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Abstract 

In this paper, the artificial generation of elementary catastrophe optics having 
odd codimensions K = 1, 3 and 5 such as the Fold, the Swallowtail and the 
Wigwam diffraction caustics is investigated theoretically. It is shown that the 
integral catastrophes with odd polynomials phase functions can be reduced to 
the well-known Airy-Hardy cosine integrals. In this connection, the caustic 
functions of the Fold, Swallowtail and Wigwam caustic beams are expressed 
in closed-form in terms of Airy-Hardy cosine functions. An optical method 
based on the Fourier transform similar to that described by Lohmann et al. 
[Optics Comm. 109 (1994) 361-367] is proposed for the generation of the 
Fold, Swallowtail and Wigwam caustic beams. The displaying of the catas-
trophe patterns with K = 1, 3 and 5 is optically implemented in the Fourier 
transform device by using simple binary screens with tailored polynomials 
transmission. 
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1. Introduction 

In recent years, a lot of researches have been devoted to the nonconventional 
applications of optical computing [1]-[17]. In fact, different binary patterns have 
been used in many optical devices to implement intriguing phase profiles and 
for generating the complex amplitudes of the well-known catastrophe functions. 
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The application of spatial light modulators has permitted the experimental rea-
lization of some artificial catastrophes in optics, e.g., the fundamental catastro-
phe beams such as the Airy (Fold) and Pearcey caustic modes [5] [16] [17]. It is 
well established in the catastrophe theory [18] [19] [20] [21] [22] that the catas-
trophe functions can be described by seven elementary structures which are 
classified according to their codimensions K. The caustic beams emerging as 
diffraction catastrophes are particular solutions of the paraxial Helmholtz equa-
tion, and they can be expressed in the typical integral representation [18] [19] 
[20] [21] [22]. 
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where s represents the state variable, Cj are the n-2 control parameters and nφ  
is the catastrophe phase polynomial of n-th order that depends on the state 
variable s and the control parameters Cj with the codimension K = n-2. 

The three members of the hierarchy catastrophe structures that we will 
examine in this paper are given in Table 1, where we have listed the considered 
diffraction catastrophes with the corresponding phase polyomials φ  and 
codimensions K. For the sake of comparison we have reported, the Berry’s [18] 
and Stewart’s [19] unfolding phase polyomials. 

By using the change of the variable 1 n

sx
n

= , one obtains the relationship  

between the control parameters C and ∆  in the Refs. [18] and [19]. For K = 1, 
the phenomenon is called Fold diffraction caustic, we have 

1 3 .
3
aC =                               (2) 

and the structure function ( )1 Cψ  is proportional to the well-known Airy 
function 
 
Table 1. The elementary diffraction catastrophes of odd codimensions 5K ≤ : with 
Berry and Stewart unfoldings. 

Diffraction 
catastrophe 

Codimension 
K 

Berry’s unfolding ( );s Cφ  [18] 
Stewart’s  

unfolding ( );xφ ∆  [19] 

Fold 1 
3

3
s Cs+  3x ax+  

Swallowtail 3 
5 3 2

3 2 15 3 2
s s sC C C s+ + +  5 3 2x ax bx cx+ + +  

Wigwam 5 
7 5 4 3

2
5 4 3 2 17 5 4 3

s s s sC C C C s C s+ + + + +  7 5 4 3 2x ax bx cx dx ex+ + + + +  
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where the Airy function is defined as [23], 
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∫                     (3b) 

For K = 3, the phenomenon is called Swallowtail diffraction catastrophe [24] 
[25] [26] [27] [28], so we have 

1 2 31 5 2 5 3 5

1 2 3, , ,
5 5 5

C c C b C a= = =                   (4) 

and the caustic function reads  
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The case K = 5 corresponds to the so-called Wigwam diffraction catastrophe 
[24] and we obtain the following identities 

1 2 3 4 51 7 2 7 3 7 4 7 5 7
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7 7 7 7 7

C e C d C c C b C a= = = = =       (6) 

and 
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It is worth noting that, apart from the case K = 1, the caustic functions nψ  
above haven’t been expressed, to the best of our knowledge, in terms of 
well-known mathematical functions. In the remainder of the paper, we will show 
the relationship between these catastrophe functions and the Airy-Hardy 
integrals, and propose an optical method by using tailored binary screens, for 
the creation of the elementary optical catastrophes of odd codimensions (K = 1, 
3 and 5). 

2. Caustic Functions and Their Connection with the  
Airy-Hardy Integrals 

One can note that for particular values of the control parameters, the phase 
functions in Equations (6) and (7) are reduced to odd polynomials, and thus the 
associated catastrophe functions are proportional to the Airy-Hardy cosine inte-
grals [23]. In fact, if one takes 2 0C =  in the case K = 3, or 2 4 0C C= =  for K = 
5, the associated phase polynomials 3φ  and 5φ  will be odd functions, then it 
will be simpler to express the caustic functions (K = 1, 3 or 5) as 
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and 
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These last integrals belong to the Airy-Hardy integrals class and then they can 
be expressed in the canonical form [22] [23] 

( ) ( )
0

d cos , ,n nCh t T tα α
+∞

= ⋅   ∫                     (11a) 

where ( )nCh α  denotes the Airy-Hardy function and 
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where ( )2 1 .F  is the hypergeometric function defined by [29]  
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where ( ). n  is the Pochhammer symbol. 
The first odd-order functions ( ),nT t α  are given by 
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It is well-known that the Airy-Hardy functions ( ).nCh  are solutions of the 
following differential equation [22] [23] 
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−− =                     (13) 

Hobbs et al. [23] have expressed these solutions in terms of Bessel functions of 
fractional orders as 
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      (14) 

where Jν  and Iν  are the υ-th order Bessel and the modified Bessel functions 
of the first kind, respectively. 

For 0α = , the approximate value of ( )nCh α  reads 

( )
( ) ( ) ( )2 2 1

2 10 cos
2 1 2 2 12 1
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, for n = 1, 2 and 3  (15) 

By putting 2 33
Cα =  and using the similarity between the Equations (11b)  

and (16a), we obtain 
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The integral expression of Equation (9) can be rewritten 
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If we take 
3
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or equivalently 
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The Wigwam catastrophe integral can also be expressed as 
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By putting 
5 7 3 7

2 3 1 7
5 3 1

7 77 , 14 , 7 7
5 3

C C Cα α α= = = , this leads to 

( ) ( )
1
7

5 7
27 .Chψ α α=
π

                      (18b) 

We inferred from the above procedure that the caustics of odd codimensions 
K = 1, 3 and 5 are connected to the Hardy-Airy functions of orders n = 3, 5 and 
7, respectively. In the forthcoming section, we will be interested in displaying in 
optical way these non-conventional functions. 

3. Generation of the Elementary Optical Catastrophes with  
K = 1, 3 and 5 

Based on the fact that the complex caustic structures are expressed in terms of 
polynomial phase functions, we adopt an optical technic similar to that em-
ployed by Lohmann et al. [2] [3] for implementing Airy, Bessel and Laguerre 
functions. The proposed setup is a Fourier transformer whose schematic dia-
gram is given in Figure 1: A plane wave front illuminates a binary screen which 
is transparent only along the curve ( )y F x=  on the XY plane. Thus, the 
transmittance function ( ),T x y  in the binary screen can be expressed as  

( ) ( )( ), ,T x y y F xδ= −                        (19) 

where ( )F x  is the curve profile and ( ).δ  is the Dirac function. 
The amplitude distribution of the Fraunhofer diffraction pattern in the back 

focal plane of the lens (L) is obtained by taking the Fourier transform of Equa-
tion (19). This leads to 

( ) ( ) ( )2ˆ , , e d d .i x yT T x y x yν µν µ − π += ∫∫                  (20a) 
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Figure 1. Diagram of the optical setup: at the input plane XY a binary screen with the 
transmittance ( ) ( )( ),T x y y F xδ= −  illuminated by a plane wave. Detector for output 

pattern at the back focal plane of the lens L. 
 

Substituting from Equation (19) into Equation (20a) and using the integral 
property of the Dirac function yields  

( ) ( )( )2ˆ , d e .i x F xT x ν µν µ
+∞

− π +

−∞

= ∫                    (20b) 

It is worth noting that Equation (20b) is a typical integral representation for 
many special functions employed is lasers physics, e.g., the Airy, Bessel, Laguerre 
functions [2] [3]. In particular, if F(x) is odd function, the Equation (20b) can be 
rewritten as 

( ) ( )( )
0

ˆ , 2 d cos 2 .T x x F xν µ ν µ
+∞

= ⋅ π +∫                 (21) 

In the following, we propose the transmission profiles that may create oscil-
lating integral patterns encountered in many fields, e.g, in physics, chemistry 
and biology. 

3.1. The Fold Catastrophe Pattern 

First, let us consider a mask transmission profile of the form  
( ) ( )3,T x y y xδ σ= − , where σ  is an arbitrary constant (Figure 2(a)). 
The Fourier transform of this input amplitude can be written as 

( ) ( ) 1 3
3 2 3

ˆ , 2 ,
3fT Ch αν µ σµ −  =  

 
                  (22) 

with ( ) 1 3

3
να σµ −= . The irradiance distribution of the Fraunhofer pattern in the  

output plane is depicted in Figure 2(b). 
By placing a narrow slit in the output plane along the υ-axis, at µ η=  just 

behind the slit, the output diffracted amplitude reads  

( ) ( ) ( ) ( ) ( ) 1 3
1 3

3 5 3
ˆ ˆ, , 2 .

3f fT T Ch
ση

ν η ν µ δ µ η ση ν
−

−  
 = − =
 
 

        (23) 

It follows from this last equation that by displacing the slit to arbitrary values  
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Figure 2. (a) Input binary pattern with ( ) 3F x xσ= ⋅ , (b) associated 

output Fraunhofer pattern, and (c) square modulus of Airy-Hardy 
Ch3(x) with ν  = 2. 
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of η , one can produce the Hardy-Airy function ( )3 .Ch  along the υ-axis. Fig-
ure 2(c) shows the irradiance of ( )3 .Ch  which is consistent with the 
well-known Airy function, with an arbitrary η . 

3.2. The Swallowtail Catastrophe Pattern 

Now, by considering the curve function ( )sF x  of the form (Figure 3(a)) 

( ) 3 5 ,sF x px qx= +                          (24a) 

where p and q are arbitrary constants, the Fourier transform of the associated 
input amplitude reads 

( ) ( )3 5

0

ˆ , 2 d cos 2 2 2 .ST x x px qxν µ ν µ µ
+∞

= π + π + π∫             (24b) 

Making the change of the variable 1 5x a t−= , with 2a qµ= π , this leads to  

( ) ( )1 5 5 3 5 3 1 5

0

ˆ , 2 d cos 2 2 .ST a t t pa t qa tν µ µ µ
+∞

− − −= + π + π∫           (25) 

Putting 3 54 2 p aα µ −= π ⋅  and 2 1 55 2 aα ν −= π ⋅ , and after some algebraic 
operations, Equation (25) is reduced to  

( ) ( ) ( )1 5
5

ˆ ˆ, 2 .sT T a Chν µ α α−= =                    (26) 

Reciprocally, one can writes  

( ) ( ) ( )1 5
5

1 ˆ2 , .
2 sCh q Tα µ ν µ= π                     (27) 

The irradiance distribution of the Fraunhofer pattern of the input amplitude 
is shown in Figure 3(b). By placing a narrow slit along the υ-axis at µ ξ= , just 
behind the slit, the resulted amplitude reads  

( ) ( ) ( ) ( ) ( )1 5 2 5
5

5ˆ ˆ, , 2 2 2 .
4s sT T q Ch q

p
νν ξ ν ξ δ µ ξ ξ ξ
ξ

−  
= − = π π 

 
    (28) 

Hence, one can visualize the profile of the Hary-Airy function ( )5Ch α  along 
the υ-axis. Figure 3(c) shows the irradiance profile proportional to ( )5Ch α  
with ν  = 2. 

3.3. The Wigwam Catastrophe Pattern 

By considering the mask transmission function Fw  

( ) 7 5 3 ,WF x px qx rx= + +                        (29) 

where p, q and r are arbitrary constants, its Fourier transform is given by 

( ) ( )7 5 3

0

ˆ , 2 d cos 2 2 2 2 .wT x rx qx px xν µ µ µ µ ν
+∞

= π + π + π + π∫           (30) 

Now, making the change of variable 1 7x b t−= , with 2b rµ= π , and by taking  
3 7 5 757 7 2

5
C

qbα µ −= = π , 2 3 7 3 7514 7 2
3

C
pbα µ −= = π ,  
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Figure 3. (a) Input pattern with ( ) 3 5F x p x q x= ⋅ + ⋅ , (b) associated 

output Fraunhofer pattern and (c) square modulus of Airy-Hardy 
Ch5(x) with ν  = 2. 
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3 3 7 1 7
17 7 2C bα ν −= = π , Equation (30) can be expressed as

 ( ) ( )1 7
7

ˆ , 2 ,wT b Chν µ α−= ⋅                      (31) 

or equivalently 

( ) ( ) ( )1 7
7

1 ˆ2 , .
2 sCh q Tα µ ν µ= π                    (32) 

Following the same procedure as described in Sections (3.1) and (3.2) and us-
ing the binary mask of Equation (29), we have displayed the irradiance distribu-
tion of the Fraunhofer pattern associated with ( )7 .Ch  in Figure 4(c). It is  
 

 
Figure 4. (a) Input pattern with ( ) 7 5 3F x p x q x rx= ⋅ + ⋅ + , (b) associted output 

Fraunhofer pattern and (c) square modulus of Airy-Hardy Ch7(x) with ν  = 2. 

https://doi.org/10.4236/oalib.1105958


A. Belafhal et al. 
 

 

DOI: 10.4236/oalib.1105958 11 Open Access Library Journal 

 

worth noting that the patterns of Figure 2(c), Figure 3(c) and Figure 4(c) can 
be controlled by adjusting the parameters σ, p, q, r; e.g., a negative value of σ will 
give the symmerical profile of Figure 2(c). 

The parameter σ can be regarded as a scaling length for controlling the 
Fraunhofer pattern structure of Figure 2(b), and in the same way, different 
mapping caustics for Swallowtail and Wigwam optical catastrophes (Figure 3(c) 
and Figure 4(c)) can be performed, globally, by varying the scaling parameters 
p, q and r of the binary amplitude transmittance in the input plane This proce-
dure may permit application opportunities in micromachining on tailored 
curves and light guiding paths. 

4. Conclusion 

In summary, based on the fact that the integral diffraction catastrophes can be 
reduced in the case of odd polynomials phase functions into Airy-Hardy cosine 
integrals, we obtained the closed-form expressions for the related caustic func-
tions. We showed that by the use of an optical Fourier Transformer device with 
tailored binary screens one can obtain the displaying of caustic beams such as 
the Fold, the Swallowtail and the Wigwam catastrophes. Furthermore, it is 
shown that the mapping caustics for Swallowtail and Wigwam caustics can be 
controlled by the scaling parameters p, q and r of the binary mask transmittance. 
The result of this work can be useful in shaping lasers with catastrophe ampli-
tude function and may have application opportunities in micromachining and 
light guiding paths. This study can be extended to higher oscillatory integral 
functions. 
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