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Abstract 
In this section the Successive approximate method (S.A.M) introduced for 
solving the Wu-Zhang systems, a (1 + 1)-dimensional nonlinear dispersive 
wave equation, this method shows us that the technique provided without 
disorder, in this model of convergence power series with a simple calculated 
ingredients and gives effective results. 
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1. Introduction 

The Nonlinear partial differential equations (NPDEs) have a big advantage in 
various fields of science like mathematical, physics, chemistry, biology, mechan-
ics, and engineering. It is important to get a reliable solution and numerical so-
lution for nonlinear systems. In this section we solved the Wu-Zhang Systems of 
one dimensional with initial condition, the Wu-Zhang system can be written as  
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                       (1) 

where (v) is height water,(u) is the surface speed of the water along x-direction 
(Mix, S. K. [1], Laing, Y. C.; Feng [2], Ja, Anwar; Jameel [3], Manaa, Saad A.; Ea-
sif [4], R. K., Saeed [5], Zheng, Xuedong; Chen [6], Manaa, Saad A.; Easif [4] [7], 
Hosseini, K.; Ansari [8], Khater, Mostafa M. A.; Attia [9], Jafari, M. A.; Amina-
taei, A. [10]). 
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2. Successive Approximation Method (S.A.M) [5] 

The successive approximation method from important and active methods to 
solve partial differential equations, and also is good method for solving any ini-
tial value problem 

( ) ( )0 0, , ,u f u t u x t u
t

∂
= =

∂
                     (2) 

It starts by observing that any solution to (2) must also be a solution to 

( ) ( )( )
0

0, , , d ,
t

t

u x t u f u x s s s= + ∫                    (3) 

Thus iterative these steps of solutions, we obtain on solution closer to the ac-
curate solutions of (3), the S.A.M depends on the integral equation (3), as in the 
following: 
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This process can be continued to obtain the nth approximate 
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Therefore determine if ( ),nu x t  closer the solution ( ),u x t  as n increases. 
This is done by proving the following: 

The sequence ( ){ },nu x t  converges to a limit ( ),u x t , that is: 

( ) ( ) 0lim , , , .nn
u x t u x t t x t

→∞
= ≤ ≤  

The limiting function ( ),u x t  is a solution of (3) on the interval 0t x t≤ ≤ . 
The solution ( ),u x t  of (3) is unique. A proof of these results can be depended 
along the lines of the corresponding proof for ordinary differential equations 
(Coddington, 1995). 

3. Application (S.A.M) to solve of Equation (1) 

In this section, we solve the Wu-Zhang systems of one dimensional 
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With initial condition: 
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where 0 1,b k  and 2k  are arbitrary constants. 
By using S.A.M as follows: 
Integrating both sides of Equations (4), (5) with respect to (s), from (0) to (t), 

we get  
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Using the initial condition in Equations (8), (9) we obtain: 
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We substituting initial conditions ( ),0u x  and ( ),0v x  in the integral Equa-
tions (10), (11) to get a first approximation ( )1 ,u x t  and ( )1 ,v x t  
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Then this ( )1 ,u x t  and ( )1 ,v x t  is substituted again in the integral of (10), (11) 
after replacing (t) by (s) to get a second approximation ( )2 ,u x t  and ( )2 ,v x t  
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This process can continued to get the nth approximation 
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For 1,2,n =   to solve Equations (16), (17), we use the initial conditions 
( ),0u x  and ( ),0v x  which are given in Equations (6) and (7) , respectively. by 

using iterative steps for Equations (16), (17) we can obtain ( )1 ,u x t , ( )2 ,u x t , 
( )3 ,u x t  and ( )1 ,v x t , ( )2 ,v x t , ( )3 ,v x t , after then substituting these values in 

the Equations (18) and (19)  
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We get the following series: 
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Therefore, the exact solution of Wu-Zhang equation is given by 
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This solution is convergent to the exact solution 
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The approximate results for ( ),u x t  and ( ),v x t  were compared with exact 
solution as showing in Table 1 and Table 2. Also we compare figure approx-
imate solution with figure exact solution as showing in Figure 1 and Figure 2. 
Figure 3, error between approximate solution and exact solution. 

In Figure 1 and Figure 2 the final results obtained from (S.A.M) were com-
pared with the results of the exact solution when 0 0.1b = , 1 0.05k = , 2 0.1k = , 

0.2t = . The comparison shows a good agreement between the results. 
 
Table 1. Comparing exact solutions with approximate solutions (S.A.M) of the Wu-Zhang 
systems with initial conditions Equations (6), (7) where 0 0.1b = , 1 0.05k = , 2 0.1k = , 

0.2t =  for ( ),u x t . 

x SAMu  exactu  SAM exactu u−  

−50 −0.07119812060 −0.07119812060 5.089992619 × 10−29 

−40 −0.07119812060 −0.07119812060 1.807525608 × 10−23 

−30 −0.07119812060 −0.07119812060 6.418769275 × 10−18 

−20 −0.07119812060 −0.07119812060 2.279392226 × 10−12 

−10 −0.07119413194 −0.07119413830 6.362404900 × 10−9 

0 0.6478908251 0.6509522859 3061460790 × 10−3 

10 1.404527229 1.404527118 1.113311969 × 10−7 

20 1.404531454 1.404531454 1.765272343 × 10−12 

30 1.404531454 1.404531454 4.971007506 × 10−18 

40 1.404531454 1.404531454 1.399835854 × 10−23 

50 1.404531454 1.404531454 3.941938236 × 10−29 

 
Table 2. Comparing exact solutions with approximate solutions (S.A.M) of the Wu-Zhang 
systems with initial conditions Equations (6), (7) where 0 0.1b = , 1 0.05k = , 1 0.05k = , 

0.2t =  for ( ),v x t . 

x SAMv  exactv  SAM exactv v−  

−50 7.000000000 × 10−12 7.000000000 × 10−12 7.000000000 × 10−12 

−40 7.000000000 × 10−12 7.000000000 × 10−12 7.000000000 × 10−12 

−30 6.999999972 × 10−12 7.000000000 × 10−12 7.000000028 × 10−12 

−20 6.990087894 × 10−12 7.000000000 × 10−12 7.009912106 × 10−12 

−10 2943074716 × 10−6 2938409000 × 10−6 4.671715510 × 10−9 

0 0.2749015323 0.2720987513 2802780979 × 10−3 

10 3117925519 × 10−6 3200100000 × 10−6 8.207448126 × 10−8 

20 7.676417228 × 10−5 0.0000000000000 7.676417228 × 10−15 

30 2.161679351 × 10−20 0.0000000000000 2.161679351 × 10−20 

40 6.087289664 × 10−26 0.0000000000000 6.087289664 × 10−26 

50 1.714180972 × 10−31 0.0000000000000 1.714180972 × 10−31 
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Figure 1. Showing matching approximate solution with exact solution. (USAM) ap-
proximate solution, (Uexact) exact solution. 

 

 
Figure 2. Showing matching approximate solution with exact solution. (VSAM) ap-
proximatesolution, (Vexact) exact solution. 

 

 

Figure 3. (UError) Showing error of the approximate solution for ( ),u x t  with exact 

solution, (VError) Showing error of the approximate solution for ( ),v x t  with exact so-

lution. 

4. Conclusion 

In this search, the Successive Approximate Method (S.A.M) was used to get the 
approximate solution of Wu-Zhang Systems. The results we got from this me-
thod are high efficient with big accurate and give a good convergence to the ex-
act solution. 
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