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Abstract 
Electrocoagulation (EC) is a very efficient process in dealing with effluent 
streams and separating complicated contaminants prior to the discharge of 
the treated water. Attention to such a technique augmented thanks to its large 
set of utilizations, zero—or minimal—chemical dosing demands, low waste 
formation, and low price. EC appears as an efficacious option to traditional 
water treatment techniques for the separation of a large collection of conta-
minants. This work examines the theories of the EC method and its applica-
tion for the separation of contaminants from wastewater streams. Such a 
technique depends on the integration of electrochemical and coagulation 
methods. Basic parameters that touch the effectiveness comprise the electrode 
material (Fe or Al), current density, the electrical charge per unit volume, and 
solution pH. Electrode fouling could constitute a hard running dare even if it 
could be reduced by the alternating current operation. Next studies have to 
follow the routes of the EC technique for numerous kinds of pollutants at a 
set of working parameters, in particular for continuous mode, and the expan-
sion of convenient models that could be utilized for scale-up and tech-
no-economic evaluation of EC is required. Running as a destabilization agent 
and aiding to separate contaminants from the wastewater, the electric field 
should attract more attention to highlight its key contribution. 
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1. Introduction 

Global investment in techniques and consumer demand for energy, goods, and 
natural resources conducted to the growing diffusion of contaminants in nature 
[1] [2] [3]. Numerous ecological programs focused on controlling and decreas-
ing pollution [4] [5] [6]. Following their poisoning, contaminants have been 
classified with those that are highly threatening to nature known as “Black List” 
contaminants [1] [7] [8]. Black List contaminants are so dangerous, persistent, 
or bioaccumulative in nature, so procedures should be followed to remove their 
pollution [9] [10] [11]. The list of Black List pollutants persists to increase and 
comprises primarily persistent organic pollutants (POPs) (like organohalogen, 
organophosphorus), and toxic metals and their organometallic compounds [12] 
[13] [14]. Treatment of effluents carrying POPs remains hard since they provoke 
hurdles to conventional biological treatment plants which are resilient to biolog-
ical digestion, bioaccumulate, and persist in nature [15] [16] [17]. 

The waste management hierarchy has to prefer the decrease in usage of POPs 
or institute regulations to prohibit their employment [18] [19] [20]. The follow-
ing stage in the management hierarchy should also be adopted (that is to say, 
elimination, minimization, reuse, recycling, recovering, and, if possible, safe qu-
arantine or disposal) [21] [22] [23]. Consequently, to guarantee the implementa-
tion of sustainability, it remains vital to decrease waste without periling human 
health, employing practical technologies that induce no damage to nature [24] 
[25] [26]. As a rule, environmental techniques employed different properties of 
physical [27] [28] [29] [30], biological [31] [32] [33], photolytic [34], chemical 
[35] [36] [37], and physicochemical methods [38] [39] [40] for pollution remed-
iation [41] [42] [43]. Nevertheless, regulatory limits dare the techniques to stay 
cost-effective and reach an elevated degree of pollution reduction while dealing 
with complicated systems, comprising the occurrence of mixed contaminants, 
watery degrees of pollutants (e.g., micropollutants), and the exigency to recupe-
rate contaminants (like metal ions) in a reusable form [44] [45] [46]. Among 
treatment processes, electrolytic techniques, regarded as physiochemical ones, 
could deal with such dares, allow ecologically benign treatment, and frequently 
give an easy solution to pollution troubles linked to industrial effluents [12] [47] 
[48]. Lately, some global guidance on the usage of electrochemical techniques for 
efficacious ecological treatment, monitoring, energy conversion, and pollutant 
separation has been furnished [12] [49] [50]. Such a guidance underlined the 
significance of external control of electron exchange as the major ecologically 
friendly reagent in the electrochemical treatment techniques [1] [51] [52]. This 
work defines the usage of electricity to treat water by means of accepted electro-
coagulation (EC) technique and the merit of employing the method for perfor-
mant water recuperation and pollutant separation. 

The phenomenon of selective separation has a crucial contribution to the 
chemical and biochemical industries [53] [54] [55]. Indeed, the phenomenon of 
separation participates in about 40% to 70% of the total capital and operating 
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expenses [56] [57] [58]. Nevertheless, taking into account the techniques of eco-
logical treatment and water purification, where the pollutants are often existing 
at very small levels, the dare is to eliminate pollutant species in a cost-effective 
and environmentally sustainable procedure [1] [59] [60]. The troubles related to 
contaminant separation are usually because of a small level in effluent (related to 
the low mass transfer of the dilute pollutants), the steric effects of complexing 
species, and the occurrence of a mixture of different end-of-pipe products that 
stop the phenomenon of continuous recuperation and separation [12] [61] [62]. 

Employing EC for ecological treatment involves the elimination and separa-
tion of pollutants via catching them within a precisely selected coagulant to fi-
nally facilitate water reuse and recycling [63] [64] [65]. Even if the technology 
has been accepted, a selective capturing of a pollutant for elimination and sepa-
ration furnishes a novel procedure to allow a performant treatment technique 
[1] [66] [67]. 

This work examines the EC background. A special focus is accorded to EC as 
a manner for separating contaminants. An apercu is dedicated to the chemical 
theories and electrochemical reactions. Features affecting the EC process and its 
mean fields of usage are discussed.  

2. Electrocoagulation (EC) Background 

The theory of EC has long been mentioned [68] [69] [70]. Nevertheless, the 
practical employment of the setup for ecological treatment and separation has 
only lately acquired attention [1] [71] [72]. The earliest account to refer to the 
use of the EC process to separate water from sewage emerged in 1889 in England 
[73] [74] [75]. A 1909 patent filed in the US was the first to mention the proba-
ble capture of contaminants from wastewater by the manner of an electrochem-
ical cell employing sacrificial aluminum (Al) and iron (Fe) electrodes [76] [77] 
[78]. Nevertheless, the first full-scale utilization of EC for water treatment was 
noted in 1946 [61] [79] [80]. In such configuration, the electrogenerated flocs 
were discovered to be efficacious in decoloring water [81] [82] [83]. An identical 
device, employed in England in 1956, injected Fe electrolytically into river water 
to separate turbidity and color [84] [85] [86]. 

At a certain level, the EC technique was restricted to some usages; neverthe-
less, it has attracted universal attention during the last three decades [1] [87] 
[88]. Even if the technique is more than 100 years old, there was little interest in 
academic literature until around the 1980s [89] [90] [91]. The resumed concern 
in EC for separating pollutants from wastewater has happened worldwide thanks 
to its wide applicability, low sludge formation, scalability, running at ambient 
temperature and pressure, simple design and ease of control, and low capital and 
operating costs [92] [93] [94]. Further, the capability to change the applied cur-
rent to improve the treatment performance facilitates process automation and 
control [95] [96] [97]. 

EC is a method that employs the theories of chemical coagulation and elec-
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trochemistry to treat and separate pollutants from wastewater [1] [61] [65]. 
Conventional coagulation implicates the injection of chemical products to react, 
aggregate, and separate pollutants via the generation of large flocs that could be 
physically separated from the mixture [38] [53] [98]. The word traditional coa-
gulation is utilized inconsistently with the word flocculation to explain the phe-
nomenon related to colloidal separation from effluents [38] [99] [100]; never-
theless, the two words differ [101] [102] [103]. Coagulation implies the aggrega-
tion of colloids because of the reduction of electrostatic repulsive forces between 
the colloids in the suspension [104] [105] [106]. Flocculation includes the pro-
duction of chemical bonds between the particles to enmesh them in relatively 
large masses called floc networks [107] [108] [109]. In EC, nonetheless, sacrifi-
cial metal anodes are used to dose the contaminated water with a coagulating 
agent, like Al or Fe ions [30] [63] [110]. Therefore, coagulation, flocculation, and 
electrochemical processes take place together (Figure 1) [1] [111] [112]. 

In EC technology, applying an adequate voltage to the sacrificial anodes that 
are composed of the coagulant species (i.e., Fe or Al) will permit their oxidation 
at the electrode/solution interface (Figure 1). Further, the dissolution of the 
coagulant species into the electrolyte lets them interact with each other and with 
the suspended matters or dissolved pollutants that can be more separated from 
the suspension by sweep coagulation [38] [107] [113]. Therefore, the EC tech-
nique inserts coagulant in situ rather than via external injection [43] [61] [67]. 
Employing such a tool, a specific separation of pollutants could be possible with 
careful control of the method, and a suitable selection of dissolved coagulant [1] 
[114] [115]. Such phenomena take place in both sides of the cell (i.e., anode and 
cathode); thus, the coagulation, flocculation, and gas evolution will happen to-
gether and participate in the global treatment technology [52] [58] [68]. As an 
illustration, in addition to the enhanced coagulation due to the reduced elec-
trostatic repulsion between aggregating particles, in the EC process, the electrical  
 

 
Figure 1. A schematic illustration of the major reactions happening during the EC me-
thod. In some conditions, redox reactions may occur directly on the electrode surface or 
in the bulk electrolyte [1]. 
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field ameliorates this technique via augmenting the migration of ions through 
the electrophoresis impact and the charge redistribution on the pollutants [47] 
[58] [63]. The electrolysis of H2O at the cathode produces hydroxyl ions (OH−) 
that combine with the dissolved metal coagulants (Al3+ or Fe2+/3+) from the anode 
to generate the corresponding hydroxide (or oxide) precipitate at a convenient 
pH, eliminating contaminants via sweep coagulation [38] [47] [55]. Further, the 
evolution of gases due to water electrolysis (usually O2 and H2) takes place at 
both electrodes at sufficient overpotentials that could raise floatation of some 
fractions of the coagulated contaminants to the surface (Figure 1) [58] [72]. The 
agglomerated species possess the potential to adsorb other species [58]. Such 
adsorption phenomenon could be improved by the applied potential between 
the electrodes that let separation and removal phenomena to happen along with 
the majority of the suspended matters [61]. Like in any electrochemical setup, 
additional responses happen jointly with the coagulation reactions, comprising 
cathodic reduction of reducible particles, anodic oxidation, and mass transfer of 
ions in solution, which adds some complexity to the technology [13] [52] [93]. It 
is evident that EC is a complex synergistic method with numerous reactions and 
pathways happening together to eliminate contaminants [58] [63] [68]. 

3. Electrocoagulation (EC) for Separating Contaminants 

Since the early application of EC to deal with wastewater in the eighteenth cen-
tury, the technique has been adopted as a separation method to separate water 
from sludge [1] [61] [63]. Founded on ecological and physicochemical concepts, 
the EC method could be viewed as one of the most efficient techniques for con-
taminant separation [64]. From an ecological point of view, an EC remediation 
of effluent is frequently applied to eliminate a mixture of contaminants from 
water at a level that it could be safely discharged. Taking into account the theo-
ries of chemical separation, EC implies a phase-transformation process (Figure 
1), where the phase of dissolved contaminants is modified during elimination 
(from the liquid- to solid-phase) [58] [63] [68]. Identical to several chemical se-
paration techniques, extracting contaminants by agglomeration inside the coa-
gulated flocs (metal hydroxide) happens, in many situations, without changing 
the chemical or biological properties of the original contaminants [69]. In such a 
situation, the separated contaminants are aggregated inside the coagulants with 
no big modification of their chemical structure [30]. Agglomerating species 
renders the recuperation of such chemicals easy by extraction from the recupe-
rated solids. Such a separation phenomenon is greatly significant when treating 
high-value chemicals for separation or recuperation. Oxidation or reduction 
reactions could happen at the anode or cathode surfaces, conducting to chemical 
alterations in some organic pollutants and could render recuperation of the 
original species more demanding or inappropriate [74]. 

In the absence of oxidation or reduction of the pollutant, EC could be 
adopted as a physicochemical separation technique [58] [116]. Numerous in-
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vestigations have established the EC technique for the concurrent separation of 
several contaminants from a set of diverse wastewater streams [68]. Illustra-
tions of waste water that have been treated via EC for contaminant separation 
are well-documented [1]. Pollutants that have been separated comprise emulsi-
fied oil, nanoparticles, antimicrobial chemicals (Bronopol), microalgae, heavy 
metals, organometallic mixtures, nuclear fission products, and heavy metals lea-
chates [1]. As a rule, EC applies the theory of phase separation to eliminate con-
taminants and treat water [116]. 

Extracting contaminants by coagulation is founded on the physicochemical 
features of both coagulate and coagulant. The physicochemical conduct is af-
fected by both chemical interactions between the coagulant and coagulate (like 
coprecipitation, solid-solution interface, and complexation) and electrostatic in-
teractions (that is to say surface charge and colloidal destabilization). In EC, the 
coagulant arrives directly from the selection of the anode material and should 
have a high affinity for coagulating the target pollutants. Dissolved silica has a 
very high affinity to generate very stable coordination with Al cations. The phe-
nomenon is largely employed in the coagulation technique to separate silica as 
aluminosilicates [117]. Researchers [1] proved a selective separation of Si from a 
petroleum process effluent via a chemical coagulation technique employing 
alum as a coagulant. Using the equivalent method of EC employing Al electrodes 
has also been illustrated to selectively retain silica from treated water from the 
oil and gas industry [1]. 

4. Chemical Theories and Electrochemical Reactions 

Theoretically, during the electrolysis of sacrificial metal anodes, the solubilized 
metal ions at the anode have a tendency to hydrate, particularly those with a 
charge of +3 or more tend to donate hydronium (H3O+) cation from the sur-
rounding hydration species (Brönsted acids) [1]. Equations (1)-(3) show the 
acidic reaction for Fe3+ cation and Equations (4)-(6) for Al3+ cations along with 
their equilibrium constants in aqueous media [118]. Some of such species show 
amphiprotic conduct, as they are acids when they appear on the left side of the 
equilibria and bases on the right side [1]. 

( ) ( ) ( ) ( )( )
3 2

2 2 2 36 aq 5 aqFe H O H O Fe H O OH H O pK 2.187+ + ++ ↔ + =        (1) 

( ) ( ) ( ) ( ) ( )
3

2 2 2 36 aq 4 2 aqFe H O 2H O Fe H O OH 2H O pK 4.594+ + ++ ↔ + =     (2) 

( ) ( ) ( ) ( ) ( )
3

2 2 2 36 aq 3 3 aqFe H O 3H O Fe H O OH 3H O pK 12.56+ ++ ↔ + =      (3) 

( ) ( ) ( ) ( )( )
3 2

2 2 2 36 aq 5 aqAl H O H O Al H O OH H O pK 4.997+ + ++ ↔ + =        (4) 

( ) ( ) ( ) ( ) ( )
3

2 2 2 36 aq 4 2 aqAl H O 2H O Al H O OH 2H O pK 10.094+ + ++ ↔ + =     (5) 

( ) ( ) ( ) ( ) ( )
3

2 2 2 36 aq 3 3 aqAl H O 3H O Al H O OH 3H O pK 16.791+ ++ ↔ + =     (6) 
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In coupling with the metal ions, the occurrence of OH− could work as a 
bridging group to join two or more metal hydroxides jointly (Figure 2(a) and 
Figure 2(b) for Fe and Al, respectively), allowing more dimerization or polyme-
rization (Equations (8) and (9)). The produced species of hydroxyl bridges are 
most probable to carry positive charges that can donate another hydrogen ion to 
provide OH− anions and bond more with additional metals to produce polymer-
ic hydrolytic species (gelatinous hydroxide) [1]. Polymerizing gelatinous hy-
droxide can further carry suspended solids or dissolved matters with it as it 
grows and settles (sweep coagulation) [7] [38] [53]. The capability and the speci-
ficity of the pollutants’ aggregation could change following the physicochemical 
properties of the produced gelatinous hydroxides, surrounding media, and the 
type of the suspended solids or solubilized pollutants in the solution [46] [61] 
[98]. Key properties of the generated gelatinous hydroxides comprise electrical 
charge, porosity, and types of bonding produced either in the hydroxide or with 
the pollutants. 

( ) ( )( ) ( ) ( )( )2 4

2 2 2 25 8 22 Fe H O OH Fe H O OH 2H O
+ +
→ +           (7) 

( ) ( )( ) ( ) ( )( )2 4

2 2 2 25 8 22 Al H O OH Al H O OH 2H O
+ +
→ +           (8) 

In the coagulation chemistry, the conduct of hydrated metal ions to work as 
the acid can greatly touch the separation and treatment methods of different 
metal elements from effluents [1] [119]. The acidity of solubilized metal ions 
augments with the charge and decreases with the radius of the ionized species 
[120]. Hydrated metal species, other than Fe and Al, can likewise tend to donate 
protons, produce bridging compounds, and finally, work as a coagulant when 
polymerization happens [121] [122] [123]. Metal species that have been men-
tioned as coagulants comprise Be(II), Bi(III), Ce(IV), Co(III), Cu(II), Ga(III), 
Mo(V), Pb(II), Sc(II), Sn(IV), and U(VI) [1]. Even if the favored anode materials 
in commercial EC devices remain Fe and Al and if one or a mixture of the other 
metal species mentioned above are available in the effluent, they will coagulate 
and separate out of the solution. Such a phenomenon has been exploited in the 
EC technique, where either Al or Fe anodes have been utilized to separate and 
treat heavy metals from effluents [124]. Employing Al and Fe (or in some situa-
tions Zn [125]) in EC for industrial implementations is affected to their low  
 

 
Figure 2. (a) Structure of the ferric hydroxide dimer. 
(b) Structure of the aluminum hydroxide dimer [1]. 
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price and availability, large efficient pH span (4 - 11) for insoluble hydroxides 
generation, and low environmental footprint (especially for Fe [5] [75]). 

5. Features Influencing Electrocoagulation (EC) Technique 

Variables that touch the coagulation method could identically affect the EC 
phenomena [126]. In EC where electrochemical reactions are utilized to inject 
coagulants, the metal complexation is a function of the pH circumstances and 
the kind of the sacrificial anode employed [1] [63] [64]. The electric field can run 
as a destabilization agent, aiding to separate contaminants from the wastewater 
[47]. During electrolysis phenomena, the formation of hydronium and hydrox-
ide ions work to enhance a pH difference between the oppositely polarized elec-
trodes inside the reactor. Such a change in pH inside the electrochemical setup is 
a function of the applied current, voltage, supporting electrolyte, and time of 
treatment [57]. Consequently, pH change greatly affects the level of separation 
and treatment. In this context, numerous practical factors could touch the effi-
ciency of the EC device. Nevertheless, the main elements could be classified 
into four interconnected groups that are related to the electrode setup (materi-
al, design, and electrode spacing), running circumstances (current density, op-
erating period, over potential), the device design, the characteristics of the efflu-
ent treated (pH, conductivity, temperature, turbidity). 

Such elements are interrelated and their contributions to the EC technology 
are examined elsewhere [1]. 

6. Employing Electrocoagulation (EC) Fields 

In order to make possible efficacious and economic water treatment, EC could 
be utilized either on its own or as a stage in a treatment train especially for 
small- or medium-sized implementations where a wide water treatment plant 
is not economically practicable. Illustrations of pollutants that have been re-
medied by EC setups along with the parameters used and their performance 
may be found elsewhere [1]. EC has been proved to be efficient for a large set 
of implementations like removal of toxic arsenic [127] or fluoride [95] from 
groundwater, remediation of dairy effluent [128], treatment of wastewater 
from a set of sources comprising slaughterhouses, textile dyehouses, pharma-
ceutical processes, oilfields, municipal effluents, paper mills, olive mill processes, 
metal finishing processes, and disinfecting effluents [47] [61]. The technology 
stays efficient in eliminating colloidal particles from surface water [64], reducing 
turbidity in algae [58] [72], microorganisms [63] [67] [92], and micropollutants 
[1]. Whereas EC remains performant in eliminating a so large variety of pollu-
tants, its efficiency in dealing with organics changes largely [30] [74]. The main 
route for eliminating organic matters in EC is by adsorption on the coagulant 
and coprecipitates [65]. Elimination achievement is complicated by the organic 
interactions with both coagulants and different aqueous species [54] [69]. 

EC treatment techniques usually involve a pretreatment reservoir that is uti-
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lized to monitor and adjust the pH, followed by an electrolysis chamber that may 
implicate a plurality of electrodes connected to a power supply, followed by re-
servoirs for flocculation and/or chemical dosing, and finally solid-liquid separa-
tion (e.g., by sedimentation, induced flotation [58] [72], or filtration [129] [130] 
[131]) [61]. Designing the device should consider numerous features, compris-
ing the fluid flow and distribution between the electrodes, floatation, and preci-
pitation, in addition to the running factors (like electrode materials, electrode 
arrangement, electrode connections, current density, etc.) [61]. Electrical power 
is applied to the electrodes utilizing either an applied voltage or constant cur-
rent, frequently with alternating polarity, with the same material employed for 
both electrodes [61]. A constant current is mostly utilized to attain the wanted 
coagulant injection and so treatment efficacy [61]. The reactor has to be con-
ceived to deal with the gas formation (usually O2 and H2) in the device. In most 
cases, the H2 bubbles will be liberated in the solid-liquid separation process [1]. 

7. Conclusions 

EC separation techniques supply credible and green technology for eliminating a 
large variety of pollutants from water. The technology is more than 100 years old 
and it is only during the past two decades that its application has pulled impor-
tant attention from academia and industry. Several features of the process re-
main to be well known because of the complexity of the interactions between 
electrochemistry, chemical coagulation, flow, mixing, and transport phenomena. 
This work focused on the key chemical and electrochemical theories ruling the 
method and the fundamental parameters that affect the separation efficacy [1] 
[132]. The main points drawn from this work are listed below: 

1) The EC method takes advantage of the concepts of traditional coagulation 
while furnishing important benefits over a chemical dosing procedure. In EC, 
the coagulants are injected via integrating electrochemical dissolution of metal at 
the anode and formation of hydroxide at the cathode. The first dissimilarity be-
tween chemical coagulation and EC is simply the way of introduction of the 
coagulant; nevertheless, EC averts the injection of the counter ion in a coagulant 
salt and does not need the introduction of alkali to balance the pH change re-
lated to hydrolysis of the coagulant. In EC, the pH of the water to be treated 
must be in the neutral or alkaline interval; however, very little pH change hap-
pens during the treatment application [1]. 

2) The chemical phenomena happening during EC are a function of the elec-
trode material and the composition of the solution [1]. The geometry, electro-
chemical variables (e.g., current, voltage, and resistance), type of current flows 
(direct or alternative), and the pH are crucial elements that dictate the separa-
tion efficacy. Convenient selection of the electrode material, the design of elec-
trochemical reactors, and systematic control of the electrochemical variables 
could conduct to an efficient setup. Even if the EC separation method remains 
an interesting technique, there are numerous dares as the generation of a fouling 
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layer on the electrode surface that could conduct to running difficulties, as well 
as the restricted effectiveness for eliminating persistent organic pollutants. Re-
gardless of such dares, for several industrial implementations, the efficacy of the 
system is proved and the technique of EC furnishes a relatively compact and ro-
bust manner for handling end-of-pipes industrial effluent (e.g., textile, leather 
tanning, pulp and paper, olive mill, metal-bearing industrial effluent, arsenic, 
and fluoride-containing effluents). 

3) Despite the progress of the technology, more comprehension of the basic 
phenomena happening during EC is requested to guarantee effective design and 
utilization for novel implementations. Even if EC has been employed for a wide 
set of usages and pollutants, only a few investigations have tried to interpret the 
complicated physicochemical phenomena taking place during EC application. 
Most investigations concentrated on the effectiveness of EC for particular con-
taminants or implementations, rather than assessing the technology at a mecha-
nistic degree, considering the complicated responses and physical processes 
happening. An additional dare is the scale-up of EC to satisfy industrial de-
mands. Most investigations realized batch treatment; however, industrial usage 
is mostly founded on a continuous mode. Scale-up of a chemical method is a 
function of the usage of established models to define process efficacy as a func-
tion of running variables; however, very few such models have been suggested 
for EC technology. Modeling and scale-up researches remain demanded to per-
mit the easier utilization of EC for industrial implementations without compli-
cated and costly tests. Next studies have to follow the routes of the EC technique 
for numerous kinds of pollutants at a set of working parameters, in particular for 
continuous mode, and the expansion of convenient models that could be utilized 
for scale-up and techno-economic evaluation of EC is required [1]. Running as a 
destabilization agent and aiding to separate contaminants from the wastewater, 
the electric field should attract more attention to highlight its fundamental con-
tribution. 
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