Generalization of Stirling Number of the Second Kind and Combinatorial Identity

Ji Peng

Department of Electronic Information, Nanjing University, Nanjing, China
Email: mcfrro@sina.com

Abstract

The Stirling numbers of second kind and related problems are widely used in combinatorial mathematics and number theory, and there are a lot of research results. This article discuss the function: \[\sum A^k_1 A^k_2 \cdots A^k_i \] \((C_1 + C_2 + \cdots + C_k = N - K, \ C_i \geq 0) \), obtain its calculation formula and a series of conclusions, which generalize the results of existing literature, and further obtain the combinatorial identity:
\[\sum (-1)^{K-i} * C(K-1,K-i)C(A-1+i,N-1) = C(A,N-K). \]

Subject Areas

Combinatorics

Keywords

Combinatorics, Combinatorial Identity, Stirling Numbers, Calculation Formula

1. Introduction

Stirling number of the second kind \(S_2(n,K) \) [1] is defined as
\[t^n = \sum_{k=0}^{N} S_2(N,k)[t]_k \] \hspace{1cm} (1*)

It has attributes:
[1] \[S_2(N,K) = \sum_{i=0}^{C_1} 2^{C_1} \cdots K^{C_k} \quad (C_1 + C_2 + \cdots + C_k = N - K, \ C_i \geq 0) \] (2*)
[1] \[S_2(N,K) = \frac{1}{K!} \sum_{i=0}^{K-1} (-1)^i \binom{K}{i} (K-i)^N \] (3*)

Let \(j = K - i \quad \rightarrow \quad S_2(N,K) = \frac{1}{(K-1)!} \sum_{j=0}^{K-1} (-1)^{K-j} \binom{K-1}{K-j} j^{N-1} \] (4*)
It is similar to the expansion of
\[(X-Y)^{N-1}\]
\[S_2(0,0) = 1, \quad S_2(N,0) = 0 \quad (N > 0)\]
\[S_2(N,1) = 1\]
\[S_2(N,2) = \left(2^{N-1} - 1^{N-1}\right)/1!\]
\[S_2(N,3) = \left(3^{N-1} - 2 \cdot 2^{N-1} + 1^{N-1}\right)/2!\]
\[S_2(N,4) = \left(4^{N-1} - 3 \cdot 3^{N-1} + 3 \cdot 2^{N-1} - 1^{N-1}\right)/3!\]
\[S_2(N,5) = \left(5^{N-1} - 4 \cdot 4^{N-1} + 6 \cdot 3^{N-1} - 4 \cdot 2^{N-1} + 1^{N-1}\right)/4!\]
\[S_2(N,6) = \left(6^{N-1} - 5 \cdot 5^{N-1} + 10 \cdot 4^{N-1} - 10 \cdot 3^{N-1} + 5 \cdot 2^{N-1} - 1^{N-1}\right)/5!\]
\[S_2(N,N-1) = {N \choose 2}\]

\[2. \text{Main Conclusion and Proof}\]

\textbf{Definition: The generalization of Stirling number of the second kind}

If \(\{a\} = \{A_1, A_2, \ldots, A_k\}\), \(\text{A} \in \mathbb{Z}\), \(A < A_j, (i < j)\), then
\[G(N,K,\{a\}) = \sum A_1^{C_1} A_2^{C_2} \cdots A_k^{C_k} \quad (C_1 + C_2 + \cdots + C_k = N-K, \quad C_i \geq 0)\]
\[G_i(N,K,A) = G(N,K,\{A,A+1,\ldots,A+K-1\}) \rightarrow S_2(N,K) = G_i(N,K,1)\]

The function has been discussed by many papers [2] [3] [4], including defini-
tion, recursive relation, generating function and so on. This article will not nar-
rate.

\[G(N,K,\{a\}) = G(N-1,K-1,\{A_1,\ldots,A_{k-1}\}) + A_k \cdot G(N-1,K,\{a\})\]

\[1) \quad G(N,K,\{a\}) = G(N-1,K-1,\{A_1,\ldots,A_{k-1}\}) + A_k \cdot G(N-1,K,\{a\})\]

\textbf{Proof:} By definition.

The first equation corresponds to \(S_2(n,K) = S_2(n-1,k-1) + k \cdot S_2(n-1,K)\).

\[2) \quad G(N,K,\{a\}) = \frac{G(N,K-1,\{A_1,\ldots,A_{k-1}\}) - G(N,K-1,\{A_1,\ldots,A_{k-2}\})}{A_k - A_i}\]

\textbf{Proof:} From the second equation of 1).

\[3) \quad G(N,1,\{A\}) = A^{N-1}, \text{ corresponds to } S_2(N,1) = 1\]

\[4) \quad G(N,2,\{A_1,A_2\}) = \frac{A_2^{N-1} - A_1^{N-1}}{A_2 - A_1} = \frac{A_1^{N-1}}{A_1 - A_2} + \frac{A_2^{N-1}}{A_2 - A_1}, \text{ corresponds to } S_2(N,2) = 2^{N-1} - 1 = 2^{N-1} - 1^{N-1}.\]

\textbf{Proof:} \(G(N,2,\{A_1,A_2\}) = A_1^{N-2} + A_2^{N-2} + \cdots + A_2^{N-2}\).

\[5) \quad G(N,K,\{a\}) = \sum_{i=0}^{k} \left(\frac{A_i^{N-1}}{\prod_{j<i}(A_i - A_j)}\right), \text{ this is the calculation formula.}\]

\textbf{Proof:} Induce by 2), 3), 4).
The form is symmetrical, for example:

\[G(N,3\{a\}) = \frac{A_1^{N-1}}{(A_1 - A_2)(A_1 - A_3)} + \frac{A_2^{N-1}}{(A_2 - A_3)(A_1 - A_3)} + \frac{A_3^{N-1}}{(A_3 - A_2)(A_3 - A_1)} \]

Lemma 1: If \(\{a\} \) is an equal difference sequence \(\{A, A + d, \cdots, A + (K-1)d\} \),

\[
\frac{1}{\prod_{i-m,j\neq j}(A_i - A_j)} = \frac{(-1)^{K-m}}{d^{K-1}(K-1)!} \left(\begin{array}{c} K-1 \\ m \end{array} \right).
\]

\[
\frac{1}{\prod_{i-m,j\neq j}(A_i - A_j)} = \prod_{i-m,j\neq j}(A_i - A_j) \prod_{i-m,j\neq j}(A_i - A_j) = \frac{1}{d^{K-1}(K-1)!} \left(\begin{array}{c} K-1 \\ m \end{array} \right).
\]

Proof:

\[
\frac{1}{d^{K-1}(K-1)!} \left(\begin{array}{c} K-1 \\ m \end{array} \right) = \frac{(-1)^{K-m}}{d^{K-1}(K-1)!} \left(\begin{array}{c} K-1 \\ m \end{array} \right).
\]

6) If \(\{a\} = \{A, A + d, \cdots, A + (K-1)d\} \),

\[
G(N,K,\{a\}) = \frac{1}{d^{K-1}(K-1)!} \sum_{j=1}^{K-N-1} (-1)^{K-j} \binom{K-1}{K-j} A_j^{N-1}.
\]

Proof: By 5) and Lemma 1.

It is similar to the expansion of \((X-Y)^{N-1} \), in particular:

7) \(G(N,K,A) = \frac{1}{(K-1)!} \sum_{i=1}^{K} (-1)^{K-i} \binom{K-1}{K-i} (A-1+i)^{N-1} \) similar to (4*), (5*)

8) \(G(N,K,1) = S_1(N,K) = \frac{1}{(K-1)!} \sum_{i=1}^{K} (-1)^{K-i} \binom{K-1}{K-i} j^{N-1} \) equal to (4*), (5*)

9) \(G(N,K,\{d,2d,\cdots,Kd\}) = \frac{d^{N-K}}{(K-1)!} \sum_{i=1}^{K-N-1} (-1)^{K-i} \binom{K-1}{K-i} j^{N-1} = d^{N-K} S_1(N,K) \)

10) \(G(K+1,K,A) = A +(A+1) + \cdots + (A+K-1) = K + A + \binom{K}{2} \) corresponds to (6*)

Theorem 1: \(G_i(N < K, K, \{a\}) = 0; \ G_i(K, K, \{a\}) = 1. \)

Proof:

7) \(\rightarrow \ G_i(1,K \geq 1,A) = \frac{1}{(K-1)!} \sum_{i=1}^{K} (-1)^{K-i} \binom{K-1}{K-i} = 0 \)

4) \(\rightarrow \ G_i(2,2,A) = 1 \)

Suppose \(G_i(X,K-1,A) \) match the theorem:

\[
G_i(N < K-1, K,A) = \frac{G(N,K-1,\{A_2,\cdots,A_i\}) - G(N,K-1,\{A_i,\cdots,A_{K-1}\})}{A_i - A_{i-1}} = 0 - 0 = K-1 = 0 \]

DOI: 10.4236/oalib.1106462 3 Open Access Library Journal
\[G_i(N = K - 1, K, A) = \frac{G_i(N, K - 1, \{A_2, \ldots, A_i\}) - G_i(N, K - 1, \{A_1, \ldots, A_{i-1}\})}{A_i - A_1} = \frac{1 - 1}{K - 1} = 0\]

\[G_i(N = K, K, A) = \frac{G_i(N, K - 1, \{A_2, \ldots, A_i\}) - G_i(N, K - 1, \{A_1, \ldots, A_{i-1}\})}{A_i - A_1} = \frac{(K - 1)(A + 1) + \binom{K}{2} - (K - 1)A - \binom{K}{2}}{K - 1} = 1\]

Induction proved.

\textbf{q.e.d.}

The theorem verify the definition, \(A\) can be any integer.

\textbf{Definition:} \(A \in \mathbb{Z}^+\), \(G_2(N, K, A) = \sum_{i=1}^{K} (-1)^{K-i} \binom{K-1}{K-i} \binom{A}{A-i} \binom{N-1}{N-1} \)

\textbf{Theorem 2:} \(G_2(N + K, K, A) = \binom{A}{N}\)

\textbf{Proof:}

Let \(F(N) = (N - 1)!G_2(N, K, A) = \sum_{i=1}^{K} (-1)^{K-i} \binom{K-1}{K-i} [A-1+i]_{K-1} \).

Substitution \((1*)\) to 7, use Theorem 1:
\[G_i(1, K, A) = 0, K > 1 \rightarrow F(1) = 0 \rightarrow G_2(1, K > 1, A) = 0\]
\[G_i(2, K, A) = 0, K > 2, F(1) = 0 \rightarrow F(2) = 0 \rightarrow G_2(2, K > 2, A) = 0\]
\[\vdots\]
\[G_i(K, K, \{a\}) = 1 \rightarrow F(K) = (K - 1)! \rightarrow G_2(K, K, A) = 1 = \binom{A}{0}\]

10) \(\rightarrow\)
\[G_i(1 + K, K, A) = K \ast A + \binom{K}{2} = \frac{S_2(K, K)F(K + 1) + S_2(K, K - 1)F(K)}{(K - 1)!} \rightarrow\]
\[F(1 + K) = A \ast K! \rightarrow G_2(1 + K, K, A) = A = \binom{A}{1}\]
\[\binom{A}{N+1} = \binom{A-1}{N} + \binom{A-1}{N+1} \rightarrow\]
\[G_2(N + K, K, A) = \binom{A}{N}\]

\textbf{q.e.d.}

Record in [5]:
\[\sum_{k=0}^{\infty}(-1)^k \binom{m}{k} \binom{m+n-k-1}{n} = \binom{n-1}{m-1} \] (**)
Let $A = n-1$, $m = K - 1$, $i = K - k$ → left = $\sum_{i=0}^{K} (-1)^{K-i} \binom{K-1}{K-i} \left(A - 1 + i \right)$.

Let $K + N - 1 = A + 1$ →

left = $\sum_{i=0}^{K} (-1)^{K-i} \binom{K-1}{K-i} \left(A - 1 + i \right) = \binom{n-1}{m-1} = \binom{A}{A-N} = \binom{A}{N}$.

(**) has 2 variables (m, n), it is $G_2(K + A + 2, K, A)$ actually.

Theorem 2 has 3 variables, is promotion of (**).

$$G_2(N + K, K, A) = \binom{A}{N}$$ is independent of K.

Choice N from A, one way is:

$$\binom{A}{N} = \binom{A-1}{N-1} + \binom{A-1}{N-1} + \binom{A-2}{N-1} + \cdots + \binom{N-1}{N-1}$$

Another way is:

$$\binom{A}{N} = \binom{A+1}{N+1} - \binom{A}{N+1} = G_2(N+2, 2, A)$$

$$\binom{A}{N} = \binom{A+2}{N+2} - \binom{A+1}{N+2} - \binom{A+1}{N+2} = G_2(N+3, 3, A)$$

\[\cdots \]

$$G(N + K, K, \{a\}) - \left(\sum A_j \right) G(N + K - 1, K, \{a\})$$

12) $\left(\sum A_1 A_2 \cdots A_j \right) G(N + K - 1, K, \{a\}) + \cdots + (-1)^{K} (A_1 A_2 \cdots A_j) G(N, K, \{a\}) = 0$

Proof:

$$0 = G_1(N, 0, \{a\}) = G(N + 1, 1, \{a\}) - A_1 G(N, 1, \{a\}) = \left\{ G(N + 2, 2, A) - A_1 G(N + 1, 2, A) \right\} - A_1 \left\{ G(N + 1, 2, A) - A_1 G(N, 2, A) \right\}$$

$$= G(N + 2, 2, A) - (A_1 + A_2) G(N + 1, 2, A) + A_1 A_2 G(N, 2, A)$$

Induction proved.

q.e.d.

This is similar to the Inclusion-Exclusion Principle, in particular:

13) $S_2(N, K) - S_2(K + 1, K) S_2(N - 1, K) + \cdots + (-1)^{K} S_2(K + 1, 1) S_2(N - K, K) = 0$

S_i is unsigned Stirling number of the first kind.

14) $G_1(N, K, A) = \sum_{t=K-1}^{N-1} S_2(N-1, t) \binom{A}{t+1-K} \left[K \right]^{t+1-K}$

Proof:

Substitution (1*) to 7), use Theorem 2:
\[G_i(N, K, A) = \frac{1}{(K-1)!} \sum_{i=1}^{K} (-1)^{K-i} \binom{K-1}{K-i} (A-1+i)^{N-1} \]

\[= \frac{1}{(K-1)!} \sum_{i=1}^{K} (-1)^{K-i} \binom{K-1}{K-i} \sum_{t=0}^{N-1} S_2(N-1,t) [A-1+i]_t \]

\[= \sum_{t=0}^{N-1} S_2(N-1,t) \sum_{i=1}^{K} (-1)^{K-i} \binom{K-1}{K-i} \left(A-1+i \right)^t t!/(K-1)! \]

\[= \sum_{t=0}^{N-1} S_2(N-1,t) G_2(t+1, K, A) [K]^{1-K} \]

\[= \sum_{t=0}^{N-1} S_2(N-1,t) \left(\frac{A}{t+1-K} \right) [K]^{1-K} \]

\[\text{q.e.d.} \]

\[\rightarrow S_2(N, K) = G_1(N, K, 1) = K \cdot S_2(N-1, K) + S_2(N-1, K-1) \]

3. Conclusions

This paper starting from (4*), (5*), discusses the problems from different perspectives.

The introduced function has good characteristics, can be further studied.

Conflicts of Interest

The author declares no conflicts of interest regarding the publication of this paper.

References

