out major compromise of the best and average case performances. Moreover,
these results also support the practicality of the proposed architecture of
self-timed adders.

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this
paper.

References
[1] Hennessy, J.L. and Patterson, D.A. (1990) Computer Architecture: A Quantitative

Approach. Morgan Kaufmann, Waltham.

[2] Franklin, M.A. and Pan, T. (1994) Performance Comparison of Asynchronous Ad-
ders. Proceedings of IEEE Symposium on Advanced Research in Asynchronous
Circuits and Systems, Salt Lake City, 3-5 November 1994, 117-125.
https://doi.org/10.1109/ASYNC.1994.656299

[3] Garside, J.D. (1993) A CMOS VLSI Implementation of an Asynchronous ALU. In:
Furber, S. and Edwards, M., Eds., Asynchronous Design Methodologies, IFIP
Transactions, North Holland, 181-192.

[4] Patterson, D.A. and Hennessy, J.L. (2014) Computer Organization and Design: The
Hardware/Software Interface. 5th Edition, Morgan Kaufmann, Waltham.

[5] Zimmermann, R. (1997) Binary Adder Architectures for Cell-based VLSI and Their
Synthesis. Ph.D. Dissertation, Swiss Federal Institute of Technology, Zurich.

[6] Rahman, M.Z., Kleeman, L. and Habib, M.A. (2014) Recursive Approach to the De-
sign of a Parallel Self-Timed Adder. IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems, 23, 213-217. https://doi.org/10.1109/TVLSI.2014.2303809

[7] Johnson, D. and Akella, V. (1998) Design and Analysis of Asynchronous Adders.
IEE Proceedings—Computers and Digital Techniques, 145, 1-8.
https://doi.org/10.1049/ip-cdt:19981770

[8] Jayanthi, A.N. (2019) Performance Improvement in VLSI Adders. International
Journal of Research in Arts and Science, 5, 76-87.
https://doi.org/10.9756/BP2019.1002/07

[9] Sivakumar, M. and Omkumar, S. (2018) Design and FPGA Implementation of
FBMC Transmitter by Using Clock Gating Technique based QAM, In verse FFT
and Filter Bank for Low Power and High Speed Applications. Journal of Electrical
Engineering & Technology, 13, 2479-2484.

[10] Jhamb, M. (2017) Efficient Adders for Assistive Devices. Engineering Science and
Technology, 20, 95-104. https://doi.org/10.1016/j.jestch.2016.09.007

[11] Vigneshwari, R., Jayasimha, T. and Sasikumar, P. (2017) Power Analysis by Com-
bining the Modules PASTA Using DGMOSFET. Advances in Natural and Applied
Sciences, 11, 691-698.

[12] Sivakumar, M. and Omkumar, S. (2016) Integration of Optimized GDI Logic Based
NOR Gate and Half Adder into PASTA for Low Power & Low Area Applications.
International Journal of Applied Engineering Research, 11, 2629-2633.

[13] Chapiro, D.M. (1985) Globally-Asynchronous Locally-Synchronous Systems. Ph.D.
Dissertation, Stanford University, California.

[14] Kogge, P.M. and Stone, H.S. (1973) A Parallel Algorithm for the Efficient Solution
of a General Class of Recurrence Equations. IEEE Transactions on Computers, 100,

https://doi.org/10.4236/oalib.1106799
https://doi.org/10.1109/ASYNC.1994.656299
https://doi.org/10.1109/TVLSI.2014.2303809
https://doi.org/10.1049/ip-cdt:19981770
https://doi.org/10.9756/BP2019.1002/07
https://doi.org/10.1016/j.jestch.2016.09.007

M. A. Habib

DOI: 10.4236/oalib.1106799 11 Open Access Library Journal

786-793. https://doi.org/10.1109/TC.1973.5009159

[15] Rabaey, J.M., Chandrakasan, A.P. and Nikolić, B. (2003) Digital Integrated Circuits:
A Design Perspective. Second Edition, Prentice Hall, New Jersey.

[16] Brent, R.P. and Kung, H.T. (1982) A Regular Layout for Parallel Adders. IEEE
Transactions on Computers, C-31, 260-264.
https://doi.org/10.1109/TC.1982.1675982

[17] Sklansky, J. (1960) Conditional-Sum Addition Logic. IRE Transactions on Elec-
tronic Computers, EC-9, 226-231. https://doi.org/10.1109/TEC.1960.5219822

[18] Ngai, T.F., Irwin, M.J. and Rawat, S. (1986) Regular Area-Time Efficient Car-
ry-Lookahead Adders. Journal of Parallel and Distributed Computing, 3, 92-105.
https://doi.org/10.1016/0743-7315(86)90029-8

[19] Flores, I. (1963) The Logic of Computer Arithmetic. Prentice Hall, New Jersey.

[20] Unger, S.H. (1977) Tree Realizations of Iterative Circuits. IEEE Transactions on
Computers, C-26, 365-383. https://doi.org/10.1109/TC.1977.1674846

[21] Cheng, F.C., Unger, S.H. and Theobald, M. (2000) Self-Timed Carry-Lookahead
Adders. IEEE Transactions on Computers, 49, 659-672.
https://doi.org/10.1109/12.863035

[22] Reitwiesner, G.W. (1960) The Determination of Carry Propagation Length for Bi-
nary Addition. IRE Transactions on Electronic Computers, EC-9, 35-38.
https://doi.org/10.1109/TEC.1960.5221602

https://doi.org/10.4236/oalib.1106799
https://doi.org/10.1109/TC.1973.5009159
https://doi.org/10.1109/TC.1982.1675982
https://doi.org/10.1109/TEC.1960.5219822
https://doi.org/10.1016/0743-7315(86)90029-8
https://doi.org/10.1109/TC.1977.1674846
https://doi.org/10.1109/12.863035
https://doi.org/10.1109/TEC.1960.5221602

	Parallel Self-Timed Adder with Lookahead-Carry Generator
	Abstract
	Subject Areas
	Keywords
	1. Introduction
	2. Methods
	2.1. Existing Adders
	2.2. Enhanced Parallel Self-Timed Adder (EPASTA)

	3. Results
	4. Conclusion
	Conflicts of Interest
	References

