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Abstract

The upgrading of biomass-derived feedstocks to liquid transportation fuels is
complex because of the chemical differences between biomass-derived chem-
icals and conventional fuels. Aldol condensation may play an important role
in converting biomass-derive components to fuels because it allows smaller
species to be converted to larger species that are more similar to conven-
tional fuels. This review covers recent progress in aldol condensation of bio-
mass-derived 5-hydroxymethylfurfural, acetone, methyl ketones, acetoin, le-
vulinic acid, furfural, cyclopentanone and levulinic acid. The corresponding
catalytic mechanisms and future research directions in these areas are also
discussed.
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1. Introduction

World use of petroleum and other liquid fuels is projected to grow from 90 mil-
lion barrels per day (b/d) in 2012 to 100 million b/d in 2020 and to 121 million
b/d in 2040 [1]. Most of the growth in liquid fuels consumption is in the trans-
portation and industrial sectors. The environmental impacts associated with
greenhouse gas emissions (GHG) emissions resulting from combustion of fossil
fuels have motivated the search of new technologies for a sustainable production

of transportation fuels [2]. Utilization of renewable resources for the preparation
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of transportation fuels has potential advantages in the reduction of our depen-
dence on fossil resources [3]. Biomass is a renewable resource that can also re-
duce GHG by capturing CO, during photosynthesis [4]. There are several me-
thods to convert biomass into liquid transportation fuels including fast pyrolysis
[5] [6], liquefaction [7] [8] and Fischer Tropsch synthesis [9]. These strategies
convert biomass to upgradeable platforms such as bio-oil or syngas [10]. Anoth-
er important route involves aldol condensation of biomass-derived feedstocks to
upgrade small oxygenates to larger ones that are more similar in molecular size
to conventional fuels. These biomass-derived feedstocks include methyl ketones
[11], n-Butanal [12], 5-Hydroxymethylfurfural [13] [14] [15] and other ketones
and aldehydes. Aldol condensation has a number of advantages compared with
fast pyrolysis, liquefaction, and Fischer-Tropsch synthesis. For example, extreme
temperature and pressures are not required, unlike Fischer-Tropsch synthesis or
liquefaction. In addition, this process has much higher selectivity compared with
fast pyrolysis, which produces a wide variety of products.

Herein, we review the most advanced progress in the use of aldol condensa-
tion as a method for preparation of liquid transportation fuels. In particular, we
focus on that catalysts achieve both a high conversion and a high selectivity. Be-
cause hydrodeoxygenation has been intensively summarized and reviewed by

many research groups [16] [17], we do not discuss this field in this review.

2. Mechanism of Aldol Condensation

Although aldol condensation is an important and well-known organic reactions
because of its ability to form new C-C bonds, its mechanism has never been fully
established [18]. Aldol condensation includes reactions producing S-hydroxy
aldehydes or B-hydroxy ketones by self condensation or mixed condensation of
aldehydes and ketones as well as reactions leading to a, f-unsaturated aldehydes

or a,f-unsaturated ketones formed by dehydration of intermediate S-aldols or
S-ketals.

OR H (6] R
R Addition R R

self condensation
R=H, aldehydes R=H, a, B-unsaturated aldehydes

Aldol condensation of aldehydes can be catalyzed by acid, base or acid-base
bifunctional catalysts [19] [20]. In aldol condensation catalyzed by base (Scheme
1), an enolate is formed by the abstraction of the a-hydrogen of the carbonyl
compound with the help of a base. The enolate then attacks the second carbonyl
molecule. This leads to formation of another ionic species which extracts the
proton from the protonated base (HB). This finally leads to the formation of the

aldol (or if a ketone was present as the starting material, a ketol). Next the aldol
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Scheme 1. Aldol condensation catalyzed by base.

(or ketol) undergoes spontaneous dehydration due to base catalyzed dehydration
to yield the a,f-unsaturated aldehyde or a,f-unsaturated ketone.

Which step is the rate-limiting step of the aldol condensation was discussed
[18], rate-limiting step in the base-catalyzed aldol condensation of benzalde-
hydes with acetophenones is the final loss of hydroxide and formation of the
C=C bond. When an acid is used to catalyze aldol condensation (Scheme 2), the
acid acts as a proton donor and activates the carbonyl oxygen into a protonated
form. The protonated carbonyl then reacts with the conjugate base of the acid to
produce the enol, followed by conjugation of the enol with another protonated
carbonyl compound to produce the aldol (or ketol). Completing the reaction, the
aldol (or ketol) undergoes spontaneous dehydration due to acid catalyzed dehy-
dration to yield the a,f-unsaturated aldehyde or a,f-unsaturated ketone.

Aldol condensation is generally carried out in the presence of base catalysts.
Including basic compounds (alkali metals or alkaline earth oxides), hydrogen
oxidation, bicarbonate, carbonate, carboxylate, organic amine compounds, Anion
exchange resin and so on. The solid base catalysts that are active in organic liq-
uid phases or in the vapor phase. Few studies have been reported for aldol con-
densation using solid base catalysts in water, because leaching of catalyst com-
ponents into the water phase and poor hydrothermal stability pose significant
challenges. In actual industrial applications, the alkaline catalysts used in the al-
dol condensation reaction can be weak bases (such as sodium carbonate, sodium
bicarbonate, sodium acetate), or strong bases (such as sodium hydroxide, calcium
hydroxide, sodium hydroxide, sodium alcohol, etc.). Weak bases are usually used
for condensation between active aldehydes. Products are generally S-hydroxyl
compounds. Strong bases are usually used for condensation of ketone with large
steric hindrance. Acid catalysts are often used in aldol condensation reactions
[19] [20]. Commonly used acid catalysts include (VO,P,0;, VOHPO,), niobate
and MFI zeolite. Acid-base catalyst also has an acidic alkaline active site, such as
two oxide oxides or hydrotalcite which is suitable for gas phase aldol condensa-
tion and liquid phase. The application of acid-base catalyst in aldol condensation

reaction is more and more important.
3. Aldol Condensation of Biomass-Derived Carbonyl
Molecule

3.1. Aldol Condensation between 5-Hydroxymethylfurfural
and Acetone

5-hydroxymethylfurfural (HMF) is a suitable platform chemical for the produc-

tion of useful chemicals and fuels [21]. Recently, efforts have been devoted to the
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Scheme 2. Aldol condensation catalyzed by acid.

conversion of biomass into 5-hydroxymethylfurfural (HMF) (Table 1), and ex-
cellent efficiencies have been achieved for both fructose and glucose. The HMF
yields were as high as 96% and 81% for fructose and glucose, respectively [22].
Typically, aldol condensation furfural and ketones is catalyzed by solid base cat-
alysts [23] [24].

o) O OH H,0 HO 0
HO o] HO 2
/\MCHO * % - w /\‘/\/)_\\_<0
Ce C9
Q O OH O OH
E/)jOH WOH -H,0 MOH
o N\ / |/ o N\ I Cue | s

Once produced, HMF can be combined with other aldehydes and ketones to

produce longer carbon chains that can eventually be converted to hydrocarbon
fuels, A variety of solid base catalysts have been used for aldol condensation be-
tween HMF and acetone. Zirconium carbonate Zr(COs), was used as a water to-
lerant solid base catalyst, producing 92% C9 aldol products at nearly 100% HMF
conversion. The activity of Zr(COs), was maintained for five consecutive cycles.
Aldol products were further hydrodeoxygenated with a bifunctional Pd/Zeolite
catalyst in ethanol, producing n-nonane and 1-ethoxynonane with 40% and 56%
selectivity, respectively. Basic MgO-ZrO, [25], MgAl and MgZr mixed oxides
have also been studied for aqueous-phase 5-hydroxymethylfurfural-acetone al-
dol condensation. The highest C15 selectivity is obtained in stoichiometric con-
ditions (2:1). MgZr catalyst shows better than MgAl to aldol condensation
products, especially for the formation of the second adduct (C;s). The best re-
sults were obtained working with 0.5 g of MgZr, at 323 K. The highest C;s yield
was reached with 5-HMF excess (2:1) (16.1%), whereas the whole yield is max-
imized at equimolar conditions (37%). CO,-Catalysed aldol condensation of
5-hydroxy-methylfurfural and acetone to a jet fuel precursor was reported by
Roland Lee et al [26], CO,-Catalysed aldol condensation of HMF with acetone
gives a >95% yield, with the mono-aldol condensate as the only detected
product. Cu/MgALO, as bifunctional catalyst for aldol condensation of
5-Hydroxymethylfurfural and acetone [27], magnesium aluminate exhibits su-
perior activity compared to zinc and cobalt-based aluminates, reaching full con-

version and up to 81% yield of the 1:1 aldol product. The high activity can be
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Table 1. Heterogeneous catalysts for aldol Condensation between 5-Hydroxymethylfurfural and acetone.

Entry Catalyst Methods Conversion (%) Selectivity (%) Reference
1 Zr(CO3)x aqueous solution 100 C9:92 13
2 MgO-ZrO, aqueous solution 93.3 aéd;; (}; Z)c(l:ulcstf;: 25
3 MgAl aqueous solution 27.2 C9:25.6, C15:17.1 14
4 MgZr aqueous solution 53.4 C9:43.4, C15:49.6 14
5 CO: 200°C, CO; MPa >95% C9 > 95% 26
6 Cu/MgAlLO4 Acetone as solvent 100 C9:78, C15:7 27
7 FAU-type zeolite nanosheets Solvent free 91.74 C9: close to 100% 28

correlated to a higher concentration of basic surface sites on magnesium alu-
minate. Applying continuous regeneration, the catalysts can be recycled with-
out loss of activity. The Cu/MgALQO; catalyst was used in the hydrogenation of
condensation products and showed high selectivity for C-O bond cleavage of
primary alcohols, delivering 3-hydroxybutyl-5-methylfuran as the main prod-
uct. Amine-grafted hierarchical basic FAU-type zeolite nanosheets for the al-
dol condensation of 5-hydroxymethylfurfural (5-HMF) and acetone (Ac) has
been studied [28]. The superior catalytic performance achieved due to the
synergistic effect of hierarchical structures, featuring basic active sites together
with surface modification. Theoretical study on the reaction mechanisms of the
aldol-condensation of 5-hydroxymethylfurfural with acetone catalyzed by MgO
and MgO* were reported [29], The reaction mechanism involves the crucial
reaction steps of H-shift and C-C bond formation, while the rate-determining
step is concerned to the H-shift. The Lewis acidity of the cationic MgO* makes it
exhibit better catalytic performance than the neutral MgO. Water, as a bridge in
the H-shift, interacts with both the neutral MgO and the cationic MgO* moie-
ties, leading to the Bronsted basicity, and then promoting the catalytic perfor-
mance both of the neutral MgO and the cationic MgO*. Both the Lewis acidity
and Brensted basicity of active sites can enhance the catalytic performance in the

aldol-condensation of HMF with acetone.

3.2. Condensation of Biomass-Derived Aliphatic Ketones

Ketones can be produced from biomass-derived sugars, suggesting that they
could be possible starting compounds for synthesis of liquid fuels. For example,
it was reported that acetone/butanol/ethanol (ABE) mixtures produced by Clo-
stridial fermentation of sugars can be catalytically converted to aliphatic ketones
[30] Potential starting ketone such as 2-butanone which can be produced by ac-
id-catalyzed dehydration of fermentative 2,3-butanediol [31] 2,3-butanediol can
be produced with concentrations up to 152 g/L [32] by various bacterial strains
belonging mainly in the genera Klebsiella, Serratia, Bacillus, Paenibacillus and

Enterobacter. A mixture of n-alkyl methyl ketones and their derivatives obtained
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from bio-mass via base catalyzed aldol condensation and Michael addition, fur-
ther hydrodeoxygenation of these products, possible to produce jet fuel. Con-
densation of aliphatic ketones is a very complex reaction and numerous prod-
ucts are possible via competitive self-condensation and cross-condensation be-
tween the same or different ketones that are formed in the reaction.

Typical reactions of self-condensation of ketones in the presence of MgAlO or
niobic acid catalysts as shown in Scheme 3.

In the presence of base (MgAIlO), the selective of C;, isomers (3) is higher
than C,, isomers and C;, isomers (4) [33].

Mg-Al Hydrotalcite Catalysts was also used to aldol condensation of benzal-
dehyde and acetone, hydrotalcites should transformed into basic solids by acti-
vation, the activity went through a maximum after calcination at 723 K, followed
by rehydration by water vapor at room temperature. It was suggests that aldoli-
sation is catalysed by OH™ [34].

An aldol yield higher than 85 mol% was obtained after optimum activation..
Highly selective trimerization of methyl ketones catalyzied by MgAlO to pro-
duce bio-lubricants were reported [35] (Scheme 4).

Calcined niobic acid (Nb,Os) contains a considerable amount of water, never-
theless it shows a high acidity on the surface corresponding to the acidity of 70%
sulfuric acid [36]. Nb,Os exhibits not only a high activity and selectivity but also a
remarkably good stability as a catalyst for the reactions in which water molecules
participate or are liberated [37]. However, in the presence of acid (Nb,Os) cata-
lysts, hindered internal ketones condense to form C,, isomers (2), ketones con-
taining methyl functionality at one end form Cs, isomers (4), mainly aromatic
compounds. Acid catalysts Ta,Os/SBA-15 was also used to self-condensation of
biomass-derived methyl ketones, which promote dehydration leading to the pro-

duction of aromatic products.

3.3. Aldol Condensation of Acetoin with Lignocellulose Derived
Aldehydes

Acetoin, a novel C4 platform molecule derived from new ABE (acetoin-butanol-
ethanol) type fermentation via metabolic engineering [38], can be used as a
bio-based building block for the production of liquid hydrocarbon fuels [39], as
shown in Scheme 5.

The condensation reaction between two acetoin molecules is slow because of

steric hindrance and because the electron donating properties of the attached

Rl
R2 o
O RL R2 R2 R2
o Aldol Condensation RY 1 ) .
Rl\)K/RZ Aldol Condensatign R N Ry RL R + RL Rl+ Higher  Hydrodeoxygenation
-H0 R2 oligomers ————————— alkanes
) R? R? R?
Cn Can isomers Cs, isomers Cj,, isomers
2 3 4

Scheme 3. Self-condensation of ketones in the presence of solid acid/base catalysts.
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Scheme 5. Synthesis of diesel or jet range alkanes using acetoin as a bio-based synthon.

hydroxyl groups prevent the formation of the reactive enolate intermediate.
However, acetoin easily reacts with lignocellulose derived aldehydes, including
5-hydroxymethylfurfural or 5-methylfurfural. Solid base catalysts were tested for
furfural and acetoin, except for MgO-ZrO, exhibiting moderate catalytic activity,
other solid base were unsatisfactory. Organocatalysts such as L-proline, trypto-
phan, and 1,8-diazabicycloundec-7-ene were failed to catalyze this aldol reac-

tion.

3.4. Aldol Condensation of Furfural with Acetone

Furfural and acetone are readily available chemicals, which can be produced by
the hydrolysis of biomass [40].

Liquid phase aldol condensation of furfural and acetone catalyzed by solid
base catalysts (Mg-Al hydrotalcites and Mg-Al mixed oxides) has been investi-
gated. The best results were achieved with calcined catalyst sample having Mg/Al
molar ratio equal to 3 at 100°C (>95% furfural conversion and > 90% selectivity
to the 4-(2-furyl)-3-buten-2-one and 1,5-di-2-furyl-2,4-pentadien-1-one). The
catalytic performance of the prepared TiO, sample in aldol condensation of fur-
fural with acetone was evaluated and compared with those for Mg-Al hydrotal-
cites [41] and BEA zeolite [42] (Scheme 6). It showed that uncalcined TiO, pos-
sesses good activity which could be competitive with that reported for other in-
organic solids. Aldol condensation between aldehyde and ketone over TiO, pro-
ceeded with the participation of basic rather than acidic sites [43]. Potas-
sium-containing BEA zeolites were prepared by ion-exchange from NH,;-BEA
with potassium nitrate aqueous solution or ion-exchange combined with im-
pregnation were used as basic catalysts for aldol condensation of furfural and
acetone [44]. The ion-exchanged K-BEA catalysts exhibited low activity in the
aldol condensation because of a weak strength of intrinsic basic sites. In contrast,
the samples prepared by ion exchange combined with impregnation possessed

strong basic sites, plausibly K,O clusters, and demonstrated appreciable activity
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Scheme 6. Aldol condensation of furfural with acetone.

in the aldol condensation. Solid base catalysts MgO-ZrO,, NaY and nitrogen-
substituted NaY (Nit-NaY) were studied for aldol condensation reactions, The
aldol condensation of furfurals with acetone produces two different products,
the monomer and the dimer. The monomer is formed from reaction of furfurals
with acetone. The dimer is formed from reaction of the monomer with furfurals.
MgO-ZrO, had a higher selectivity towards dimer formation. In contrast,
Nit-NaY was more selective towards the monomer product due to the cage size

in the FAU structure, indicating that Nit-NaY is a shape selective base catalyst.

3.5. Aldol Condensation of Biomass-Derived Levulinic Acid
and Furfural

Levulinic acid (LA) is one of the most promising platform chemicals derived
from biomass. The efficient production of LA (about 80% yield) from biomass
has been achieved on a large scale through the Biofine Process [45]. The aldol
condensation of furfural with levulinic acid in the aqueous phase was investi-
gated over a series of solid catalysts [46] (Scheme 7), including oxides (MgO,
ZnO, TiO,, ZrO,, Mg0O-AlL,0s, CeO,, Nb,Os, SnO,, and WOs3) and acidic zeolites
(HY, HB, HZSM-5, H-MOR, and SAPO-34).

MgO is an effective basic catalyst for synthesis of C4 and C8 chemicals from
ethanol [47]. The aldol reaction of levulinic acid and furfural on MgO is supposed
to be difficult. Own to both types of a-H in the levulinic molecule could be acti-
vated by a base, which resulted in a mixture of two C10 oxygenates with poor se-
lectivity. Two isomeric condensation products, f- and J-furfurylidenelevulinic
acids (f- and &~-FDLA) were produced via two fundamentally different mechan-
isms. The formation of §-FDLA on MgO follows a typical base-catalyzed me-
chanism, while the formation of S-FDLA on ZnO is via an acid-catalyzed me-
chanism. LA could then be used as a cheap and easily available biomass feeds-

tock for further transformations by aldol condensation.

3.6. Aldol Condensation of Furfural with Cyclopentanone

The furfural conversion about 98% and cyclopentanone yield of 92.1 mol% were
achieved using only 1 wt% concentration of 5% Pd - 10% Cu/C catalyst and a
reaction time of 1 h [48]. The product of Aldol condensation of furfural with
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Scheme 7. Aldol condensation of levulinic acid and furfural.

cyclopentanone yields a cyclic ether that could be considered as biomass-derived
diesel blending agent for transportation fuels [49] (Scheme 8).

The aldol condensation of furfural with cyclopentanone is achieved with a low
concentration of base and a molar ratio of the reactants of 2:1. This reaction is
highly selective. After 40 - 80 min of reaction at a temperature of 40°C - 100°C,
more than 95 mol% yield of 2,5-bis(2-furylmethylidene) cyclopentan-1-one was
obtained [50]. Subsequent hydrogenation/hydro-deoxygenation steps yield a di-

alkylcyclopentane that could be used as a diesel or jet fuel.

3.7. Self-Condensation of Levulinic Acid

Most of previously studied reactions are focused on the reactivity of the carboxyl
group of the levulinic acid, transformation of levulinic acid into g-valerolactone
with industrial interest [51]. The base-catalyzed condensation of levulinic acid
(LA) under mild conditions was proposed as a new approach for the upgrading
of this molecule by using mixed oxides as catalysts [52] (Scheme 9).

Aldol condensation of levulinicacid would yield a mixture of C10-C15 ad-
ducts. These adducts could have high value as fuel additives or surfactants, and
hydrodeoxygenation of these compounds would result in a good-quality liquid
fuel without needing further purification steps. MgAl, MgZr and MgZr/HSAG
were used as catalyts. The best results were obtained with MgZr, for which a 33%
conversion of levulinic acid was observed after 24 h with almost 83% selectivity
for the formation of condensation products.

Nb,Os catalyst with excellent activity and stability in the aldol condensation of
biomass-derived carbonyl molecules (Scheme 10). It is found that in the aldol
condensation of furfural with 4-heptanone, Nb,Os has obviously superior activi-
ty, which is not only better than that of other common solid acid catalysts (ZrO,
and ALO;), more importantly, but also better than that of solid base catalysts
(MgO, CaO, and magnesium-aluminum hydrotalcite) [53]. Optimization of the
process conditions for minimizing the aldol condensation recently reported by

many research groups [54] [55].

4. Conclusions

While some interesting information has been forwarded by aldol condensation
of biomass-derived feedstocks studies, several gaps remain in this very important
research area. These gaps can be divided into economic and technology gaps.

From an economical viewpoint, economic feasibility plays a crucial role in the
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field, and fuels are a low-value commodity produced on a very large scale.
Therefore, development of economical processes for fuel production requires a
large investment in both money and time. The cost of producing transportation
fuels from biomass is controlled primarily by the costs associated with the
processing of biomass to produce the fuel, making it imperative to develop new
processes for the conversion of biomass to liquid fuels, which involves a limited
number of processing steps. However, no literature is available to offer detailed
information on the energy recovery and economic analysis of the heterogeneous
catalytic conversion of biomass-derived feedstocks in the aqueous phase. Given
that water has a higher heat capacity and results in worse corrosion than organic
solvents, the energy consumption of water and equipment maintenance may
lead to higher costs. Hence, a reliable study of economic feasibility should be
done to design an efficient process.

From a technical viewpoint, extensive research on biomass-derived feedstocks,
catalyst systems as well as reactor technology is well studied in this area. The
fundamental chemistry of most of these reactions is not well understood, and it

is likely that further scientific understanding will lead us to improved processes.
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To obtain high-quality fuels, multiple transformation routes are required to in-
crease the carbon-chain length and to decrease the oxygen content. A conti-
nuous or one-pot process can be designed to meet this requirement. We believe
that efficient processes for the sustainable production of biofuels will be conti-

nuous in the future.
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