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Abstract 
A comparative analysis of the effectiveness of prediction using PRT and RIA 
approaches, using, respectively, exclusively the linear component of long-term 
memory and, along with the linear, non-linear component, is given. The 
noise immunity of prediction is considered in both approaches in the pres-
ence of additive noise with a normal or uniform distribution. 
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1. Introduction 

In the analysis of random signals typical situation information, the distorted 
noise of various natures, the most common is the case when random signals 
generated by the originating system are available to the observer only with dis-
tortions due to errors used in recording signals using measuring equipment, due 
to the presence of various kinds of interference in transmitting information over 
the radio channel, and due to rounding off when digitizing data, and for other 
reasons. In all these cases, it is necessary to extract useful information from the 
received oscillation, which represents the distorted signal. 

In describing random processes generated physiological systems in different 
parts of autonomously regulated rhythms (e.g., heart rate [1]), there are two 
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main classes of fractal time series. The first class includes monofractal dynamic 
series represented by dynamic series formed by means of spectral transformation 
and reflecting only the linear component of the long-term dependence of the 
process generated by the complex system being analyzed. The second class in-
cludes multifractal series, represented by multifractal random cascade (MRC) 
dynamic series, capable of reflecting the non-linear component, of long-term 
dependence. These classes of models use, respectively, a different amount of in-
formation about the long-term dependence of the readings of the dynamic 
range, which can affect the quality of forecasting [2] [3]. 

In this article, using the example of repeated heartbeat intervals, we analyze 
the effectiveness of methods for predicting emissions of dynamic series with 
fractal properties using information about the linear and nonlinear components 
of the long-term dependence in the presence of additive noise such as white 
noise and examine the stability of these methods at various levels of interference 
[4] [5] [6] [7]. 

2. Methods for Predicting the Release of a Random Signal  
with Fractal Properties 

To solve the problem of predicting the release of a random signal with fractal 
properties, two main approaches are possible [4]. The first one is the classical 
one, based on the prediction of the predicted ejection ny Q>  of the predictor 

,n ky  of the duration of к received samples using information only about a 
short-term dependence of the samples of a random signal. To implement this 
approach in relatively simple systems, in which the single most probable 
predictor , 1 1: , , ,n k n k n k ny y y y− − + −  is a representative to have information 
about this predictor and be able to estimate the proximity of other predictors to 
it based on some given distance metric. In complex systems in which the most 
probable predictor ,n ky  is not unique or representative, you must have a com-
plete database for the probabilities ( ),|n n kP y Q y>  that the random signal iy  
exceeds the threshold Q at the time n. 

The class of processes described by the first approach includes monofractal 
processes with linear long-term correlations (linear long-term correlation 
(LTC)) for which the autocorrelation function (AСF) C(s) obeys the power law 
( ) ( )~ 0 1C s S γ γ− < <  with a unique indicator ( ) ( )2 1 | 2h γ= − , describing 

process fluctuations in the time window of length S [8]. 
The second approach is based on the analysis of the nonlinear component of 

the long-term dependence. Within this approach, the mathematical apparatus of 
interval statistics is used to predict random signals with fractal properties when 
the probability ( )QW t  of exceeding the threshold Q by a random signal iy  at 
the next time t is estimated based on the time t that has elapsed since the last 
such excess, based on the expression. 

( ) ( ) ( ) ( ), 1 1Q Q QW t t C t C t C t   ∆ = + − −                     (1) 

where ( )QC t  is a function of the probability distribution between outliers of a 
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random signal above a given threshold [9] [10]. 
The class of processes described by the second approach includes the 

mulfractal processes. In contrast to monofractal records (maximum values of the 
process iy ) for which a single Hurst index H describes fluctuations on any scale, 
for multifractal records each moment value q used to calculate the generalized 
fluctuation function ( )qF s  in the method of multifractal fluctuation analysis 
(MFFA) [11], corresponds to its value of the generalized Hurst index h(q), at 
which ( )

( )~ h q
q sF s  on the scale s, thus characterizing the nonlinear component 

of the long-term dependence. 
This approach, using interval statistics, called the return interval approach 

(RIA), is most suitable for real-time forecasting of experimental events using 
nonlinear memory [9]. The first approach, using as a precursor (predictor) tech-
nique of pattern recognition (PRT), based only on short-term memory. A com-
parative analysis of PRT and RIA approaches was carried out in [3] [5] [10] in 
predicting emissions of fractal processes with linear and non-linear components 
of long-term dependence in the absence of noise. According to the obtained re-
sults, if there is only a linear component of a long-term dependence (monofrac-
tal model of a random signal), PRT is always preferable, whereas in the presence 
of a pronounced nonlinear long-term dependence (multifractal model of a ran-
dom signal) both approaches show comparable prediction efficiency. Taking in-
to account these results, the advantages of the RIA approach can only be the 
simplicity of implementation, the absence of the prediction algorithm necessary 
for the PRT approach, minimization of the amount of information required for 
forecasting, up to a single elapsed time parameter t after the last ejection. 

However, it should be borne in mind that the problem of forecasting in the 
above works was considered on the assumption of undistorted random signals, 
in particular without taking into account the effects of noise, while analyzing the 
recorded random signals generated by physiological systems (in particular, the 
cardiovascular system (CVS)), the impact of noise factors during removal and 
measurement error is very significant and the assumption of the absence of noise 
can lead to a decrease in the reliability of the result. Heart rate, like many other 
physiological rhythms, is a random signal with pronounced both linear and 
non-linear components of long-term dependence. When analyzing the efficiency 
of prediction of an artificially synthesized random signal (generated using a 
multiplicative cascade mathematical model (MRC) with parameters simulating 
the dynamics of the heart rhythm in norm), the results indicate a comparable 
prediction efficiency of both the PRT and RIA approaches, which is consistent 
with the data [3] [5] [10].  

On the other hand, when analyzing real heart rate records, a forecast based on 
RIA and using additional analysis (with the involvement of the sensitivity oper-
ator Sens, showing the frequencies of correct predictions of Q events, i.e. exceeding 
the threshold Q, and the specification operator Spec, indicating the frequency of 
correct predictions for non-Q events, i.e. not exceeding the Q threshold. 

Such an analysis, called “receive operator characteristic” (ROC) analysis in 
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[10], turned out to be more effective in the overwhelming majority of cases. 
Denote by N11 and N01 the number of correct and erroneous predictions of 

Q-events and by N00 and N10—the number of correct predictions of non-Q-events. 
Then the number of erroneous predictions 

( )11 11 01D N N N= +  и ( )10 00 10N N Nα = +              (2) 

will be equal to the proportion of correct predictions of Q events and the pro-
portion of erroneous predictions of non-Q-events, respectively. The plot of D on 
α is called the ROC curve [12] [13]. Note that in [10], the values of D and α are 
denoted by Sens and Spec, and the ROC curve is called the graph of the depen-
dence of Spec on Sens, which is an inverse function of the functional dependence 
of D on α. 

As the most significant factor that could affect the discrepancy in the results, it 
should be noted the measurement errors of the intervals between heartbeats in 
the analysis of electrocardiogram, since the ECG during outpatient monitoring is 
usually carried out in a complex noise situation. 

In this regard, we will assume that the random signal under investigation, ob-
tained by synthetic MRC or by real observations of the heart rhythm, is distorted 
(noisy) by additive white noise. Noise affecting observed signal records may have 
two main reasons. The first of these is the possibility of the random nature of the 
measured process itself. These are, in particular, the heartbeat intervals in atrial 
fibrillation syndrome [14]. In this case, the noise component is an informative 
sign with which fibrillation is diagnosed. The second reason is measurement 
noise, which arises due to the limited accuracy of the measuring apparatus. 

It is usually assumed that the noise distribution is Gaussian (normal), since, 
according to the central limit theorem, it describes measurement errors that are 
a superposition (superposition) of many factors (external noise, accuracy of 
measuring equipment, etc.). In addition, the discretization of data generates a 
uniform distribution of the obtained observations. In fact, random processes 
generated by complex systems are characterized by distributions that form a 
much wider class than noise distributions [15] [16]. 

In the following, we will assume that the noise is white, thereby assuming 
that it has a flat power spectrum and that it is uncorrelated. This is not always 
true due to the preliminary filtering of instrumentation, which results in “color” 
noise, characterized by a finite power spectrum. However, the measurement 
noise correlation time is usually shorter than even the length of the precursor 
pattern used in the PRT approach, and much less the time between extreme 
events used in the RIA analysis, so the assumption about white noise can be con-
sidered fair. 

3. Prediction of Emissions Using Information about the  
Linear Component of the Long-Term Dependence of the  
Process 

For uncorrelated source data { }iX  (i.e., at ( ) 0xС s = , 1s > , where ( )xС s  is 
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the autocorrelation function of the data), repeated intervals will also be uncorre-
lated by ( ) 0, 1QС s s= > . For data with long-term correlations, repeated inter-
vals have an autocorrelation function (ACF), obeying the power law ( ) ~QС s s β− , 
where β γ= , γ -correlation exponent for ( ) ~xC s s γ− . However, for repeated 
intervals with a large period QR , deviations from a power law with a constant 
constant β are observed [17].  

For purely multifractal source data without a linear correlation ( ( ) 0xС s = ), 
repeated intervals have ACF ( ) ( )~ Q

QС s s β−  [18], illustrating the presence of 
long-term memory of repeated intervals in the absence of linear correlation in 
source data. For multifractal data in the presence of linear long-term correlations 
with the correlation exponent 0 1γ< < , deviations from the law ( ) ~QС s s β−  
( constβ = ) also occur; moreover, these deviations increase with increasing 
length of data correlation, i.e. with decreasing γ. 

An interesting fact is that for multifractal data in the absence of their linear 
correlations, repeated intervals will have linear long-term correlations. Linear 
and nonlinear correlations present in the source data have their contribution to 
the linear correlations of repeated intervals, and even in the absence of linear 
correlations of the original data, repeated intervals can have long-term correla-
tions [19]. 

It is obvious that nonlinear correlations of multifractal initial data will induce 
long-term correlation of repeated intervals [9]. Extracting a sequence of repeated 
intervals from the original data is a non-linear operation, so that non-linear cor-
relations of the original data naturally influence the statistical properties of the 
repeated intervals. 

Let us compare the effectiveness of RIA and PRT analysis in predicting emis-
sions from information on the linear component of long-term dependence based 
on synthetic data obtained from the MRC model with additive Gaussian interfe-
rence and averaged over 20 different Gaussian interference distributions. In this 
case, for the length of the series obtained, we take L = 221 with the values h(2) = 
0.6, 0.8 and 0.98 (γ = 0.8, 0.4 and 0.04), respectively, with the length of the pre-
cursor pattern in PRT k = 2, 3 and 4, the number l in the MRC will be chosen so 
that the total number of patterns kl  is equal to 104. In Figures 1(a)-(c), we 
present the graphs of ROC curves for 0.35α ≤  for 70QR = , and in Figures 
1(d)-(f) for 500QR = . 

To increase the values of h(2) and, consequently, decrease the value of 
( )( )2 1 2hγ = −  in the EKQ, it is enough to apply a procedure for “thinning” the 

data by dropping recurring records. 
As one would expect, the prediction efficiency both in PRT and RIA analysis 

improves with an increase in the Hurst index due to the enhanced persistence 
property. 

From Figure 1 it follows that with the same values of the false alarm rate α 
(i.e., the Q-event prediction ratios for non-Q-events), as which, in Figure 1, two 
values of α = 0.1 and α = 0.3 selected by dashed lines are taken, Significantly high  
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Figure 1. The graphs of ROC curves. 
 
values of the indicator D for correct predictions of Q-events are obtained for 
PRT compared to RIA analysis, demonstrating that in the case of using informa-
tion about the linear component of the long-term dependence and in the ab-
sence of white noise, the PRT-technique has an advantage over the RIA-analysis 
in predicting extreme events. In addition, from Figure 1 it is clear that with a 
high persistence of records of information about the process behavior only for 
two time intervals before the event (i.e., at k = 2 and l = 100 in the PRT tech-
nique) becomes sufficient to obtain the best predictions than information about 
the time elapsed since the last Q-event. Finally, ROC curves for large RQ values 
are higher than for smaller RQs, demonstrating that large extremes are better 
predictable for records with long-term correlations, which is in good agreement 
with recent results [17] [18]. Since there is no significant difference between the 
results in PRT at k = 2, 3 and 4, we will continue to use short precursors with k = 
2. 

We now consider a monofractal model with an extremely linear long-term 
dependence with a normal distribution of signal and noise. Let us dwell on ran-
dom signals characterized by the indicators h(2) = 0.6 (weak long-term depen-
dence), 0.8 (intermediate value), and 0.98 (pronounced long-term dependence). 
Figure 2 shows the noise robustness characteristics (NRC) for the same records 
as in Figure 1. It shows that the increase in the correct prediction index D oc-
curs with an increase in the signal-to-noise ratio (Siqnal-to-noise (S/N)) for two 
fixed values of the false alarm indicator α = 0.1 and α = 0.3. 

The value of S/N is usually taken as the correct ratio of the amplitude S of the 
signal to the standard deviation of noise σN. Since we are interested in events ex-
ceeding Q, we can assume that S/N = Q/σN. From Figure 2 it follows that, again, 
PRT forecasts are better than RIA forecasts, even in the presence of strong inter-
ference. 
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Figure 2. The noise robustness characteristics. 
 

The results show that in the case of records with linear long-term correlations, 
the best way to obtain predictions using PRT using short-term memory is more 
interesting than predicting experimental events using RIA using long-term 
memory due to high linear persistence of records with linear long-term correla-
tions. It should be noted that similar conclusions are obtained in the presence of 
uniformly distributed (“digitalized”) additive noise after their discretization. 
And in this case, the PRT forecasts are superior to the RIA forecasts. 

4. Forecasts of Extreme Events in the Case of Multifractal  
Records 

Consider the predictability of extreme events with multifractal records. In Fig-
ures 3(а)-(с) are shown ROC-curves, which characterize the efficiency of fore-
casts obtained using MRC records of length 212L =  with ( )2 0.5,0.8h =  and 
0.98 at 70QR =  using RIA and PRT analysis (with the same parameters, as in 
the case of linear long-term correlations (LTC) data). Similar results at 

500QR =  are presented in Figures 3(d)-(f). 
Since for MRC records, predictability has higher values, Figure 3 presents 

values of D > 0.4. 
From Figure 3 shows that with the same values of α (for example, two values 

α = 0.1 and 0.3, marked by vertical lines), the predictions for RIA and PRT lead 
to fairly close values of D-correct predictions Q events, unlike monofractal 
records, when the advantage of PRT came to light. This demonstrates that in the 
case of multifractal records, long-term memory, roughly speaking, has the same 
meaning for predicting extreme events as short-term precursors in the absence 
of noise. In contrast, for monofractal records, for which predictability increased 
with increasing RQ (Figure 1), this effect was less pronounced for MRC records 
and could be observed for PRT at small values of α [20] [21]. 
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Figure 3. ROC-curves, using RIA and PRT analysis. 
 

Let us now consider the predictability of multifractal records in the presence 
of additive noise, focusing again on the Gaussian distribution of noise and the 
length of the losses at k = 2 in the PRT. Figure 4 shows the noise immunity cha-
racteristics (NRC) for the same records as in Figure 3, for two fixed values of the 
false alarm indicator, α = 0.1 and α = 0.3, as in Figure 2. The ratio S/N is defined 
again equal to Q/σN. 

From Figure 4 it follows that, in contrast to monofractal records, in the case 
of multifractality there is no clear advantage of PRT forecasts. Moreover, with 
large S/N ratios (i.e., with high predictability), RIA forecasts are clearly better 
than PRT forecasts. 

When S/N approaches unity, the prediction results of both methods become 
worse. It should be noted that RIA-forecasts in this critical S/N value occupy an 
intermediate phase (“phase transition”) between the phase with high correct 
prediction dominated by linear and nonlinear persistence, and the phase with 
low correct prediction when noise dominates. The shape of this movement is 
more pronounced with increasing nonlinear memory from h/(2) = 0.98, when 
linear memory dominates, to h/(2) = 0.5, when only nonlinear memory exists 
(Figure 4). 

In Figure 5 shows the noise immunity characteristics for the same MRC 
records as in Figure 4, but already in the presence of uniformly distributed (“di-
gitalized”) additive noise. From Figure 5 shows that now the above shift be-
comes even more noticeable and appears already at S/N ≈ 2. In this case, RIA 
forecasts are significantly better than PRT forecasts. 

Next, we analyze the situation when the data is characterized by a narrower 
class of distributions. We impose on the MRC-records Gaussian interference in 
ascending order of their values. 

In this case, when added to Gaussian noise, the RIA and PRT forecasts show a 
smooth shift between the two phases, and there is no superiority between these  
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Figure 4. The noise immunity characteristics. 

 

 
Figure 5. The noise immunity characteristics in the presence of uniformly distributed 
additive noise. 
 
forecasts. When added with a uniform distribution, the shift of the noise-resistant 
characteristics (NRC) in the RIA-forecasts acquires an explicit form, while for 
the PRT-forecasts these characteristics remain unchanged. It follows that in the 
case when the distribution of data is much wider than the distribution of addi-
tive noise (which is most typical for complex systems), the superiority of 
RIA-forecasts becomes significant. 

The main discrepancy between the two prediction methods is that the RIA ex-
clusively uses information about previous events exceeding Q, which are rela-
tively less dependent on noise than the precursors used in the PRT, which are 
significantly lower than Q for large RQ, except for records with very high strong 
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persistence. Consequently, with an increase in the level of additive noise, a shift 
from a phase with good predictability to a phase with weak predictability indi-
cates that noise generates quite a lot of false extremes (“false extremes”). Detect-
ing “false extremes”, the RIA forecast is obtained with high levels of risk for the 
following time units, leading to an increase in the false alarm indicator α for the 
same value of the test threshold Qp. Keeping α constant and choosing high Qp, 
we come to the modified value of the indicators of the correct forecast D. How-
ever, this situation is atypical for the observed predictions, since we are usually 
interested in high thresholds Q and therefore the signal-to-noise ratio becomes 
much higher than the phase shift point when the RIA has superiority. 

Since the information used in the PRT and the RIA complement each other, it 
is interesting to test possible combinations of these two methods for predicting 
MRC records. Check the following combinations for the risk probability Wc(i) as 
the product of the risk probabilities obtained in each of these methods 

C PRT RIAW W W= ⋅ ; 

(ii) weighted sum of risk probabilities 

( )1C PRT RIAW a W a W= + ⋅−⋅ , 0 1α< < ; 

(iii) switching (switching) between two risk assessments at a certain point in 
time tS, i.e. 

,
,

PRT S

RIA S

W t t
y

W t t
≤

=  >
 и 

,
,

RIA S

PRT S

W t t
y

W t t
≤

=  >
 1 20St≤ ≤  

In all cases, in the absence of additive noise, no significant improvement in 
the prognosis was found in comparison with each method separately. In the 
presence of additive noise in all three cases, a smoother phase shift occurs than 
in the RIA. Therefore, the combination of risk assessments does not always ex-
ceed the risk estimate at intermediate noise levels. 

5. Conclusion 

Thus, it is possible to make the following conclusion: the RIA forecast is better 
than the PRT-equipment forecast in the following cases: 1) records contain a 
strictly non-linear memory component; 2) records contain an additive random 
noise component with distribution from a narrower class than the distribution 
of the original data. In all other cases, the RIA forecast is either comparable or 
worse than the PRT forecast. The combination of these approaches does not im-
prove the forecast. An important advantage of RIA analysis is that it requires 
only information about the time of occurrence of previous events and can be 
easily realized to predict time series when it is necessary to detect special events 
(with a large outlier) from one or several observations and get predicted values 
for each initial moment of time. 
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