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Abstract 
Electrochemical technology for the killing of pathogens has been largely in-
vestigated. Lately, Ni et al. [1] published excellent research on the disinfection 
efficiency of a carbon fiber-based flow-through electrode system (FES) versus 
Gram-negative bacteria (Escherichia coli and fecal coliform) and Gram-positive 
bacteria (Enterococcus faecalis and Bacillus subtilis) in normal saline over a 
large span of applied voltages (1 - 5 V) and hydraulic retention times (HRTs) 
(1 - 10 s). They established that the Gram-negative microbes were more sus-
ceptible to FES for their thinner cell walls and over 6.5 log reduction (no live 
bacteria found) was obtained at the applied voltage of 2 V and HRT of 2 s; 
however, Gram-positive microbes were demobilized at slightly bigger voltages 
(3 V, 2 s) or longer HRTs (2 V, 5 s). Demobilizing microorganisms was re-
lated to the alteration and laceration of cell membranes mostly via anode di-
rect oxidation in the absence of bacterial regrowth. Further, the disregarding 
formation of the free chlorine at low voltages (≤2 V) could avert the produc-
tion of possible chlorinated disinfection by-products. Therefore, FES could fur-
nish an undeveloped substitute to traditional disinfection processes for elimi-
nating pathogens in water. This work concludes that focusing on axial disper-
sion and velocity profile inside anode will be very useful in comprehending 
the transport phenomena and proposing a fresh model that merges the axial 
dispersion and velocity profile for the FES. Such a research trend will more 
encourage the FES implementation at the large industrial level for disinfect-
ing water. 
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1. Introduction 

Disinfecting water efficaciously remains vital for treating water and wastewater. 
Traditional disinfection techniques comprise a separate or joint application of 
chlorination [1] [2], ultraviolet (UV) radiation [3] [4], and ozonation [5] [6]. Nev-
ertheless, the preceding technologies stay alas followed by the generation of un-
wanted chlorinated disinfection by-products (DBPs) for chlorination [7], the for-
mation of bromate and high-energy consumption for ozonation method [8], and 
the photoreactivation or dark repair for UV radiation [9]. Therefore, a low-energy 
consumption, high-efficiency, and chlorine-free demobilization technology has 
to be suggested as mohair to classical demobilization techniques. 

Eliminating microorganisms via electrochemical technology has been largely 
investigated [10]. Such researches mostly focused on the level of disinfection ef-
ficiency [11], electrolyte composition [12], and the demobilization pathway of 
indirect oxidation with electro-generated oxidants (chlorine and reactive oxygen 
species) [13], or the direct oxidation of microbes [14]. Nevertheless, the indirect 
oxidation phenomenon via free chlorine unavoidably elevates the hazards of the 
production of unwanted DBPs [15] [16]. Consequently, killing microorganisms 
electrochemically via a direct oxidation technique at low voltage has attracted 
augmenting interest not long ago [1]. 

In terms of electrochemical engineering, the device arrangement remains sub-
stantial and mostly categorized as flow-by and flow-through setup [17] [18] [19]. 
Employing flow-by devices with plate electrodes stays restricted because of its small 
exposure area, which requests more plate electrodes number or longer residence 
period to attain efficacious killing [20]. Alternatively, the flow-through setup con-
stitutes a typical reaction area, in which the polluted water goes along the internal 
zone of electrodes to ameliorate efficaciously the mass transfer phase [21]. In such 
a device, three-dimensional (3D) materials, like metal or carbonaceous porous elec-
trodes, remain largely tested. As an illustration, a CuO-nanowire-modified cop-
per foam with an elevated conductivity was tried as the electrode to remedy an 
influent (~107 colony-forming units (CFU)/mL bacteria in normal saline) at the 
operating voltage of 1 V applied by direct current (DC) power supply. It attained 
nearly 7 log elimination of bacteria (i.e., no live microbes observed) at the hy-
draulic retention time (HRT) of 7 s [22], which was low juxtaposed with chlori-
nation [23], and flow-by electrodisinfection [24]. Nevertheless, the chemical in-
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stability of metal material would limit the service life of electrodes, which re-
stricted the large usage of metal materials [1] [25]. 

The 3D carbonaceous materials, like carbon nanotube (CNT) sponge [26] and 
carbon fiber felt (CFF) [14], remain broadly employed as anode and/or cathode 
thanks to their elevated specific surface area, excellent electric conductivity, and 
chemical stability. Indeed, the CNT sponge attained outstanding killing patho-
gens' activity at the HRT of 5 s and voltage of 2 V [26]. Nevertheless, the intricate 
manufacture and elevated material price of CNT sponges limit the large-scale 
utilization. For the CFF, it can be maturely manufactured and commercially pur-
chased with wanted thickness and elevated porosity, which is very advised to work 
as electrodes [1]. 

Liu et al. [14] established that the flow-through electrochemical technique 
with the CFF electrode may ensure the considerable reduction of Escherichia coli 
and low energy-consumption at the applied voltage under 3 V [14]. Nevertheless, 
there are numerous microbes in the water medium, comprising Gram-negative 
and Gram-positive bacteria, which differ mostly in the structure and composi-
tion of the cell membrane [27] [28], and possess various resistance to the disinfec-
tion technique [29]. Therefore, the dissimilarities of disinfection efficiency among 
Gram-negative and Gram-positive bacteria require to be more studied consistent-
ly. Moreover, it also requests to prove the regrowth/reactivation event of bacteria 
following electrodisinfection. 

2. Carbon Fiber-Based Flow-Through Electrode System (FES) 
for Killing Gram-Negative and Gram-Positive Bacteria 

Ni et al. [1] constructed a carbon fiber-based flow-through electrode system (FES) 
(Figure 1). They tested consistently the physicochemical properties of CFFs), 
like the morphology, electrical resistivity, void space portion, elemental compo-
sition, and specific surface area. They realized disinfection trials of FES against 
Gram-negative bacteria (E. coli and fecal coliform) or Gram-positive bacteria 
(Enterococcus faecalis and Bacillus subtilis), and free chlorine analysis in efflu-
ent at low applied voltages (1 - 5 V) and short HRTs (1 - 10 s). They determined 
the modification of cell membranes before and after disinfection using scanning 
electron microscopy (SEM) analysis. They assessed the route of FES and the ac-
tion of CFF cathode and anode via an in-situ sampling test. Further, the storage 
trial was performed to more clarify if the microorganisms would regrow after 
FES application. 

The carbon fiber-based FES furnished efficient demobilization of bacteria 
(>6.5 log reduction, no live bacteria found) at low applied voltages and short 
HRTs (Figure 2). Most importantly, Gram-negative bacteria (E. coli and fecal 
coliform) were totally demobilized at the applied voltage of 2 V and HRT of 2 s; 
while bigger voltages (3 V, 2 s) or longer HRTs (2 V, 5 s) were required for the 
demobilization of Gram-positive bacteria (E. faecalis or B. subtilis) with compara-
tively thicker cell walls. The route of FES disinfection was anode direct oxidation, 
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Figure 1. Construction and characterization of the flow-through electrode sys-
tem (FES). (a) The schematic diagram of the FES including Plexiglas coaxial elec-
trode holders, a filter paper as the insulating layer, and two CFF electrodes con-
nected with the DC power supply. (b) Scanning electron microscopy (SEM) im-
age of the micro-structure of CFF electrodes. (c) SEM image of the carbon fibers 
under high magnification [1]. 

 
conducting to the modifications and rupture of cell membranes. There was no 
important influence on bacterial demobilization via anode indirect oxidation of 
generating free chlorine at low voltage, which can avert the production of poten-
tial chlorinated DBPs. Further, it was as well illustrated that the bacteria were dete-
riorated irreversibly, and were unable to regrow throughout the storage procedure 
[1]. The global outstanding effectiveness of the carbon fiber-based FES presented 
a potential solution for emergency and rapid water disinfection. 

From the disinfection findings aforesaid, it was mentioned that the Gram-positive 
bacteria were less defenseless to FES disinfection than Gram-negative bacteria. 
The distinction in elimination performance among two sorts of microbes may be 
related to the constitution of cell walls (peptidoglycan and teichoic acids) [1] [30] 
[31] [32] [33]. The peptidoglycan film of Gram-positive bacteria was much thick-
er, which was linked to their resistance [34]. However, the cells of Gram-negative 
microorganisms were not as robust as Gram-positive microorganisms and ef-
fortless to be demobilized for the thin peptidoglycan membrane with an outer 
membrane consisting of lipopolysaccharides and lipoproteins [27]. Moreover, FES 
depicted better efficiency towards B. subtilis rather than E. faecalis probably due 
to the cell size of B. subtilis (about 2.7 ± 0.2 μm in length) was much bigger than 
that of E. faecalis (about 0.9 ± 0.3 μm in length) determined by the SEM image 
(Figure 3(c), Figure 3(d)), which furnished much more contact area with the 
electrode surface for electrodisinfection. Further, the high-efficiency disinfection 
performance can remain for at least seven days [35]. 
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Figure 2. The disinfection performance of the carbon fiber-based FES towards four bacterial strains without and with the applied 
voltages of 1 - 5 V at the HRTs of 1 s (a), 2 s (b), 5 s (c), and 10 s (d) [1]. 

3. Carbon Fiber-Based Flow-Through Electrode System (FES) 
Disinfection Pathway 

Figure 3 illustrates representative SEM images of E. coli, fecal coliform, E. faeca-
lis, and B. subtilis before and following FES treatment. Most importantly, cell 
membranes of Gram-negative bacteria after a 2 V, 2 s treatment were dramati-
cally dehydrated and broken juxtaposed to the untreated cells; however, the dead 
Gram-positive bacteria following a 3 V, 2 s treatment maintained relatively in-
tact cell membrane structures, particularly for E. faecalis. The distinction be-
tween Gram-positive and Gram-negative microbes proposed that Gram-negative 
bacteria were relatively liable to electrodisinfection for the thinner cell walls. As 
a consequence, it was established that the route of bacterial death below FES 
treatment was the demolition of cell membranes [1]. 
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Figure 3. Morphology of live and dead bacteria. (a) The live and dead E. coli cells after a 2 V, 2 s treatment. (b) The live and dead 
fecal coliform cells after a 2 V, 2 s treatment. (c) The live and dead E. faecalis cells after a 3 V, 2 s treatment. (d) The live and dead 
B. subtilis cells after a 3 V, 2 s treatment [1]. 

 
Further, Ni et al. [1] focused more on the influent with ~106 CFU/mL E. coli 

to ascertain the pathway of FES disinfection technique. In an effort to recognize 
the role of anode and cathode, they performed the in-situ tests to reach the cells 
elimination following cathode treatment and successive cathode-anode treat-
ment below 2 V and 3 V, respectively. 

As illustrated in Figure 4(a), the E. coli in the effluent samples was demobi-
lized efficiently following consecutive cathode-anode treatment, and the disinfec-
tion effectiveness was enhanced with the elevation of the applied voltages and/or 
HRTs. Nevertheless, the reduction proportion (~31%) following only cathode 
treatment below 2 V was little and there was no evident role for cathode demobi-
lization (~33% reduction) with the augmentation of voltage (3 V) or HRT (10 s). 
Consequently, it is shown that the reaction at the anode controlled the disinfec-
tion performance of FES treatment, which was in conformity with former inves-
tigations [14] [36]. 

The likely route for anode electrochemical operation comprised direct oxida-
tion and indirect oxidation via forming reactive species like hydroxyl radical 
(•OH) and free chlorine [10] [37] [38] [39] [40] [41]. Nevertheless, the small ap-
plied voltage of 2 V for E. coli demobilization was incapable to produce •OH 
which requested much bigger anode potential [42] [43], while the free chlorine 
with standard evolution potential of 1.15 V vs Ag/AgCl was fit to take place in 
the FES treatment [1]. 

On the other hand, Ni et al. [1] followed the level of free chlorine produced 
throughout demobilization at changed applied voltages and HRTs (Figure 4(b)).  
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Figure 4. (a) The log reduction of E. coli in cathode-treated influent and 
effluent at diverse HRTs below applied voltages of 2 V and 3 V. (b) The 
concentration of free chlorine in effluent at different applied voltages and 
HRTs [1]. 

 
There was no considerable formation of free chlorine (lower than the detection 
limit, 10 μg/L) at the applied voltage under 2 V no matter how long the residence 
period was. Further, the level augmented with a bigger residence period at the 
higher applied voltages (over 3 V). 
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Considering the findings aforesaid, Ni et al. [1] concluded that demobilizing 
E. coli was mostly related to the anode direct impact at the applied voltage of 2 V, 
instead of indirect oxidation via •OH and free chlorine generation. It also averted 
the production of potential chlorinated DBPs, which was apt to begin to be an 
encouraging substitutional for chlorination. 

4. Axial Dispersion and Velocity Profile for the FES 

As shown in Figure 1, influent enters the FES. It passes across the CFF cathode, 
an insulator layer, and CFF anode. In terms of electrochemical engineering, the 
main reactions occur in the CFF cathode and CFF anode. As mentioned above, 
bacterial demobilization was related to the alteration and rupture of the cell mem-
brane mostly through anode direct oxidation without bacterial remobilization [1]. 
Therefore, what happens inside the anode via direct oxidation constitutes the main 
stage of electrodisinfection process. However, before the electrochemical reaction 
taking place, wastewater has to be put in contact with the surface anode. In other 
words, there is a mass transfer phase. 

Indeed, the residence time distribution (RTD) remains a crucial feature in the 
exploration of non-ideal reactors [44]. In micro-reactors that work mostly below 
small Reynolds numbers, the axial dispersion is fundamental [44]. Because the 
channel length or residence time of fluid is frequently not long enough (from 2 
to 5 s [1]), the axial dispersion model cannot anticipate an exact RTD of the fluid 
in micro-reactors [44]. With a view to controlling such a problem, Fazli-Abukheyli 
and Darvishi [44] suggested a fresh model that integrates the axial dispersion and 
velocity profile employing the parallel tanks-in-series compartment model. The 
model includes two parameters, involving the velocity profile exponent and Pec-
let number. It may be employed for Newtonian and non-Newtonian fluid flow in 
the devices with a large span of Reynolds number and in all domains of flow re-
gime, comprising plug, laminar, perfectly mixed, and different profiles among 
such regimes. Following validating the model, Fazli-Abukheyli and Darvishi [44] 
assessed the impacts of velocity profile and Peclet number on the RTD of fluid in 
the tube for m-laminar and y-laminar velocity profiles. 

Rastegar and Gu [45] proposed a novel correlation for the axial dispersion 
coefficient employing experimental information in the literature for axial disper-
sion in fixed-bed columns packed with particles. The Chung and Wen correla-
tion, the De Ligny correlation are two famous empirical correlations. Neverthe-
less, the former lacks the molecular diffusion term and the latter does not take 
into account bed voidage. Their novel axial dispersion coefficient correlation is 
founded on additional experimental data in the literature by taking into account 
both molecular diffusion and bed voidage. It is more comprehensive and accu-
rate. The Peclet number correlation from the new axial dispersion coefficient 
correlation on the average leads to 12% lower Peclet number values compared to 
the values from the Chung and Wen correlation, and in many cases much smaller 
than those from the De Ligny correlation. 
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Investigations, as performed by Fazli-Abukheyli and Darvishi [44] and Raste-
gar and Gu [45], will be consequently helpful in understanding the transport 
phenomena and suggesting a novel model that integrates the axial dispersion 
and velocity profile for the FES. For instance, Malayeria et al. [46] focused on 
modeling of gas-phase heterogeneous photocatalytic oxidation reactor in the 
occurrence of mass transfer limitation and axial dispersion. Such research would 
initiate the investigation field suggested here for coming works. 

5. Conclusions 

From this work, the following conclusions can be drawn: 
1) Pure water supply remains one of the most vital and precious requests for 

human beings to continue, and the shortage of supply of potable water has been 
a grave problem during the last decades. The existence of pollutants like patho-
gens has the tendency to be the main worry for keeping nature and human life. 
There are several techniques being done on dealing with the polluted water; how-
ever, an optimum technology stays to be discovered. Nanotechnology has been 
earning currency in numerous fields especially in the implementation of water 
and wastewater remediation. The exceptional features of the nanomaterials com-
posite formed are apt to give leap forward chances to metamorphose water and 
wastewater handling. Many of the nanotechnologies have shown their stunning 
characteristics in the water treatment industry. Additional amendment on such 
nanomaterials to enhance the features and decrease the effective price depicts an 
encouraging outlook of such carbon-based nanomaterials in the water and waste-
water treatment field [47]. 

2) An investigation like performed by researchers [44] [45] will be very useful 
in comprehending the transport phenomena and proposing a fresh model that 
merges the axial dispersion and velocity profile for the FES. Such a research trend 
will more encourage the FES implementation at the industrial level for disin-
fecting water. 
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