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Abstract 
A huge number of investigations on the ecological sources, fate, and transport 
of viruses have been dedicated to non-enveloped viruses such as norovirus 
and enteroviruses. However, more recent global outbreaks of viral diseases 
have been provoked by enveloped viruses comprising viruses from the Coro-
navirus family (SARS, MERS, COVID-19). Enveloped viruses have a lipid 
membrane encircling their protein capsid and genome. SARS-CoV-2 will 
surely not be the ultimate fresh virus to jut and badly terrorize worldwide 
public health and life. Scientists and funding agencies have a trend to con-
centrate largely on a particular virus throughout its eruption; however, then 
advance on to different themes when the eruption calms. Considering the 
historical contributions from environmental engineering, and the huge dares 
that emerge, environmental science and engineering specialists have to adopt 
a larger, long-term, and more quantitative strategy to comprehending viruses 
that are diffusing through nature. Identical to the manner by which chemical 
contaminants are handled in the environment, the particular properties that 
control transport and demobilization of enveloped viruses in solutions, on 
surfaces, and in the air must be understood. Besides, the fashion by which 
ecological parameters form likely virus transmission mechanisms should be 
comprehended. Thereby, despite the identity of the enveloped virus that 
provokes the following main eruption, more sophisticated detailing of its en-
durance and guidance on how to reduce its diffusion may be given. 
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1. Introduction 

A huge number of investigations on the ecological sources, fate, and transport of 
viruses have been dedicated to non-enveloped viruses such as norovirus and en-
teroviruses [1] [2]. However, more recent global outbreaks of viral diseases have 
been provoked by enveloped viruses comprising viruses from the Coronavirus 
family (SARS, MERS, COVID-19). Enveloped viruses have a lipid membrane 
encircling their protein capsid and genome. Shortage of information on the oc-
currence of infective enveloped viruses in human waste, the ecological fate and 
diffusion of enveloped viruses, best applications to disinfect surfaces and water, 
wash contaminated body parts, and treat wastewater and feces to removal enve-
loped viruses, has hampered outbreak response. Investigating into the ecological 
persistence and pathways of transmission of SARS, MERS, and COVID-19 be-
comes more difficult via protection worries of dealing with high-risk viruses. 
Thus, there is a restricted direct study ready on the ecological perseverance of 
viruses in the Coronavirus family. The plurality of the study has been performed 
on enveloped “surrogate” viruses. Recently, ES&T and ES&T Letters [1] pub-
lished a set of investigations furnishing an understanding of the present situation 
of facts on the perseverance and conduct of enveloped viruses in nature. Much 
of the study has been realized employing surrogate enveloped viruses, which 
possess identical characteristics to the human enveloped viruses presently of 
acute attention [1]. 

This work furnishes worthy details and understandings on the likely ecologi-
cal destiny and spread of enveloped viruses. Such data comprise demobilization 
routes that could happen throughout frequent water disinfection techniques, the 
possibility for secondary transmission of the virus through aerosolization from 
wastewater and further human exposure through inhalation, the performance of 
the cleanup of virus-contaminated surfaces, and the behavior of land-filled in-
fectious waste.  

2. Spread of COVID-19: Contribution of Ecological  
Parameters 

From the beginning of this 21st century, the germination of viral epidemics con-
stitutes huge menaces to human health and life [3]. Such contagious viruses have 
been classified as hemorrhagic fever viruses (Lassa, Ebola), new coronaviruses 
comprising severe acute respiratory syndrome CoV (SARS-CoV), Middle-East 
respiratory syndrome (MERS-CoV), and greatly pathogenic influenza. As a cat-
egory of enveloped, positive-sense single-stranded RNA virus, coronaviruses 
(CoVs) provoke numerous diseases in human beings. They are subdivided into 
four groups: Alphacoronavirus, Betacoronavirus (βCoV), Gammacoronavirus, 
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and Deltacoronavirus. Two new βCoVs, severe acute respiratory syndrome CoV 
(SARS-CoV) and Middle-East respiratory syndrome CoV (MERS-CoV), have 
lately surfaced and could cause an elevated death-rate. The actual eruption of 
fresh coronavirus COVID-19 (HCoV-19 or SARS-CoV-2) has pushed the World 
Health Organization (WHO) to announce such eruption a universal pandemic. 
By March 31, 2020, infected cases had reached 719,758 and a total of 33,673 
deaths in the world have been reported by the WHO [4]. 

Comparable to the SARS-CoV, symptoms of COVID-19 infection at the 
onset of the illness comprise fever, myalgia, fatigue, and cough, and more 
than half of patients developed dyspnoea [3]. Numerous patients had radio-
graphic ground-glass lung alterations, and lower than average circulating lym-
phocyte and platelet populations. Until March 15, 2020 [5], the global deaths at-
tained 5746, and the fatality rate was evaluated as 3.7% for COVID-19 virus [4], 
which was lower than that of SARS-CoV (10%) or MERS-CoV (37%) [5]. The 
main dare of the coronavirus family and identical infectious agents is that no ef-
ficient drugs or vaccines are ready, and it may take several months for research 
and development [3]. 

Human-to-human transmission of COVID-19 happens if individuals are in 
the incubation stage or showing symptoms; however, some individuals stay con-
tagious whilst staying asymptomatic (superspreaders). Transmission is thought 
to take place via touching infected surfaces (skin-to-skin, touching infected in-
animate objects) then mediating the COVID-19 infection through the mouth, 
nose, or eyes. Transmission could as well be via inhalation of the exhaled virus in 
respiratory droplets. Infectious viruses, comprising coronavirus, could survive 
for long periods outside of its host organism [6]. COVID-19 virus is thought to 
survive for many hours on surfaces like aluminum, sterile sponges, or latex sur-
gical gloves, augmenting the hazard for transmission via touch. Transmission via 
the inhalation of small exhaled respiratory droplets could happen since the 
aerosol droplets stay airborne for prolonged periods, mediating long-range hu-
man-to-human transmission via air movement [3]. 

Fecal transmission pathways have as well to be taken into account since the 
COVID-19 virus has been positively detected in stool samples of infected pa-
tients. It was proved that SARS-CoV could survival in stool samples for 4 days 
[6]. Scientists mentioned that coronavirus can stay infectious in water and se-
wage for days to weeks [7]. At ambient temperature, in pure water or pasteu-
rized settled sewage, the time requested for a 99% reduction of virus infectivity 
was found to be numerous days [7]. This increases one more possible transmis-
sion pathway if the quality of personal hygiene is poor. Infected stools in waste-
water could form further transmission pathways by the formation of virus-laden 
aerosols throughout wastewater flushing. A polluted faulty sewage system in a 
high-rise housing estate in Hong Kong in 2003 was related to the SARS eruption 
of a great number of residents living in the surrounding buildings [8]. Conse-
quently, the contribution of the aerosol from polluted sewage in the transmis-
sion of COVID-19 has to be monitored [3]. 
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An additional transmission route can be through airborne dust. Microorgan-
isms in airborne particulate matters (PMs) or dust are related to infectious dis-
eases [9]. Substandard nationwide air contamination is recurrent in many de-
veloping countries, and the contribution of air PM and dust in the transmission 
of COVID-19 infection stays unexamined. Inhalation of virus-laden fine par-
ticles can transport the virus into deeper alveolar and tracheobronchial regions, 
which can elevate the hazard of infective transmission. Adsorption of the 
COVID-19 virus on airborne dust and PM can as well participate in the 
long-range transport of the virus. Thus, researches on adsorption, survival, and 
behavior of the COVID-19 virus inside the surface of PM are requested to assist 
to comprehend the function of air PM contamination in COVID-19 transmis-
sion [3]. 

The degree to which the COVID-19 virus causes respiratory stress in infected 
individuals may as well be touched via the level to which an individual’s respira-
tory system is previously damaged. The elevated degrees of PM pollution in 
China could augment the vulnerability of the population to additional grave 
symptoms and respiratory complications of the disease. Further, oxidant pollu-
tants in the air could damage the immune function and weaken the performance 
of the lungs to remove the virus from the lungs. The concomitant inhalation of 
chemical contaminants in PM beside the COVID-19 virus can as well aggravate 
the degree of COVID-19 infection. Pro-inflammation, injury, and fibrosis from 
inhaled PM integrated with an immune response or cytokine storm induced by 
COVID-19 infection can elevate the infection severity. Bigger numbers of pa-
tients showing more grave infection symptoms also augmented the danger of 
elevated transmission potential. Thus, the pathways underlying the effect and 
modulation of air pollution on COVID-19 severity and onward transmission 
justify more research [3]. 

Considered jointly, the subsistence of the COVID-19 virus in numerous natu-
ral media, comprising water, PM, dust, and sewage below a collection of ecolog-
ical factors reasons methodical research at once. Degrees of infectious virus in 
ecological samples can be small, needing high-sensitivity procedures for an ac-
curate measure of COVID-19 virus to be improved. In the future, such fresh co-
ronavirus could as well begin to be a seasonal infectious virus. The manifesta-
tion, endurance, and comportment of COVID-19 virus in natural fields must be 
controlled, needing the improvement of high-throughput, automatic methods 
for virus observing. For now, to decrease the risk of infection, it is vital to 
present handy technologies for large-scale disinfection treatment of the 
COVID-19 virus in various ecosystems [3]. 

3. Following COVID-19 Sources with Wastewater-Based  
Epidemiology 

Numerous clinical cases have observed that many carriers of the virus could be 
asymptomatic, with no fever, and no, or only slight symptoms of infection [10]. 
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Without the possibility to show such asymptomatic patients readily and effi-
ciently, such unwary carriers possess the possibility to augment the danger of 
disease transmission if no prompt efficient quarantine actions are executed. 
Thus, to discover obscure COVID-19 sources, rapid and exact examination of 
potential virus carriers and diagnosis of asymptomatic patients are a key stage 
for intervention and prevention at the premature point. 

It stays a greatly defying logistical practice for medical professionals to realis-
tically and efficiently sieve suspected infectious cases from individual households 
[10]. This huge task is time-consuming and labor-intensive and is held back via 
the accessibility of examination techniques at this very perilous period. Never-
theless, a substitutional procedure employing wastewater-based epidemiology 
(WBE) could furnish an efficient method to anticipate the likely diffusion of the 
infection through examination for infectious agents in wastewater, which has 
been confirmed as an efficient manner to detect illicit drugs, and acquire details 
on health, disease, and pathogens [11]. 

Feces and urine from disease carriers in the community will hold numerous 
biomarkers that could come into the sewer system. Live SARS-CoV-2 was iso-
lated from the feces and urine of infected people that would then come into the 
wastewater treatment system [12]. SARS-CoV-2 could typically endure for up to 
numerous days in a convenient medium after leaving the human body [10]. 
Thus, it is possible that the analysis of SARS-CoV-2 in community wastewater 
can follow COVID-19 sources via sewage pipe networks and decide if there are 
probable SARS-CoV-2 carriers in some local regions. If SARS-CoV-2 could be 
observed in the community at the premature phase via WBE, an efficacious in-
tervention could be taken as precocious as conceivable to limit the motions of 
that local population, operating to reduce the pathogen diffusion and menace to 
public health. 

Employing a WBE strategy in expanding a premature cautionary system and 
following an efficacious intervention system will need a fast analytical method 
for the on-site revelation of viruses at the wastewater collection point. Presently, 
the most direct manner for the detection of SARS-CoV-2 is a nucleic acid−based 
polymerase chain reaction (PCR) check, which is as well a method for affirma-
tion of COVID-19 patients in China. Even if PCR possesses elevated respon-
siveness and specificity, needs for intricate sample processing in the laboratory, 
skilled personnel, and an extended time of data treatment and analysis (4 - 6 h) 
are not favorable to real-time and efficient surveillance of samples on-site. Thus, 
it remains decisive to suggest performant transportable and robust analytical in-
struments to exactly and rapidly detect low-level SARS-CoV-2 sources via WBE 
to affirm such suspected cases and garble asymptomatic infected cases without 
centralized laboratories [10]. 

Paper analytical gadgets have come out as strong instruments for the quick 
identification of pathogens and the establishment of infection transmission [13]. 
The paper-founded apparatus is a small analytical instrument with various func-
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tional areas printed with a wax printer that merges all processes (extraction, 
enrichment, purification, elution, amplification, and visual detection) requested 
for nucleic acid testing into an inexpensive paper material. The full testing oper-
ation could be performed via easy folding of a paper-founded apparatus in di-
verse manners in numerous stages without a pump or power supply, which beats 
the restriction of PCR and averts numerous operations. Paper analytical gadgets 
allow multiplexed, precise checks that challenge PCR laboratory checks and fur-
nish high-quality, rapid precision diagnostics for pathogens. As an illustration, 
researchers have established the multiplexed diagnosis of malaria from whole 
blood utilizing a paper-founded gadget in rural Uganda [14]. The inspection can 
sensitively examine multiplexed nucleic acid sequences of pathogens after only 
50 min, which furnished a higher-quality and quicker precision diagnosis for 
malaria than PCR [10]. 

On the other hand, paper analytical gadgets are facile to stack, store, and 
transport as they are thin, lightweight, and of various thicknesses. Visual analysis 
is performed easily thanks to the strong contrast with a colored substrate. Pa-
per-based apparatuses could as well be incinerated following usage, decreasing 
the hazard of more pollution [10]. 

Even if wastewater stays a complex matrix, paper-founded gadgets have 
proved the possibility to uncover pathogens in wastewater. Yang et al. [11] sug-
gested a rapid “sample-to-answer” analysis procedure that could furnish quan-
titative control of nucleic acids and genetic information via the analysis of se-
wage, which was affirmed using a robust electrophoresis and agarose gel image 
assay, illustrating encouraging reliability for wastewater analysis. More pa-
per-founded gadgets have as well been made for infectious diseases and patho-
gens discovery (Table 1) [10]. 

4. Main Environmental Engineering’s Challenges towards  
Stopping Viruses Pandemics 

Engineers and scientists specialized in the environment have efficiently partici-
pated in saving the public from viral illnesses, and push along to do so now 
[15]-[20]. They promoted potable water and domestic wastewater treatment 
techniques, realized inventions that notify regarding regulations and policies, 
and performed crucial studies on the occurrence, continuity, and diffusion of 
viruses in nature [21] [22] [23] [24] [25]. A large collection of outstanding inves-
tigation in this domain has been dedicated mostly to non-enveloped human en-
teric viruses like human noroviruses and enteroviruses [26] [27] [28] [29] [30]. 
As mentioned above, not long ago, numerous high-profile eruptions like Ebola 
virus, measles, Zika virus, avian influenzas, SARS, MERS, and the continuing 
COVID-19 pandemic have been provoked by enveloped viruses. In addition to 
the ribonucleic acid (RNA) or deoxyribonucleic acid (DNA) genomes and pro-
tective protein capsids that are common to all viruses, enveloped virus structures 
are also wrapped in bi-lipid membranes. 
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Table 1. Instances of paper-founded gadgets for infectious diseases and pathogens determination [10]. 

Infectious diseases/pathogens Features of paper-founded gadgets Detection procedure 

Malaria Paper gadget combined vertical flow sample-processing steps Visual UV/lateral flow device 

Rotavirus A 
Integrated nucleic acid test on a single paper device, including  
extraction, amplification, and on-site detection 

Naked eye 

Zika virus Wax-printed paper devices utilizing isothermal amplification Smartphone 

Human papillomavirus 
Paper device in a foldable system allowing for fully integrated  
operation from sample to result 

Lateral flow device 

Human immunodeficiency virus (HIV) Paper devices fabricated with cellulose paper and flexible plastic plate Electrochemistry 

Neisseria meningitides Versatile paper devices integrated with isothermal amplification Visual fluorescence 

Listeria monocytogenes Loop-mediated isothermal amplification (LAMP)-based paper devices Visual fluorescence 

Cochlodinium polykrikoides Paper devices based on LAMP Visual fluorescence 

Staphylococcus aureus Self-priming paper devices Visual fluorescence 

Vibrio parahemolyticus Self-priming paper devices Visual fluorescence 

Mycobacterium smegmatis 
Paper devices combined thermal lysis and isothermal amplification 
into a single step 

Visual fluorescence 

Bacillus subtilis A wax-printed cellulose paper device Colorimetry 

Salmonella 
Paper devices integrated with purification, amplification, and on-site 
detection 

Colorimetry 

Escherichia coli 

Foldable paper devices with the ability of long-term reagents storage Colorimetry 

Paper devices based on isothermal amplification and on-chip detection Visual fluorescence 

Paper machine integrated sample preparation and isothermal  
amplification with end point detection 

Visual UV/camera 

Paper devices integrated extraction, purification, amplification and 
detection 

Smartphone/naked eye 

Paper devices combined thermal lysis and isothermal amplification Visual fluorescence 

Bovine infectious reproductive diseases Multiplexed and point-of-care paper-analytical device Visual UV/smartphone 

Highly pathogenic strain of porcine  
reproductive and respiratory syndrome  
virus (HP-PRRSV) 

Paper devices fabricated with filter paper and plastic chip Colorimetry 

 
As aforesaid, the main manner of transmission for several enveloped viruses 

remains through approaching contact with infected persons [15]. Numerous 
enveloped viruses, even so, are liberated to nature by the host and remain on 
surfaces (i.e., fomites), in the air, or in water, long enough to come into contact 
with another host for additional onward transmission (that is to say, indirect 
transmission). This comprises viruses in charge of influenza and measles. The 
first transmission ways for SARS-CoV-2 (the virus that provokes COVID-19) 
are approved to be person-to-person touch and through subjection to big drop-
lets formed from sneezing, coughing or talking; however, indirect transmission 
ways may as well contribute [31]. Such a likely contribution of nature in the dif-
fusion of COVID-19 picks out the plenty of technological deficiencies that 
should be confronted to efficiently dominate eruptions and pandemics as fresh 
enveloped viruses come out. 

Virus particles in the air and on fomites are open to a collection of ecological 
circumstances that dictate their continuity [15]. Relative humidity, fomite ma-
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terial, and air temperature could considerably affect enveloped virus demobiliza-
tion rates [32] [33] [34] [35]. Indeed, the environment in which the virus is sus-
pended could considerably affect duration [36]. As an illustration, chlo-
rine-founded solutions [37] [38] [39] [40] [41] and hydrogen peroxide gas are 
efficient at demobilizing the enveloped virus surrogate Phi6 on fomites [42] [43]; 
however, the occurrence of blood requests much higher hydrogen peroxide gas 
injections [43]. Next mechanistic investigations have to check how particular 
constituents in the matrix, temperature, humidity, and solar radiation each affect 
demobilization. In addition, a survey measuring the transfer of enveloped virus-
es among fomites and skin, and defining efficient hand washing and surface sa-
nitizing manners is required to inform agent-based risk assessment models. 

As shown previously, viruses possess a direct link to wastewater and potable 
water treatment when they are expelled in feces or urine (Table 2) [44]; howev-
er, there are restricted details on the level of enveloped viruses in feces and urine. 
The human coronavirus in charge of the 2003 SARS explosion was fit to replicate 
in the human gastrointestinal (GI) tract and infective particles were found in 
stool samples [45]. As mentioned above, in fact, aerosolized fecal particles are 
supposed to possess the main contribution in diffusing the virus at a Hong Kong 
apartment complex [9]. In a similar fashion, SARS-CoV-2 genomic RNA has 
been found in feces [12] [46]. Even if infective SARS-CoV-2 has not until now 
been asserted in stool samples, the SARS-CoV-2 RNA shedding pattern proposes 
viruses are replicating in the GI tract [46]. Other human enveloped viruses, like 
cytomegalovirus (CMV), are evacuated in the urine. Previous studies on enve-
loped viruses in wastewater, comprising coronaviruses, propose that such viruses 
are demobilized at faster rates than most non-enveloped viruses [47] [48] [49] 
[50] [51], that they partition to wastewater solids to a greater extent than 
non-enveloped viruses [51], and that wastewater temperature is positively related 
to their demobilization rates [49] [51]. In water treatment techniques, they are 
usually more vulnerable to oxidant disinfectants than non-enveloped viruses [52] 
[53] [54]. The existence of an envelope does not seem to affect virus vulnerability 
to ultraviolet C (UVC) light [51], possibly due to UVC targets virus genomes and 
lipid membranes do not shield the genomes from UVC radiation [15]. 

 
Table 2. Mean or median viral loads in the feces and urine of infected individuals for three enveloped viruses and two 
non-enveloped virusesa [15]. 

Virus Enveloped or not Urine (gc/mL) Feces (gc/g) Feces (gc/swab) 

SARSb Yes 101.3 106.1 NA 

Cytomegalovirus (CMV)C Yes 104.5 NA NA 

SARS-CoV-2d Yes ND NA 105 

Human norovirus GIIe No NA 108.5 NA 

JC polyomavirusf No 104.6 NA NA 

a“gc” is gene copy. NA = not analyzed in study, ND = analyzed, but not detected in study. bSamples from approximately 100 patients with lab-confirmed 
illness, mean. cSamples from 36 children with lab-confirmed illness, median. dRectal swab samples from 9 patients with lab-confirmed illness during first 
week of illness, mean. eSamples from 627 patients with gastroenteritis symptoms, median. fSamples from 71 health blood donors that tested positive or JC 
polyomavirus, median. 
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5. Water Treatment Plants Facing SARS-CoV-2 Virus 

What does this imply for the SARS-CoV-2 virus and the potential of the water 
treatment plants to guarantee protected water? The present potable water treat-
ment plants [55]-[62], involving those utilized to get potable water from waste-
water [63]-[68], were planed employing microbial risk assessments and process 
efficiency data with non-enveloped enteric viruses. Founded on the realities that 
1) the closely related 2003 SARS was expelled in feces at lower degrees than en-
teric human noroviruses (Table 2), 2) model coronaviruses are demobilized at 
quicker rates in wastewater and other waters than non-enveloped viruses, 3) the 
enveloped viruses tested until now are more vulnerable to oxidant disinfectants 
than non-enveloped viruses, and 4) the large single-stranded RNA (ssRNA) ge-
nome (~29.8 kb) of SARS-CoV-2 possibly renders it more vulnerable to UVC 
inactivation than enteric ssRNA viruses, the multi-barrier wastewater and pota-
ble water treatment systems are probably efficient in keeping safe against 
SARS-CoV-2. Even so, there may still be water-related subjections that require 
to be taken into account if infectious SARS-CoV-2 viruses are existing in urine 
or feces. Such subjections could happen in communities that experience com-
bined sewage overflows, that do not have sewage infrastructure, or that use 
wastewater for irrigation [69]-[75], as well as buildings that have faulty plumb-
ing systems and occupational exposures to wastewater and excrement [15]. 

Even with the study summarized earlier, enveloped viruses are very various, 
with a collection of genome types, structures, replication cycles, and pathogenic-
ities. As an illustration, of the 158 specified human RNA viruses’ species as of 
2018, 122 species from 11 virus families were enveloped and 36 species from 6 
families were non-enveloped [76]. Thus, enveloped viruses probably manifest a 
different assortment of ecological comportment, endurance, and fate [77]. The 
restricted investigations on enveloped-virus fate, transport, and demobilization 
have been dedicated to only a small portion of human viruses or their proxies 
comprising animal coronaviruses and bacteriophage phi6. Even if investigations 
employing animal coronaviruses have been useful for the present COVID-19 
eruption [34] [51] [78], it is important to examine an extended collection of en-
veloped viruses that better represent human enveloped virus diversity [15]. 

Next studies on enveloped viruses have to search for accurately qualify and 
even standardize the circumstances under which measurements are performed 
[15]. Media composition, the purity of virus stock, and if feasible, virus levels in 
both gene copies and infective units, must be defined. While examining oxi-
dants, the demand for the solution and variation in oxidant dosage during the 
test has to be furnished [79] [80] [81]. While trying radiation (UVC [82] and/or 
sunlight [83]), mitigation via the experimental solution must be well-featured 
incorporated into reported injections [84] [85] [86] [87] [88]. Scientists have to 
involve a well-tested surrogate virus in their trials in addition to the enveloped 
virus of attention to make easier cross-study rapprochements. Wigginton and 
Boehm 2020 [15] suggested employing the non-enveloped bacteriophage MS2 
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for such objective since it is one of the most examined viruses in ecosystems 
[89]. 

Consequently, there are rising research perspectives in this domain, which 
could demystify the actual COVID-19 eruption and following fresh viral erup-
tions. For instance, prognostic models founded on the fundamental pathways 
managing the endurance of enveloped viruses, and other properties, could dimi-
nish the necessity to investigate every virus below every circumstance [47]. One 
more encouraging field of study implicates employing sewage to control virus 
diffusion in communities and discover eruptions before clinical cases are no-
ticed. Lately implemented to pathogenic microbes [90] and non-enveloped vi-
ruses [15], this will require a better comprehension of which enveloped viruses 
are expelled in urine and feces and at what degrees [15]. 

6. Conclusions 

From this work, the main conclusions emerge: 
1) The menace of COVID-19 eruption is not restricted to any one country or 

region. The response, control, and prevention of new infectious diseases need 
powerful and potential global cooperative work and data sharing. More investi-
gation is urgent to plug the knowledge vacuums on COVID-19. In addition to 
proficiency in the domains of medicine, public health, and computer science, the 
participation of environmental researchers in a collaborative investigation is 
desperately justified for fighting the infectious disease danger at a worldwide 
level [3]. 

2) The paper-founded gadget possesses the capacity to be employed as a small, 
portable setup to reveal SARS-CoV-2 in wastewater on-site and to follow virus 
carriers in the community. This procedure can give near real-time and conti-
nuous data and work as a premature warning sensing device to assist local gov-
ernments and agencies take efficient actions to sequester potential virus carriers 
and avoid the diffusion of epidemics. In the situation of asymptomatic infections 
in the community or people are not certain if they are infected or not, fast and 
real-time community sewage detection via paper analytical gadgets could decide 
if there are SARS-CoV-2 carriers in the zone in an appropriate fashion to allow 
quick screening, quarantine, and prevention. The potentially infected patient 
will also benefit from paper analytical device tracing SARS-CoV-2 sources with 
WBE, providing information for the correct and timely treatment of COVID-19. 
[10].  

3) SARS-CoV-2 will surely not be the ultimate fresh virus to jut and badly 
terrorize worldwide public health and life [15]. Scientists and funding agencies 
have a trend to concentrate largely on a particular virus throughout its eruption; 
however, then advance on to different themes when the eruption calms. Consi-
dering the historical contributions from environmental engineering, and the 
huge dares that emerge [10], environmental science and engineering specialists 
have to adopt a larger, long-term, and more quantitative strategy to compre-
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hending viruses that are diffusing through nature. Identical to the manner by 
which chemical contaminants are handled in the environment, the particular 
properties that control transport and demobilization of enveloped viruses in so-
lutions, on surfaces, and in the air must be understood. Besides, the fashion by 
which ecological parameters form likely virus transmission mechanisms should 
be comprehended. Thereby, despite the identity of the enveloped virus that pro-
vokes the following main eruption, more sophisticated detailing of its endurance 
and guidance on how to reduce its diffusion may be given. 
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