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Abstract 
Electrocoagulation (EC) is a flourishing technique in the field of water treat-
ment implementations. Numerous investigations have been performed to as-
sess the performance of EC to eliminate different pollutants; however, the 
more basic electrochemical features of the technique are usually ignored. 
Scientists such as McBeath et al. [1] provided an understanding of the essen-
tial link of water flow, electrochemical metal dissolution, and current density 
distribution (CDD) via computational fluid dynamic (CFD) models, mathe-
matical models, and in situ CDD determination tests. They established, in 
theory, that current distributed over the electrode was inversely proportional 
to the water flow rate. By means of the CFD models and current distribution 
determining technique, they noted that current density was distributed une-
qually and pursued the tendency anticipated via theory. Eliminating natural 
organic matter was decreased as much as 79% when the inter-electrode dis-
tance was diminished from 10 to 1 mm. As a perspective, more efforts are 
required to better understand the CDD at the anodes surface and electric 
charges transfer from electrodes to the bulk of the solution. Mechanisms re-
lated to interactions of anodic metallic cations and various pollutants should 
be more investigated. 
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1. Introduction 

Numerous electrochemical techniques have acquired great interest for next 
combination into water treatment technologies [1] [2] [3] [4] [5]. Electrocoagu-
lation (EC) has been found encouraging as a substitutional method to classical 
chemical coagulation for some potable water, municipal and industrial wastewa-
ter implementations [6] [7] [8]. EC avoids the chemical supply chain needed for 
traditional coagulation [9] [10] [11] [12], since coagulant chemicals are electro-
chemically formed in situ and on-demand [13]. Through applying current with 
an external power supply to an electrochemical setup, the two half-cell reactions 
of anodic metal dissolution and cathodic reduction of water make possible the 
global formation of metal hydroxide and metal oxide species: i.e., the coagulant 
chemicals [14]. As current furnished to the cell augments, the rate of anodic 
metal dissolution and water reduction at the cathode surface augments, there-
fore leading to the elevated generation of coagulant [15] [16]. Until now, much 
of the EC study has focused on the process’s capability to eliminate diverse pol-
lutants, comprising both organic and inorganic products and microorganisms 
[17]-[23], while investigating the effect of various process variables such as metal 
loading (coagulant dose) [24], charge loading [25] [26], pH [27] [28] [29] [30], 
anode metal material (usually aluminum or iron) [31]-[39], reactor design [40], 
supporting electrolyte [41], initial contaminant concentrations [42] and scale-up 
[43] [44] [45] [46] [47]. 

Another factor that has been largely tested is the impact of the current density 
on the EC performance [48] [49]. Several scientists have followed the influence 
of current density on the reduction of different pollutants throughout the EC 
application (Figure 1). As an example, the impact of current density on the re-
duction of organic dyes present in textile wastewaters was observed to be very 
little; however, a proportional elevation of dye elimination and current density 
augmentation was yielded [50]. Additional scientists noted a huge augmentation 
in dye reduction with elevating current density [51]. The augmented removal of 
sulfide and chemical oxygen demand from spent caustic wastewater was as well 
shown with elevating current density [52]. In both investigations, current densi-
ty was commanded via varying the applied current, as opposed to modifying the 
electrode surface area at constant current operation. Due to this, the conse-
quences of augmented coagulant production and dosing on bigger pollutant eli-
mination at more important current densities stay obscure [1]. 

The influence of current density on the EC technology has as well been largely 
studied for drinking water treatment applications [24] [26] [31]. Scientists [53] 
[54] [55] discovered that current density had few impact on the reduction of 
fluoride from groundwater. They imputed the augmented removal of fluoride at 
more important current densities to the elevated coagulant production at the 
higher metal loading related to greater current density. Current density was as 
well established to hugely touch the efficiency of EC to eliminate arsenic from 
groundwater; however, in this situation arsenic reduction capability diminished  
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Figure 1. Interactions taking place inside EC reactor [48] (although on this figure, there is 
an inert cathode, in discussion, the cathode has been often considered made of the same 
material as the anode to explain chemical dissolution [49]). 

 

with augmenting current density [1]. Additional investigation has noted the ad-
verse influence for arsenic reduction, but this was over more possibly because of 
the augmented metal loading that joined the augmentation in applied current 
[56]. Several batch-scale trials have illustrated that the reduction of natural or-
ganic matter (NOM) from synthetic and raw surface water as well augmented 
when current density was decreased [57]. When an identical method was 
scaled-up to a continuous flow mode, the impact was reduced and no obvious 
tendency was shown among current density and the elimination capability of 
NOM [1]. Current density has also been established to possess an influence on 
local pH near the electrode, as well as dissolved oxygen level, then touching the 
speciation of iron hydroxide coagulants which are produced throughout the EC 
method [58]. 

Even if the influence of current density has been broadly studied, in company 
with additional technique factors, there are no great attempts dedicated to com-
prehending the basic electrochemical and transport phenomena fundamentally 
regulating the distribution of current on the electrode surface. Especially, there 
has been a shortage of studies to sense the link among the variable movement of 
water across an EC electrode surface and its dependent impact on the current 
density distribution (CDD). In almost all previous EC investigations, it was 
supposed that current density stays constant over the entire electrode surface 
throughout the galvanostatic operation. Such as other electrochemical tech-
niques, below most conditions, this is possibly not achieved because of several 
parameters comprising electrolyte (water) velocity fluctuations across the elec-
trode surface. The decomposition of the sacrificial anode may take place because 
of three principal causes: electrochemical oxidation (debated here), chemical 
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dissolution, and mechanical erosion. In the existence of an oxidation current, the 
proportions of the two other phenomena are minor if contrasted to electro-
chemical oxidation. As a result, the distribution of the anode decomposition is 
related to the inhomogeneity in the electric current distribution [1]. 

In many former investigations, current density has been modeled for an EC 
technique and was determined to be a fundamental parameter for assessing the 
electrode order and geometry for energy consumptions, since it was not un-
iformly expanded [59]. It has as well been before illustrated via modeling, that 
this irregular expansion of current and potential over an EC electrode may touch 
coagulant production, in the end influencing the EC efficacy [60]. Computation-
al fluid dynamic (CFD) modeling has as well been employed for the divination 
of electrolyte flow changes inside an EC device, showing elevated changes of 
fluid velocity inside the setups, as a consequence of numerous parameters in-
volving cell geometry and arrangement [49] [61]. Broadly, CFD modeling is a 
largely utilized tool in electrochemical engineering to comprehend electrolyte 
mass transport phenomena. Phenomenological studies of the EC method have 
explained the mixing [62] and technique [63] regulation procedures. Fresh nu-
merical investigations on EC have been dedicated to the contribution of the se-
tup arrangement in the electric field and mass transport [1]; however, the action 
of local reaction circumstances on the identical electrode plate has not been ex-
amined [64]. 

2. In Situ Evaluation of Current Density Distribution (CDD) 
and Fluid Modeling of an EC Method 

With a view to comprehend the fluctuation of the current distribution over an 
electrode surface, McBeath et al. [1] utilized an in situ manner to meter and 
chart the CDD. Further, water flow patterns into and out of the EC device got 
via CFD modeling, with a view to give penetration towards the fluid and current 
flow bond (Figure 2). Besides giving an essential comprehension of current and 
mass transport importance for enhanced and foreseeable EC applications, as well 
as furnishing a new method implementation for distinguishing current distribu-
tion in an EC setup, findings may conduct to the ameliorated CDD and so en-
hanced reactor design; a basic parameter for the design of an energy-efficient 
and thus more economical EC reactor and process [1]. 

McBeath et al. [1] focused on the key link of water flow, electrochemical metal 
dissolution, and CDD via CFD models, mathematical models, and in situ CDD 
identification tests. In theory, it was established that current distributed across 
the electrode was inversely proportional to the water flow rate. The turbulent 
flow into and out of the EC setup was simulated with changing inter-electrode 
distances and flow rates; however, the average velocity segments over the elec-
trode surface was evaluated, corresponding to the identical segments utilized to 
experimentally assess the current distribution. By means of the CFD models and 
current distribution assessing manner, McBeath et al. [1] noted that current  
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Figure 2. Current density (partial electrode approach) and water velocity profiles (CFD 
models) for 1.35 L/min flow at 1, 2 and 10 mm gaps [1]. 
 
density was distributed unequally and pursued the tendency prevised by theory. 
Regions of lower current density were frequently joined by the higher-velocity 
flow. The more regular current was yielded with larger inter-electrode distances, 
because of the greater flow regularity. However, working with a 1 mm distance, 
the current and water velocity changed over the electrode by Δ27.6 mA/cm2 and 
Δ0.220 m/s, and was decreased to Δ3.6 mA/cm2 and Δ0.062 m/s at a 10 mm dis-
tance. Even if current regularity was augmented, the global current density di-
minished greatly because of the bigger ohmic resistance related to the greater 
distance. The elimination of NOM was decreased as much as 79% when the in-
ter-electrode separation was decreased from 10 to 1 mm. 

3. Reviewing EC Modeling Procedures 

Hakizimana et al. [49] published a thorough discussion of EC development and 
design. They focused on the theoretical comprehension of pathways controlling 
contamination removal, modeling manners, CFD simulations (Figure 3), and 
techno-economic optimization. 

Further, Hakizimana et al. [49] discussed the most important parameters that 
affect EC process efficiency (Figure 4). 

4. Discussing EC for Arsenic Removal 

Song et al. [65] presented the fresh development of arsenic elimination via EC 
method involving the impacts of main working factors, optimization of the EC 
efficiency, as well as the estimation of EC device arrangements. They contrasted  
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(a) 

 
(b) 

Figure 3. (a) Flow pattern (b) velocity magnitude and secondary potential dis-
tributions throughout an EC cell at a flow rate 0.5 L/min [49]. 

 
the efficiency of EC and other techniques and focused on future research needs 
for arsenic removal in the EC process. They concluded that EC appears as an en-
vironmentally friendly and performant technology for arsenic elimination. Nev-
ertheless, it is affected by many restrictions like high energy consumption in 
large scales and difficulty of EC reactor design. More researches are needed to 
get the better of the disadvantages to expand the handy usage and pointedly 
examine the EC efficiency of arsenic elimination. 

5. CFD Simulation of Biphasic Flow in EC Device 

The mass transport efficiency of Al3+ ion is in charge of the formation of the 
coagulant within the EC device, and, therefore, removing pollutants is a function 
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Figure 4. Principal parameters touching EC technology [49]. 

 
of it. In identical fashion, the hydrogen gas emanation in the counter-electrode 
touches the setup efficiency because of the resistivity produced in the solution 
and the biphasic fluid dynamics (Figure 5). The suggested model explains at 
once the secondary current distribution, the mass transport of aluminum and 
hydrogen, and the momentum transfer of a turbulent biphasic system in a con-
tinuous rotating cylinder electrode (RCE) reactor combined with two sedimen-
tation tanks [66]. The theoretical analysis for this system showed well-mixed 
circumstances and a quasi-uniform current distribution in the RCE reactor 
thanks to the geometrical design and the low quantities of hydrogen gas formed 
at the different current values investigated (Figure 6). For the present, slow flow 
velocities and dead zones were noted within the sedimentation tanks. Plus, 
comparisons among experimental, and theoretical Al3+ concentrations under 
stationary regime are also presented, found a good correlation [66]. 

6. Eliminating Fluoride and Hydrated Silica by EC in a Flow  
Channel Reactor 

Castañeda et al. [67] focused on the concomitant elimination of fluoride and 
hydrated silica from groundwater (4.08 mg/L fluoride, 90 mg/L hydrated silica, 
50 mg/L sulfate, 0.23 mg/L phosphate, pH 7.38 and 450 μS/cm conductivity) via 
EC, employing an up-flow EC setup, with a six-cell stack in a serpentine array, 
opened at the top of the cell to favor gas liberation (Figure 7). Aluminum plates 
were employed as sacrificial electrodes. They assessed the impact of current den-
sity (4 ≤ j ≤ 7 mA/cm2) and mean linear flow rate (1.2 ≤ u ≤ 4.8 cm/s), imple-
mented to the EC reactor, on the elimination of fluoride and hydrated silica. The 
elimination of fluoride satisfied the WHO guideline (<1.5 mg/L); however, the 
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Figure 5. (a) EC lab configuration system, (b) electrodes arrangement inside the reactor and (c) 3D computational 
domain of the system [66]. 

 

 
Figure 6. Aluminum ion concentrations in the middle of the domain at z-y plane at different times of (a) 5 s, (b) 50 
s, (c) 200 s and (d) 500 s for jave = 32 A/m2 at 100 rpm with an input flow of 0.4 L/min [66]. 

 
hydrated silica was reduced at 7 mA/cm−2 and 1.2 cm/s, with energy consump-
tion of 2.48 kWh/m3 and an overall operational cost of 0.441 USD/m3. Spectros-
copic analyses of the flocs by XRD, XRF-EDS, SEM-EDS, and FTIR proved that 
hydrated silica reacted with the coagulant forming aluminosilicates, and fluoride 
replaced a hydroxide from aluminum aggregates, while sulfates and phosphates  
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Figure 7. (a) Sketch of the reactor, (b) bottom plate, (c) channel separator, (d) aluminum electrode, and (e) electro-
lyte collector at the exit [67]. 

 
were removed by adsorption process onto the flocs. The well-engineered EC de-
vice allowed the simultaneous elimination of fluoride and hydrated silica. 

7. Conclusions 

From this work, the following conclusions can be drawn: 
1) An in situ manner for the determination of CDD for an EC method was 

used in parallel with mathematical and CFD modeling for iron dissolution and 
water velocity variation analysis, respectively [1]. The current density informa-
tion coincided well with the models; however, regions of elevated current density 
were inversely matched to regions of low-velocity fluid flow and thus, aug-
mented Fe2+ dissolution. As the inter-electrode separation augmented, water ve-
locity fluctuations greatly diminished, conducting to importantly elevated cur-
rent density regularity. From the current distribution information, a more pre-
cise view of iron dissolution efficiency is reached, whereby local Fe2+ dissolution 
rates could be evaluated. Throughout 1 mm inter-electrode distance trials, cur-
rent and water velocity fluctuations were Δ27.6 mA/cm2 and Δ0.220 m/s, respec-
tively. If the inter-electrode distance augmented to 10 mm, this variance dimi-
nished to Δ3.6 mA/cm2 and Δ0.062 m/s. This augmented current uniformity did 
have effects on the global achievable current density; nevertheless, because of the 
importantly elevated ohmic resistance related to the broader distance. In addi-
tion to reduced current density, the related elevation in electrical potential 
hugely elevates running energy needs. Moreover, NOM elimination suffered at 
bigger inter-electrode separations, whereby dissolved organic carbon removal 
was observed to increase from 16, 29 and 46%, during 10, 2 and 1 mm opera-
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tions.  
2) Regardless of EC being a robust and versatile technology, it stays harder to 

simulate than other water treatment techniques, like biological methods. Two 
main investigation fields appear fundamental for a more successful exploration 
of the EC process. The first one implicates the implementation of CFD to EC 
method that needs to be expanded and should involve mixing phenomena, and 
the second one focuses on the separation stage of EC, via flotation or settling, in 
the existence of an electric that both require experimental and theoretical analy-
sis [49]. 

3) Recently, there is huge progress in terms of investigating the EC process 
especially in the influence of CDD. Nevertheless, more efforts are required to 
better understand the CDD at the electrodes surface and electric charges transfer 
from electrodes to the bulk of the solution. Mechanisms related to interactions 
of anodic metallic cations and various pollutants should be more investigated. 
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