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Abstract 
Coagulation remains a technique by which finely dispersed solids are efficiently 
eliminated. It has been largely expanded and remains the most unavoidable 
method for treating water. This review focuses on colloid stability, coagula-
tion mechanisms, and coagulant types. It presents electrocoagulation as an 
option of conventional coagulation and discusses challenges in coagulation 
technology especially health hazards in used chemicals toxicity. As promising 
solutions, new developments in terms of using coagulants are presented. Mi-
cropollutants are inorganic and organic substances that could disturb nega-
tively nature even at very low levels. Microplastics are also observed. Coagu-
lation could retain different micropollutants and microplastics at varying ef-
ficiencies even if there is a need to determine running circumstances that 
could increase their reduction. As a perspective, coagulation may be com-
bined with additional processes, such as ultrafiltration. Further, traditional 
water treatment should be deeply revised. 
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1. Introduction 

Coagulation remains a technique by which finely dispersed solids are effica-
ciously eliminated [1] [2] [3]. Firstly employed by the ancient Egyptians as early 
as 2000 B.C.E [4] [5] [6], coagulation process has been largely expanded, espe-
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cially during the last century. Nowadays, it remains the most unavoidable me-
thod for treating water [7] [8] [9]. 

Pursued by clarification stages (mostly decantation and (sand) filtration pro- 
cesses), coagulation remains the most performant for retaining particulate mat-
ter (it carries both colloids, mostly 10 nm to 1 μm, and small particles, usually > 
1 μm) from water (Table 1) [10] [11] [12]. Further, it eliminates dissolved por-
tions of some matters such as natural organic matter (NOM, like humic sub-
stances) from surface water [7] [13] [14]. 

This review focuses on colloid stability, coagulation mechanisms, and coagu-
lant types. It presents electrocoagulation as an option of conventional coagula-
tion and discusses challenges in coagulation technology especially health hazards 
in used chemicals toxicity. As promising solutions, new developments in terms 
of using coagulants are presented. 

2. Colloid Stability 

In water, colloids are negatively charged [7]. The cations in water, known as 
counter-ions, are strongly fixed to the colloid’s surface and constitute the Stern 
layer. In addition to such counter-ions, many other positive ions are also pulled 
to the same colloid, because of their positive charge and the negative charge of 
the colloid, even if somewhat loosely because of the repulsion from the cations in 
the Stern layer, as well as because of the competition for attachment by other ca-
tions. This leads to a dynamic equilibrium producing the diffuse layer. In such 
layer, the level of the counter-ions gradually reduces with the distance from the 
colloid. In water, the anions, as well known as co-ions, gradually augment their 
occurrence in the diffuse layer, generating an equilibrium. The Stern layer and 
the diffuse layer constitute the so-named double layer. Such layers are presented 
in Figure 1. 

The identical negative charge of the particles and the width of the double lay-
ers avoid agglomeration of particles with each other. This is why the colloids stay 
dispersed in water until their charges and the double layers are considerably di-
minished [7]. 

 
Table 1. Coagulation terminology [7] [15] [16]. 

Term Description 

Coagulation Coagulation is the phenomenon by which colloids are destabilized, conducting to 
their agglomeration [17] [18] [19]. 

Flocculation, 
clarification 

Practically, the coagulation technology is composed of coagulation, flocculation and 
clarification (separation unit stages) [20] [21] [22]. Following the coagulation, the 
destabilized particles and other precipitates produce agglomerates that require 
growing further into larger flocs. This stage is named flocculation. The agglomerated 
flocs can then be separated utilizing decantation (or flotation) and filtration methods 
[23] [24] [25]. 

Coagulants, 
flocculants 

Throughout the coagulation and flocculation stages, chemical products are usually 
injected; such agents are known as coagulants and flocculants, respectively. 
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Figure 1. Electrical double layer and distribution of co-ions and counter-ions [26]. 

 
The colloid stability is defined by the Derjaguin–Landau–Verwey–Overbeek 

(DLVO) theory. Such theory proposes that the colloid stability in water is a func-
tion of its total potential energy function VT, which is the sum of three forces 
[7]: 

T A R SV V V V= + +                         (1) 

where VS is the potential energy attributed to the solvent (water). Practically, it is 
of minor importance. The attractive force is defined by 

212A
AV
Dπ

= −                          (2) 

where A is the Hamaker constant and D is the distance between the particles. VA 
is also called the van der Waals force [7]. 

The repulsive force attributed to the electrical double layer is defined by 
22 D

RV a e κπε ξ −=                        (3) 

where a is the particle radius, ε is the solvent permeability, κ is a function of the 
ionic composition, and ξ  is the zeta potential [7]. 

The energy barrier resulting in the sum of forces (Figure 2) prohibits colloids, 
which are in Brownian motion, from approaching sufficiently closer where the 
attraction forces dominate [7]. 

3. Coagulation Pathways 

As a rule, there are numerous classifications of coagulation routes encountered 
in the specialized references. Table 2 lists the four routes including all classifica-
tions [7]. 

Practically, there are two pathways dominant: adsorption-charge neutralization 
and colloidal entrapment. In addition to these two routes, the double layer com-
pression pathway could affect the coagulation performance with the occurrence of  
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Figure 2. Total potential energy of two particles approaching each other [26]. 

 
Table 2. Four coagulation mechanisms [7]. 

Coagulation mechanism Description 

Mechanism of Particle 
Removal 

Double Layer Compression 
The compression of the double layer decreases the energy barrier; thus, the colloids can come closer [27] [28] [29]. 
This is attained via injecting indifferent electrolytes to the water [30] [31] [32]. The Schultz–Hardy rule shows that the 
impact of the indifferent electrolytes augments with the valence of the ions by sixth exponential power [33] [34] [35]. 
As an illustration, one mole of Ca2+ possesses the identical impact as 26 ions of Na+ on the double layer compression 
[36] [37] [38]. 

Adsorption-charge neutralization 
In coagulation method, such a mechanism remains the most cost-efficient pathway [39] [40] [41]. During this route, 
the positively charged ions and species cover the negatively charged colloids, thereby decreasing the surface charge 
and by that the energy barrier [42] [43] [44]. This mechanism is cost-efficient tanks to the fact that the neutralization 
process occurs stoichiometrically between the positively and negatively charged ions [45] [46] [47]. Such a pathway 
could realize coagulation via inorganic coagulants or cationic organic polymers [48] [49] [50]. 

Interparticle bridging 
Such route takes place when organic coagulants or organic polymers are employed [51] [52] [53]. Polymers possess 
threads and fibers that bind the particles into big and compact agglomerates [54] [55] [56]. Polymers with higher 
molecular weight (MW) are frequently more efficacious, thanks to their long chains [57] [58] [59]. 

Colloidal entrapment or “sweep floc” 
The final product of the hydrolysis of inorganic coagulants is the hydroxide precipitates that could entrap colloids [60] 
[61] [62]. Such pathway consumes coagulants in excess of stoichiometry [63] [64] [65]. 

Mechanisms of Organic 
Matter Removal 

Natural organic matter (NOM) is the source of natural color in surface waters [66] [67] [68]. NOM removal is 
fundamental in potable water treatment since it form carcinogenic disinfection by-products (DBPs) [69] [70] [71]. 
NOM is mostly composed of humic substances (their average size is 0.47 - 3.3 nm) [72] [73] [74]. NOM is quantified 
by color, ultraviolet (UV) absorption, and total organic carbon [75] [76] [77]. NOM is noted to be retained through all 
particle removal routes [78] [79] [80]. NOM could dominate coagulant injection and adoption of water treatment 
technology rather than colloidal particles [81] [82] [83]. 
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electrolytes. Colloidal entrapment only happens when inorganic coagulants are 
injected. The interparticle bridging happens only when organic coagulants are 
introduced. Table 3 lists the operational dominance of coagulant pathways [7]. 

4. Coagulant Types 
4.1. Mineral Coagulants 

The colloids elimination remains mostly founded on the hydrolysis of mineral 
coagulants [7]: 

( ) ( )
3

3 sMe 3OH Me OH+ −+ =                    (4) 

Reaction (4) takes place during seconds and follows several steps that form 
numerous intermediate species, which are favorable for coagulation. Following 
the circumstances, there can be numerous mononuclear hydroxides (like 
Al(OH)2+, ( )+

2Al OH , Al(OH)3, and ( )4Al OH − ) or polymerization reactions to 
polycations (such as ( ) ( )7+

4 12 224 12AlO Al OH OH ) [7]. More than eighty Al spe-
cies can be formed [84]. Figure 3 shows instances of monomers in a solubility 
diagram and Figure 4 presents the usual pathways related to the coagulants’ in-
jection and pH. 

 
Table 3. Practical dominance of the coagulation pathway [7] [63]. 

Mechanism type 
Coagulant type 

Inorganic coagulants Organic coagulants 

Double layer compression Occasionally Not applicable 

Adsorption-charge neutralization Dominant Happens with cationic polymers 

Interparticle bridging Not applicable Dominant 

Colloidal entrapment (sweep floc) Occasionally Not applicable 

 

 
Figure 3. Solubility diagrams of (a) Al(III) and (b) Fe(III), with monomeric species [85]. 
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Figure 4. Usual coagulation working diagram. (a) Al(III) and (b) Fe(III) [86]. 

 
In the water treatment industry, the most frequent coagulants remain alumi-

num sulfate, ferric chloride, ferric sulfate chloride, and calcium hydroxide. Since 
the 1980s, investigation has conducted to the formation of pre-polymerized alu-
minum hydroxychlorides, enabling better utilization of mono- and polynuclear 
species. For such coagulants, the ratio of OH/Al stays a fundamental parameter 
[7]. 

Innovative coagulants with combinations of calcium (to augment the double 
layer impact), water glass (to improve sedimentation properties), flocculants (to 
avert the request for two injecting systems), and so on are more and more men-
tioned even if their large usage is restricted [7]. 

4.2. Organic Coagulants 

Organic coagulants possess synthetic and biological origins. The synthetic poly-
mers are prevailing as both coagulants and flocculants. The synthetic polymers are 
mostly polyamines, polydiallyldimethylammonium chloride (poly-DADMACS), 
dicyandiamide resins, and melamine-formaldehyde resins. The polyacrylamides 
and poly-DADMACs are likely the most famous cationic coagulants. Such coa-
gulants are known by their MW (3000 - 3,000,000) and cationic charge density 
(low to extra high) [7]. 

Extracted from crab and shrimp shells, chitosans are adopted as performant 
biological coagulants in potable water industry thanks to their numerous merits. 
They work over a larger pH span without changing the pH of the treated water 
and they do not generate any remaining aluminum. Nevertheless, their draw-
back remains the cost, since the organic polymers are considerably more expen-
sive than inorganic coagulants, and biopolymers are even more expensive than 
synthetic organic polymers [7]. 

4.3. Flocculants 

As flocculants, the synthetic organic polymers are utilized. They possess differ-
ent degrees of anionic, non-ionic, or cationic charge and could have MWs of 
3,000,000 to 20,000,000. The flocculants could greatly augment the floc produc-
tion speed and the strength of the flocs and make them much heavier. Floccu-
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lants are efficient products that increase the length of filtration (delayed break-
through) in drinking water treatment [7] [87]. 

5. Coagulation Technique Options 
5.1. Traditional Potable Water Treatment 

Figure 5 shows traditional potable water. It is frequent to insert sieves or mi-
cro-sieves before coagulation and disinfection stages of the final treated water 
[88] [89] [90]. If the water possesses low pH/alkalinity, the pH/alkalinity will be 
adjusted following the disinfection step [91] [92] [93]. Taking into account the 
components in between such two steps, a collection of coagulation methods have 
been adopted [94] [95] [96]. The most usual coagulation techniques are founded 
on a coagulant mixing zone followed by a flocculation step where the flocs are 
progressively formed [97] [98] [99]. Following flocculation, the flocs are sepa-
rated via a decantation or flotation step [100] [101] [102]. It is frequent to insert 
a filtration step that also comprise a Granular or Powder Activated Carbon (GAC 
or PAC filter that could reduce any residual organic matters) [103] [104] [105]. 
If the raw water has low colloids amount, coagulation could happen without de-
cantation or flotation, and the separation of the microflocs takes place indirectly 
in the filter [106] [107] [108]. If there is a flocculation step or not, the technique 
integrations are called contact filtration or direct filtration [109] [110] [111]. 
Keeping the coagulation pH inside the running spans of the respective coagu-
lants stays fundamental. In numerous conditions, particularly if the raw water 
source is soft, the coagulants are injected simultaneously with CO2 and lime to 
control the pH that also positively participates to dominating corrosion in the 
distribution system [7] [112] [113]. 

5.2. Electrocoagulation (EC) Process 

Employing electrochemical technology, coagulation could also be realized. An 
electrochemical cell equipped with Fe or Al electrodes can generate in situ hy-
drolysis species, conducting to coagulation like when introducing inorganic salts 
[114]. Electrocoagulation (EC) presents the simplicity of injecting control via 
adjusting the electrical current flow across the device. EC is also well known for 
its disinfection features [115] [116]. EC is largely employed in industrial waste-
water treatment and its large application in the water supply and urban waste-
water treatment remains to be implemented [7] [117] [118]. 

6. Dares in Water Coagulation 
6.1. Health Risks in Water Coagulation 

As previously mentioned, coagulation stays the most usual technique in dealing 
with water treatment and Al salts are the most widely used coagulants. Al species 
are detected in dissolved forms beyond pH ranges relevant to their levels (Figure 
3 and Figure 4). Non-optimal injection of coagulants, particularly in water with  
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Figure 5. Coagulation method options in potable water treatment industry [7]. 
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low alkalinity, could modify the coagulation pH to unwanted ranges where some 
of the aluminum will be in dissolved form. The usual separation techniques are 
unable to retain dissolved portions, and they may end up in the supplies to the 
consumers [119]. There are shreds of evidence of a linkage between the aluminum 
concentrations in drinking water and Alzheimer’s disease. Employing Fe-based 
coagulants may avert this hazard, usually with favorable effects on denser flocs, 
conducting to better sedimentation features [7]. 

In water supply systems, the excessive Al levels could be efficaciously con-
trolled via fixing optimal coagulant injections to aver over- and under-dosages 
integrated with overriding with coagulation pH range control to secure favorable 
pH ranges. A different strategy is to employ biopolymers (like chitosan), even if 
their usage is not yet economically feasible in bigger treatment facilities [7]. 

6.2. Over- and Under-Dosage Conducting  
to Disinfection By-Products (DBPs) 

Many treatment plants prefer to employ raw water from lakes rather than from 
rivers, because of its more stable water qualities [7]. The drawback is that some 
lake waters mostly carry out an elevated level of NOM that produce carcinogenic 
compounds (e.g., trihalomethanes) during chlorination. Therefore, NOM should 
be reduced prior to chlorination. Nevertheless, the non-optimal coagulant dos-
ing and unfavorable pH ranges could lead to poor reduction of NOM, conduct-
ing to health dangers. The dare has augmented lately with the augmentation of 
NOM levels in lake water because of climate change. 

As a possible option, utilizing more optimal dosing control systems, which 
rapidly respond to variations in raw water quality and maintain favorable pH 
ranges, is suggested [7]. 

7. New Developments as Potential Options  
in Terms of Using Coagulants 

There are recent enhancements in terms of utilizing coagulants. As a rule, Ca2+, 
Fe3+, and Al3+ salts have been utilized as coagulants. Even if Ca2+ salts have be-
come less frequent, Al3+ has become the dominant coagulant in the water treat-
ment industry. In order to elevate the performance of such classical chemicals, 
pre-polymerized coagulants were suggested four decades ago. They are synthe-
tized via carrying out partial hydrolysis, enabling more efficacious use of posi-
tively charged hydrolysis species (mostly in an adsorption-charge-neutralization 
mechanism). Whilst the first generation of pre-polymerized coagulants was po-
lyaluminum chlorides and polyferric chlorides, a recent generation of coagulants 
like polyaluminum silicate sulfate, polyferric sulfate, and polyaluminum ferric 
sulfates are well examined. Prepolymerized coagulants possess numerous merits 
over conventional aluminum sulfate (alum) [7]. 

Lately, Ti4+ and Zr4+ salts have been suggested as highly efficient coagulants, 
considering their high valence. Nevertheless, they are not yet employed at large 
scales, mostly because of their elevated prices [7]. 
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8. Conclusions 

This review focused on colloid stability, coagulation mechanisms, and coagulant 
types. It presented EC as an option of conventional coagulation and discussed 
challenges in coagulation technology especially health hazards in used chemicals 
toxicity. As promising solutions, new developments in terms of using coagulants 
are presented. The main findings of this work are listed below: 

Micropollutants are inorganic and organic substances that could disturb nega-
tively nature even at very low levels. Heavy metals are traditionally known as 
micropollutants. Organic micropollutants comprise both classical (dichlorodi-
phenyltrichloro-ethane, polychlorinated biphenyls, polycyclic aromatic hydro-
carbons, pesticides) and emerging contaminants (hormones, endocrine disrup-
tors, pharmaceuticals, and personal care products). The traditional water treat-
ment techniques are frequently not concentrating on the reduction of such mat-
ters. Nevertheless, there is a request to eliminate them during water treatment. 
Coagulation could retain different micropollutants at 6% - 90% [120]; however, 
there is still a necessity to determine running circumstances that could increase 
the reduction of micropollutants. 

In potable water resources, microplastics are observed. Microplastics generate 
a hazard to human health and nature. For their elimination, coagulation could 
be efficaciously employed. Combining coagulation with, for instance, ultrafil-
tration, has illustrated great capacity for their elimination from water. 
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