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Abstract 
Traffic monitoring plays a vital role in smart city infrastructure, road safety, 
and urban planning. Traditional detection systems, including earlier deep 
learning models, often struggle with balancing accuracy, speed, and generali-
zation in diverse and dynamic environments. YOLOv12, the latest model in the 
YOLO series, introduces architectural improvements such as attention-based 
mechanisms and efficient layer aggregation, enabling it to overcome limita-
tions related to small object detection, inference latency, and optimization sta-
bility. This study evaluates YOLOv12 using a globally sourced traffic dataset 
that includes varied weather conditions, lighting scenarios, and geographic lo-
cations. The model demonstrates strong performance across key object detec-
tion metrics, achieving high precision, recall, and mean Average Precision 
(mAP). Results indicate that YOLOv12 is highly effective for real-time traffic 
object detection and offers significant improvements over previous approaches, 
making it a robust solution for large-scale deployment in intelligent transpor-
tation systems.  
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1. Introduction 

In recent years, traffic object detection has become an essential task in the field of 
computer vision, especially with the growing demand for intelligent transporta-
tion systems [1]. Accurate detection of vehicles, pedestrians, and traffic signs en-
ables applications such as real-time traffic monitoring, smart city infrastructure, 
and autonomous driving [2]. Traditional traffic surveillance systems often relied 
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on handcrafted features, static thresholds, or motion-based methods [3] [4]. How-
ever, such approaches struggle under various environmental conditions such as 
poor lighting, occlusions, or heavy traffic congestion [4] [5]. 

With the advancement of deep learning, object detection models have seen sig-
nificant improvements in both speed and accuracy [4]. Among them, the YOLO 
(You Only Look Once) family of models has gained wide popularity for its balance 
between performance and real-time capability. YOLO transforms the object de-
tection problem into a regression task, predicting class labels and bounding boxes 
in a single forward pass of the network. This makes it highly efficient compared 
to two-stage detectors such as R-CNN or Faster R-CNN, which first generate ob-
ject proposals and then perform classification [6]. 

YOLOv12 is the latest iteration in the YOLO series, featuring an attention-cen-
tric architecture specifically designed for real-time object detection. Unlike its 
CNN-based predecessors, YOLOv12 incorporates a novel Area Attention module 
to improve the model’s receptive field while maintaining low computational cost. 
It also introduces Residual Efficient Layer Aggregation Networks (R-ELAN) to 
enhance feature aggregation and improve optimization, especially in large-scale 
models. Architectural adjustments, such as removing positional encoding, opti-
mizing the MLP ratio, and adopting FlashAttention, enable the model to retain 
high inference speed. As a result, YOLOv12 achieves state-of-the-art accuracy-
latency trade-offs across various model sizes, making it highly suitable for appli-
cations like traffic monitoring where both speed and precision are crucial [7]. 

To evaluate the effectiveness of YOLOv12 in real-world traffic detection sce-
narios, this study uses a publicly available dataset collected from traffic surveil-
lance cameras in multiple geographic locations. A significant portion of the data 
comes from Turkish cities such as Bursa, İstanbul, and Konya, while additional 
images represent traffic scenes from other countries. The dataset captures a vari-
ety of environments, including city roads, intersections, and multi-lane streets. It 
also reflects diverse weather conditions, different times of day, and varying levels 
of traffic congestion. Each image is annotated with bounding boxes identifying 
key traffic-related objects, such as different categories of vehicles and pedestrians, 
making the dataset well-suited for evaluating object detection models in complex 
and realistic scenarios. 

This research aims to investigate how well YOLOv12 can generalize across dif-
ferent geographies and environmental conditions. It explores the model’s ability 
to detect small objects as well as its robustness in scenes with high object density. 
The model’s performance is further evaluated using standard object detection 
metrics, including precision, recall, and mean Average Precision (mAP). 

The main contributions of this paper are as follows. First, the YOLOv12 model 
is applied to a geographically diverse traffic dataset encompassing a wide range of 
scenes, lighting conditions, and environmental variations. Second, a comprehen-
sive evaluation of the model’s performance is conducted across multiple object 
classes with comparisons to previous models in the YOLO family. Third, the po-

https://doi.org/10.4236/oalib.1113991


Q. Chen 
 

 

DOI: 10.4236/oalib.1113991 3 Open Access Library Journal 
 

tential of YOLOv12 for real-time deployment in traffic monitoring systems is ex-
plored, along with a discussion of its strengths and areas for future enhancement. 

The findings highlight YOLOv12’s ability to deliver both high detection accu-
racy and low inference latency, making it a practical and scalable solution for in-
telligent traffic applications operating in real-world environments. 

The remainder of this paper is structured as follows: Section 2 reviews related 
work. Section 3 details the methodology. Section 4 presents experiments and re-
sults. Section 5 concludes. 

2. Related Work  

This section reviews existing research in two main areas relevant to this study: the 
evolution of object detection models and the application of these models in traffic 
detection systems. 

2.1. Development of Object Detection Models  

Object detection has gone through several stages of development, from traditional 
image processing methods to highly optimized deep learning models. This section 
summarizes the major developments, focusing on how model design has evolved 
to improve both accuracy and speed. 

2.1.1. Traditional Object Detection 
Before deep learning became popular, object detection relied on manual feature 
extraction and classical machine learning algorithms. Features like Histogram of 
Oriented Gradients (HOG) [8], Scale-Invariant Feature Transform (SIFT) [9], or 
Local Binary Patterns (LBP) were extracted from small regions of an image [10]. 
These features were then passed to classifiers like Support Vector Machines 
(SVMs) or decision trees. 

To search for objects, a sliding window approach [11] was commonly used. The 
image was scanned at multiple scales and locations, and each window was tested 
using the trained classifier. Although this method could work for simple scenes, it 
was computationally expensive and lacked robustness in complex environments 
with cluttered backgrounds or varying object sizes. 

2.1.2. Two-Stage Deep Learning Models: R-CNN Family 
The introduction of Convolutional Neural Networks (CNNs) led to a break-
through in object detection. The Region-based Convolutional Neural Network (R-
CNN) [12] was one of the first deep learning-based detectors. It generated region 
proposals using selective search and then ran a CNN on each proposal to classify 
it and refine the bounding box. While accurate, R-CNN was very slow due to re-
dundant computations. 

Fast R-CNN improved on this by applying the CNN to the entire image only 
once. Instead of running the CNN on each region proposal, it used a Region of 
Interest (RoI) pooling layer to extract features for each region from the shared 
feature map [13]. This reduced computation time and made training faster. 
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Faster R-CNN further improved the process by introducing the Region Pro-
posal Network (RPN), which learned to generate region proposals directly from 
the CNN features [14]. This unified the entire pipeline into a single network and 
significantly reduced inference time. Although Faster R-CNN is still widely used 
for its high accuracy, especially in scenarios with limited time constraints, it re-
mains slower than single-stage detectors. 

2.1.3. One-Stage Models: YOLO, SSD, and RetinaNet 
To achieve real-time detection, one-stage detectors were introduced. These mod-
els skip the region proposal step and directly predict object classes and bounding 
boxes from the feature maps. 

The YOLO (You Only Look Once) model was the first to frame object detection 
as a single regression problem. It divides the image into a grid and predicts mul-
tiple bounding boxes and class scores for each cell [15]. YOLOv1 was extremely 
fast but lacked accuracy in detecting small objects. 

YOLOv2 [16] and YOLOv3 [17] improved the model’s backbone network and 
introduced multi-scale prediction, allowing the detection of objects of different 
sizes. YOLOv4 [18] and YOLOv5 further refined the model with techniques like 
cross-stage partial connections, mosaic augmentation, and efficient training strat-
egies. 

YOLOv6 [19] and YOLOv7 [20] emphasized edge deployment and high-speed 
training, while YOLOv8 [21] introduced anchor-free detection and better post-
processing. YOLOv12 [7] extends prior YOLO models by incorporating Area At-
tention modules to expand the receptive field efficiently and employing Residual 
Efficient Layer Aggregation Networks (R-ELAN) for enhanced feature aggrega-
tion. These additions improve detection accuracy while preserving low inference 
latency, making the model suitable for real-time applications. 

Another popular one-stage model is SSD (Single Shot MultiBox Detector) [22], 
which also predicts bounding boxes at multiple scales but uses default anchor 
boxes at each location. SSD is faster than Faster R-CNN but generally less accu-
rate. 

RetinaNet [23] introduced the idea of focal loss to handle the class imbalance 
between object and background. It improved detection accuracy for small and 
hard-to-detect objects while keeping the inference time low. 

2.1.4. Transformer-Based and Hybrid Models 
Recently, transformer-based models such as DETR (DEtection TRansformer) [24] 
have gained attention. DETR reformulates object detection as a direct set predic-
tion problem and uses self-attention mechanisms. While DETR achieves high ac-
curacy and does not rely on non-maximum suppression (NMS), its training time 
is longer, and inference is slower, making it less suitable for real-time applications. 

To overcome these issues, hybrid approaches have been proposed. These mod-
els combine CNN backbones with transformer heads or use transformers only in 
parts of the pipeline. Although these models show promise in general detection 
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tasks, they often require more computational resources and larger datasets. 
In summary, the development of object detection models has shifted from slow 

and handcrafted methods to highly efficient, end-to-end deep learning architec-
tures. YOLOv12 represents the current frontier in this evolution, combining real-
time performance with high detection accuracy across varied environments. Its 
structure makes it ideal for applications like traffic detection, where both speed 
and robustness are essential. 

Table 1 provides an overview of widely used object detection models, catego-
rized by architecture type and year of introduction, along with their backbones 
and distinguishing characteristics. 
  
Table 1. Representative object detection models by year. 

Model Year Backbone Remarks 

Two-Stage Detectors 

R-CNN 2014 AlexNet/VGG 
First CNN-based detector; slow due to 
selective search and per-region CNN 

Fast R-CNN 2015 VGG-16 
Improves speed with ROI pooling;  
single-stage training 

Faster R-CNN 2015 ResNet-50/101 + FPN 
Introduced Region Proposal Network 
(RPN) for end-to-end training 

Mask R-CNN 2017 ResNet-50/101 + FPN 
Adds mask segmentation branch on 
top of Faster R-CNN 

Cascade R-CNN 2018 ResNet-101 + FPN 
Multi-stage detection head for better 
localization 

Libra R-CNN 2019 ResNet variants 
Balances positive/negative samples 
and feature fusion 

One-Stage Detectors 

YOLOv1 2015 Custom 
Real-time detector, unified  
architecture 

SSD 2016 VGG-16/MobileNet 
Multi-scale feature maps for detection 
at different resolutions 

YOLOv2 2016 Darknet-19 
Improved accuracy and speed over 
YOLOv1 

RetinaNet 2017 ResNet + FPN 
Introduced focal loss to handle class 
imbalance 

YOLOv3 2018 Darknet-53 
Multi-scale predictions; better  
accuracy 

YOLOv4 2020 CSPDarknet53 
Improved backbone and data  
augmentation 

YOLOv5 2020 CSPDarknet Modular, open-source, widely used 

EfficientDet 2020 EfficientNet + BiFPN 
Compound scaling for accuracy and 
efficiency 
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Continued 

YOLOv6 2022 EfficientRep 
Designed for industrial and edge  
deployment 

YOLOv7 2022 E-ELAN Compound scaling and fast inference 

YOLOv8 2023 Custom (anchor-free) 
Anchor-free; improved  
post-processing 

YOLOv9 2024 R-ELAN + Area Attention 
Attention-centric, improved receptive 
field 

YOLOv10 2024 R-ELAN Scalable and efficient backbone 

YOLOv11 2024 R-ELAN + SwiftNet 
Lightweight and optimized for  
real-time detection 

YOLOv12 2025 
R-ELAN + Area + FlashAt-

tention 
Advanced attention design; best  
speed-accuracy trade-off 

DETR 2020 Transformer-based 
End-to-end detection; no NMS; 
slower convergence 

Deformable 
DETR 

2021 Transformer-based 
Faster training; better for small  
objects 

2.2. Traffic Object Detection Applications  

Object detection has become a core technique in traffic-related computer vision 
applications. Detecting vehicles, pedestrians, and road signs is fundamental to sys-
tems such as automated surveillance, intelligent transportation systems, and au-
tonomous vehicles. 

Early traffic detection systems relied on background subtraction, motion track-
ing, or shape-based classifiers [25]. While useful in simple environments, these 
methods were sensitive to shadows, occlusion, and camera motion. The adoption 
of deep learning-based detectors provided a more robust solution. 

Faster R-CNN has been widely used in traffic surveillance projects due to its 
high detection accuracy, especially for vehicles in urban scenes. For example, Gao 
et al. [26] propose an improved Faster R-CNN-based traffic sign detection method 
that integrates feature pyramid fusion, deformable convolutions, and ROI Align 
to address challenges such as poor lighting, weather effects, and distant or similar 
signs. Experiments on the TT100k dataset and real-world vehicle tests show that 
the proposed method significantly outperforms standard Faster R-CNN and other 
state-of-the-art approaches, particularly in detecting small or low-visibility signs. 
Chaudhuri [27] addresses the challenge of vehicle segmentation for smart traffic 
management under complex conditions such as occlusion, cluttered backgrounds, 
and variable traffic density. A four-step framework incorporating Faster R-CNN, 
adaptive background modeling, and extended topological active nets is proposed, 
achieving superior segmentation accuracy compared to existing methods. Elov et 
al. [28] propose a deep learning framework based on Faster R-CNN for precise 
vehicle segmentation in smart traffic management, addressing challenges such as 
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occlusion, lighting variations, and background clutter. By integrating adaptive 
background modeling and enhanced topological active net deformable models, 
the method achieves a segmentation accuracy of 98.3%, outperforming existing 
approaches. 

However, the model’s two-stage structure limits its suitability for real-time sys-
tems like live video feeds or edge devices. To address this, single-stage detectors 
like YOLO and SSD have been applied in various traffic settings, ranging from 
highway vehicle counting to pedestrian detection at crosswalks. These models of-
fer a better trade-off between detection accuracy and speed. For example, Zhou et 
al. [29] introduce KCS-YOLO, an enhanced object detection algorithm based on 
YOLOv5n, designed to improve traffic light recognition for autonomous vehicles 
under low visibility conditions such as fog, rain, and night-time blur. By incorpo-
rating K-means++ clustering, CBAM attention, and a small-target detection layer—
alongside dehazing preprocessing—the proposed model achieves a mAP of 98.87%, 
significantly outperforming baseline methods. Qiu et al. [30] present DP-YOLO, 
an improved traffic sign detection algorithm based on YOLOv8s, designed to en-
hance small object detection while reducing model complexity. By introducing 
specialized modules for feature extraction, integrating Transformer-based com-
ponents, and adopting a new loss function, DP-YOLO significantly reduces pa-
rameters (by 77%) and achieves higher detection accuracy across multiple bench-
mark datasets, making it suitable for edge deployment. Wang et al. [31] present 
an optimized YOLOv5-based framework for traffic sign recognition, incorporat-
ing anchor box refinement with k-means++, hyperparameter tuning, and com-
parative evaluation of YOLOv5 variants to balance accuracy and speed. Experi-
mental results on the CCTSDB dataset demonstrate superior performance over 
Faster R-CNN and SSD, with mAP reaching 98.1% and real-time inference capa-
bility at up to 45 FPS, confirming its effectiveness for intelligent transportation 
systems under challenging conditions. 

For global-scale traffic monitoring, generalization becomes a key issue. Models 
must handle varying camera angles, lighting conditions, and object densities. 
Many research efforts now focus on improving robustness through larger and 
more diverse training datasets, better model regularization, and self-supervised 
pretraining strategies. 

Despite these advancements, achieving both high accuracy and real-time speed 
remains a challenge in traffic detection. YOLOv12 aims to bridge this gap by of-
fering improved performance while maintaining computational efficiency, mak-
ing it an attractive option for traffic monitoring systems that operate under real-
world constraints. 

3. Methodology  

This section describes the dataset used in this study, the YOLOv12 model setup, 
training procedures, and the evaluation methods applied to assess model perfor-
mance. The goal is to ensure that the training process closely reflects real-world 
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conditions and that the model is fairly evaluated on diverse traffic scenarios. 

3.1. Dataset 

The dataset used in this study is sourced from a public repository on Kaggle, titled 
Traffic Detection Project1. It consists of a rich collection of traffic camera images 
annotated for object detection tasks. The dataset features images from multiple 
countries, with a notable concentration in Turkish cities such as Bursa, İstanbul, 
and Konya. This geographic variety supports the evaluation of detection models 
across different regional environments, infrastructures, and road designs. 

Each image in the dataset is labeled using high-quality bounding boxes that 
mark the locations of various traffic-related objects. These include vehicles of dif-
ferent types and pedestrians. The annotations follow the YOLO format and are 
structured to support real-time detection tasks. Table 2 shows the dataset split. 

One of the strengths of this dataset is the diversity of environmental conditions 
captured. It includes images taken in different weather and lighting conditions as 
well as in complex traffic situations such as busy intersections and multi-lane 
highways. This variety makes the dataset a strong benchmark for evaluating the 
robustness and adaptability of object detection models in real-world traffic mon-
itoring scenarios. 
  
Table 2. Dataset split for training, validation, and testing. 

Dataset Split Number of Images Percentage 

Training 7566 87% 

Validation 805 9% 

Testing 322 4% 

Total 8693 100% 

3.2. Model Setup  

YOLOv12 is adopted as the primary object detection architecture for this study. 
Unlike its predecessors, YOLOv12 introduces an attention-centric design to im-
prove both detection accuracy and computational efficiency. The model incor-
porates an Area Attention mechanism to expand the receptive field with mini-
mal additional cost, which helps capture more contextual information without 
sacrificing real-time performance. To enhance feature extraction and aggregation, 
YOLOv12 integrates Residual Efficient Layer Aggregation Networks (R-ELAN), 
which improve gradient flow and optimization stability, particularly in deeper 
networks. 

Further architectural refinements include the removal of positional encodings, 
the use of a reduced MLP expansion ratio, and the adoption of FlashAttention to 
improve memory and speed efficiency during attention computation. These mod-

 
1https://www.kaggle.com/datasets/yusufberksardoan/traffic-detection-project.  
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ifications allow YOLOv12 to maintain high detection performance while remain-
ing suitable for deployment in real-time systems. 

The model was implemented using the PyTorch-based Ultralytics framework, 
which provides pre-trained YOLOv12 weights and flexible training pipelines. 
These pre-trained weights were fine-tuned on the custom traffic dataset to im-
prove performance under the specific conditions represented in these images. The 
model outputs include bounding box coordinates, class predictions, and confi-
dence scores for each detected object. 

3.3. Training Procedure  

To fine-tune the YOLOv12 model on the dataset, this study used the stochastic 
gradient descent (SGD) optimizer with a learning rate of 0.01, momentum of 0.9, 
and a small weight decay of 0.0005 to prevent overfitting. The model was trained 
for 50 epochs with a batch size of 16 on a single NVIDIA Tesla P100 GPU equipped 
with 16 GB of VRAM. All input images were resized to 640 × 640 pixels during 
training. 

Data augmentation played a critical role in training. This study applied stand-
ard YOLO augmentations such as mosaic augmentation, random horizontal flip-
ping, and HSV color shifting. These transformations helped increase the model’s 
ability to generalize to various lighting and weather conditions. Mosaic augmen-
tation, in particular, was helpful for improving small object detection, which is 
crucial for recognizing traffic signs and pedestrians from distant views. 

During training, model checkpoints were saved after every epoch, and the best-
performing checkpoint on the validation set was selected for final evaluation. Loss 
values were monitored for classification, objectness, and bounding box regression 
to ensure the model was learning effectively across all aspects of detection. 

3.4. Evaluation 

YOLOv12 is compared with previous versions of the YOLO family to establish its 
relative effectiveness. The model version of each model is shown in Table 3. Each 
of these models is designed for real-time object detection with low computational 
overhead, making them suitable for deployment in edge or latency-sensitive envi-
ronments. 
  
Table 3. YOLO model versions used in the evaluation. 

Model Name Version File 

YOLOv12-nano yolo12n.pt 

YOLOv11-nano yolo11n.pt 

YOLOv10-nano yolov10n.pt 

YOLOv9-tiny yolov9t.pt 

YOLOv8-nano yolov8n.pt 
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All models are trained on the same traffic detection dataset under consistent 
hyperparameter settings and evaluated on the same test split to ensure fair com-
parison. The evaluation focuses on small and medium-sized objects such as pe-
destrians, cars, bicycles and motorbikes, which are common in real-world traffic 
scenes and pose significant challenges for detection accuracy. 

To assess the performance of the object detection model, standard evaluation 
metrics widely adopted in the field are used. 

Precision measures the proportion of correctly predicted positive detections 
among all positive predictions. It indicates how accurate the model’s predictions 
are. 

True PositivesPrecision
True Positives False Positives

=
+

 

Recall quantifies the proportion of correctly detected objects out of all ground 
truth objects. It reflects the model’s ability to find all relevant instances. 

True PositivesRecall
True Positives False Negatives

=
+

 

Mean Average Precision (mAP) is the primary metric used to evaluate object 
detectors. It is the average of the average precision (AP) calculated over all object 
classes and specified Intersection-over-Union (IoU) thresholds. 

This study reports two commonly used variants: mAP@0.5, which calculates 
AP at a fixed IoU threshold of 0.5, and mAP@0.5:0.95, which averages AP across 
multiple IoU thresholds ranging from 0.5 to 0.95 in steps of 0.05. The IoU 
measures the overlap between predicted bounding boxes and ground truth boxes: 

Area of OverlapIoU
Area of Union

=  

Higher mAP values indicate better detection accuracy, considering both locali-
zation and classification. 

These metrics provide a comprehensive evaluation of the model’s effectiveness 
in both correctly identifying and precisely localizing objects within images. 

4. Results 

Table 4. Performance comparison of YOLOv8 - YOLOv12 on the traffic detection dataset. 

Metric YOLOv8 YOLOv9 YOLOv10 YOLOv11 YOLOv12 

Precision 0.882 0.901 0.840 0.910 0.926 

Recall 0.842 0.819 0.785 0.835 0.892 

mAP@0.5 0.910 0.898 0.866 0.904 0.938 

mAP@0.5:0.95 0.654 0.644 0.633 0.646 0.735 

 
The evaluation results, summarized in Table 4, indicate that YOLOv12 outper-
forms earlier YOLO versions across all key object detection metrics on the traffic 
detection dataset. YOLOv12 achieves the highest precision at 92.6%, demonstrat-
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ing its effectiveness in minimizing false positives. It also attains the highest recall 
of 89.2%, indicating strong capability in detecting most ground truth objects, in-
cluding small and partially occluded instances. 

In terms of overall detection accuracy, YOLOv12 records a mAP@0.5 score of 
93.8%, which reflects excellent object classification and localization at a standard 
overlap threshold. Notably, it also achieves a mAP@0.5:0.95 of 73.5%, significantly 
outperforming all previous models. This metric is particularly informative, as it 
averages detection performance across a range of IoU thresholds and better re-
flects a model’s precision in challenging localization tasks. In contrast, the 
mAP@0.5:0.95 scores of earlier models remain below 66%, with YOLOv8, YOLOv9, 
YOLOv10, and YOLOv11 scoring 65.4%, 64.4%, 63.3%, and 64.6% respectively. 

Although YOLOv10 exhibits relatively lower precision and recall, YOLOv9 and 
YOLOv11 offer incremental improvements over YOLOv8. However, none of 
these models match the performance gains introduced by YOLOv12, especially in 
recall and multi-IoU detection performance. The integration of attention mecha-
nisms and enhanced feature aggregation in YOLOv12 contributes to these im-
provements, particularly in complex urban scenes with small-scale and overlap-
ping objects. 

To further illustrate the detection performance of the models beyond numerical 
metrics, visual predictions are presented using sample images from the test set 
(Figure 1). These examples highlight the ability of YOLOv12 to accurately detect 
and localize traffic-related objects such as vehicles and pedestrians. These quali-
tative results complement the quantitative evaluation and offer visual confirma-
tion of the model’s robustness and precision in real-world traffic scenes.  

Overall, YOLOv12 demonstrates the most balanced and robust detection capa-
bility, making it a suitable candidate for real-time traffic monitoring systems. Its  
 

 
(a) Sample 1 
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(b) Sample 2 

Figure 1. Example predictions by YOLOv12 on test images. 

   
consistent performance across both standard and stringent evaluation metrics 
suggests it is better equipped to handle real-world challenges compared to earlier 
versions. 

5. Conclusions 

In this study, the YOLOv12 object detection model is applied to a diverse traffic 
dataset comprising images from multiple countries and varying environmental 
conditions. The model demonstrated strong performance, achieving high preci-
sion and recall, as well as competitive mean Average Precision (mAP) scores. 
These results confirm YOLOv12’s capability to effectively detect various traffic 
objects, including vehicles, pedestrians, and traffic signs, under real-world scenar-
ios. The balance between detection accuracy and inference speed makes YOLOv12 
a practical solution for real-time traffic monitoring systems. 

Despite these promising outcomes, certain challenges remain, particularly in 
detecting small or heavily occluded objects. Future research will explore advanced 
data augmentation techniques and domain adaptation methods to improve model 
robustness across diverse traffic environments. Additionally, integrating multi-
modal data such as video sequences or sensor inputs may further enhance detec-
tion accuracy. Finally, investigating hybrid models could offer improvements in 
capturing complex spatial relationships within traffic scenes. 

Overall, this work provides a strong foundation for deploying efficient and ac-
curate traffic detection systems, and the directions outlined offer clear pathways 
for advancing this research area. 
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