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Abstract 
This paper presents a general equation for shear stress in turbulent flow over 
smooth surfaces at Reynolds numbers ranging from 2 × 103 to 6.5 × 105 (based 
on the boundary layer thickness and the velocity at its edge). The equation is 
based on a mathematical analysis using the experimental turbulent flow data 
in a smooth circular pipe as a reference. The general shear stress equation pre-
sented here was tested by solving the momentum equation for several surfaces, 
including a circular pipe, rectangular ducts, flat plates with and without suc-
tion, a very long cylinder perpendicular to the stream, and supersonic turbu-
lent flow over a flat plate and along a circular cylinder. It showed good com-
patibility with the experimental data. 
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1. Introduction 

Turbulence occurs when the stream’s kinetic energy is too high, and the viscosity 
cannot dissipate all of it into heat. 

In the presence of a wall, all stress effects occur within a boundary layer, where 
the shear stress is the most dominant and the rest are negligible. The shear stress 
itself is divided into laminar and turbulent flows. Additionally, as Reynold’s number 
increases, the effect of the laminar shear stress decreases until it becomes negligible. 

The research in turbulent flow computation began when J. Boussinesq [1] for-
mulated the eddy viscosity theorem. In analogy with the coefficient of laminar 
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flow, he suggested a turbulent viscosity that depends on the velocity derivative 
components of disturbance in the x and y directions. Prandtl [2] proposed the 
mixing length theory, in which the shearing stress depends on the square of the 
first derivative of the main velocity, multiplied by the square of the mixing length 
and the density. This model yields good results, but each case’s mixing length is 
specific and needs to be obtained experimentally. 

Based on the empirical data of flow in a pipe, Schlichting [3] suggested calcu-
lating the flow field by the integral of the momentum equation. He assumed that 
inside the boundary layer, the velocity profile and the shearing stress are the same 
as those of a pipe, where the thickness of the boundary layer replaces the radius of 
the pipe. He inserted these equations into the momentum equation, and its inte-
gration yielded the dependence of the boundary layer thickness on the distance 
from the leading edge x, and the shear stress on the surface.  

The most updated model is the k-w (Wilcox [4]). It predicts turbulence using 
two differential equations—the first (k) for the turbulence kinetic energy and the 
second (w) for the specific dissipation rate of the turbulent kinetic energy into 
internal thermal energy. 

In this paper, we derive the shear stress equation for validation, examine turbu-
lent flow over a smooth surface, and find exact solutions for the momentum equa-
tion. Subsequently, we compare these solutions to experimental data of turbulent 
flow. 

2. Derivation of the Shear Stress Equation 
2.1. Modeling the Framework 

The fundamental of obtaining the shear stress of turbulent flow over a smooth 
surface is to assume a universal function relating it to the first derivative of the 
main velocity and apply it to known experimental shear stress data. A mathemat-
ical analysis yields the unique possibility for a general equation. This equation is 
used to solve the momentum equation in many cases. The equation can be as-
sumed to be general if the various solutions are compatible with the experimental 
data. 

The experimental case chosen is the flow in a circular pipe, which was pro-
foundly investigated. The shearing stress has been used to calculate the shear stress 
in many other smooth surfaces. 

2.2. Flow through a Smooth Circular Pipe—Experimental Data 

H. Schlichting [3] summarized the turbulent flow in a circular pipe, a topic that 
many researchers have explored. The empirical results for this case are: 

1
nu y

U r
 =  
 

                         (2.1) 

( ) ( )
2

1 0.5
mU n

U n n
=

+ ⋅ +
                     (2.2) 
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2

8w mUτ ρ= ⋅ ⋅
                         (2.3) 

 1 2 log 0.2mU r
ν

 = ⋅ ⋅ − 
 




                  (2.4) 

where r is the radius of the pipe, mU  is the average velocity (flow rate per pipe 
area), U is the velocity in the axis of the pipe, n is the exponent depending on  

mU r
ν

, wτ  is the shear stress on the surface, and ϵ is the resistance coefficient. 

Table 1 presents the relation of n to    mU r
ν

 and the conversion of the depend-

ence of the shear stress to Ur
ν

. 

Eqs. (2.1-2.4) yield the experimental shearing stress. A good approximation of 
it is: 

1
5

2 0.01425w

U rU
τ ν

ρ
 = ⋅ ⋅⋅  

                  (2.5) 

A comparison of the experimental shearing stress to that obtained from Eq. 
(2.5) is provided in Table 1. 

 

Table 1. Shear stress in eq. (1.5) vs. experimental data for various mU r
ν

 values. 

mU r
ν

 2∙103 1.15∙104 5.5∙104 5.5∙105 1∙106 

n 6 6.6 7 8.8 10 
Ur
ν

 2.53∙103 1.43∙104 6.73∙104 6.47∙105 1.16∙106 

2
w

U
τ
ρ

 data 0.00312 0.00204 0.00147 0.00103 0.000975 

2
w

U
τ
ρ

 eq.(1.5) 0.00297 0.00210 0.00154 0.00098 0.000874 

 
Also, the shearing stress along the vertical direction (perpendicular to the pipe 

axis) is: 

1w
y
r

τ τ  = − 
 

                        (2.6) 

2.3. Mathematical Analysis 

Under the assumption that there is a general equation for the shearing stress of 
turbulent flow over smooth surfaces, we can define: 

2

2
u Q
y y

µ τ∂ ∂
= ⋅

∂ ∂
                       (2.7) 

where x and y are the coordinates in the directions along and perpendicular to the 
surface, µ is the viscosity, and Q is a valid general function that depends only on 
x and y. 
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Since Q is a general function, eq. (2.7) is also valid in the case of turbulent flow 
in a pipe. 

Thus, in this case, using eq. (2.6) yields: 
2

21w
u y Q
y r y

µ τ∂ ∂ = ⋅ − ⋅ ∂ ∂ 
                   (2.8) 

Integrating eq. (2.8) from y = 0 to y = r yields: 
This equation gives:  

( )
4 5

6 51,
0.01425

Q r x r
U
µ

ρ
 

= ⋅ ⋅ 
              (2.10) 

The only possibility that Q would be a general function is if: 

( )
4 5

6 51,
0.01425

Q y x y
U
µ

ρ
 

=  ⋅
⋅


              (2.11) 

From this, we obtain: 
4 52

2
1

0.0594
Q

Uyy
µ
ρ

 ∂
=  ∂  

                 (2.12) 

Eq. (2.12), together with eq. (2.7) yields an equation for the shearing stress of 
incompressible flow (see eq. (3.1)). However, to make it valid also in the case of 
compressible flow, it will be: 

4 5

0
d

0.0594
y

U y u
y

ρ
τ µ

µ


⋅

 ∂ =
  ∂
 

∫                (2.13) 

It should be noted that since eq. (2.13) is an integral of the momentum equa-
tion, it cannot detect the thin laminar sublayer near the wall. 

2.4. Principle of Separated Flow Fields 

The principle of separated flow fields enables the solution of 3D cases. It states 
that in the case of a flow field over a segmented surface, it is divided into sub-flow 
fields, so each segment has its own flow field, which depends on the distance from 
the segment and the undisturbed stream, i.e., ( ),u u y U= . Every two close fields 
are separated by a thin separation zone so that the velocity on both sides is equal 
and the velocity gradients become equal inside it. This principle has been applied 
to the flow of non-circular pipes and is supported by empirical data. 

3. Exact Solutions of the Momentum Equation  
3.1. Incompressible Turbulent Flow in Smooth Circular Pipes 

In the case of turbulence in a pipe, the shear stress in the y direction is given by 
comparison of this equation with eq. (3.1) yields: 

4 5Uy u
y

τ λ ρ ν
ν

∂ = ⋅ ⋅  ∂ 
 ( )0.0594λ =               (3.1) 

Comparison of this equation with eq. (2.6) yields: 
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4 5

1w
Uy u y

y r
λρ ν τ

ν
∂   = −   ∂   

                 (3.2) 

The solution of eq. (3.2) is: 
1 51 6

5
u y y
U r r

   = −   
   

                   (3.3) 

A comparison of the velocity in eq. (3.3) to that in eq. (2.1) is presented in Table 
2 and exhibits small differences. 

 

Table 2. Calculated vs. experimental velocities for various y
r

 values. 

y
r

 0 0.2 0.4 0.6 0.8 1.0 

u
U

 eq. (3.3) 0 0.841 0.932 0.975 0.995 1.000 

1
7u y

U r
 −  
 

 0 0.046 0.055 0.045 0.026 0.000 

1
9u y

U r
 −  
 

 0 0.005 0.029 0.030 0.019 0.000 

 
For the shear stress on the surface of the pipe, we obtain: 

1 5

2 0.01425w

U rU
τ ν
ρ

 =  ⋅ 
                 (3.4) 

This equation is identical to eq. (2.5). 

3.2. Incompressible Turbulent Flow in Rectangular Ducts 

Turbulent flow in noncircular ducts has been investigated in numerous studies 
(Schlichting, [3]). The experiments yield, among others, two important phenomena: 

- The curves of constant velocity are, principally, parallel to the nearest wall. 
This led to the above-mentioned assumption of the separated flow fields.  

- The shear stress on the surface around the cross section is uniform. Thus, the 
constant velocity curve is also a constant shear stress. 

A scheme of a rectangular duct with wall lengths of 2 H and 2 h so that H h≥  
is described in Figure 1. 

 

 
Figure 1. Rectangular duct cross-section. 
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According to the principle of separated flow fields, two pairs of flow fields—#1 
and #2-are separated by 4 + 1 separation zones. The 4 zones extend on the cross 
angles between the walls. Thus, we obtain the following: 

The distance from the walls to the constant velocity curve is the same, i.e.: 

1 2y y y= =                         (3.5) 

The shear stress and the pressure gradient are related by: 

( ) ( )( )Δ2
Δ

PH h y h y H y
x

τ ⋅ + − = − − −               (3.6) 

Eq. (3.6) can be divided into 2 equations: 

( )w
P Hh
x H h

τ ∆
= −

∆ +
                     (3.7) 

And     

( )( ) ( )
( )

4
5 d

2 dw
H y h y H h Uy u

Hh H h y y
τ τ λ ρν

ν
− − +  = =  + −  

        (3.8) 

A numerical solution of eq.(3.8) yields, for each ratio of H/h:  
1 51 6

5
u y y
U h h

   = −   
   

                    (3.9) 

And 
1 5

2 0.01425w

U hU
τ ν
ρ

 =  ⋅ 
                 (3.10) 

These equations are compatible with the experimental law of the hydraulic pipe.  

4. Incompressible Turbulent Flow in the Boundary Layer 
4.1. Governing Equations 

The momentum equation in this case is: 
4 5

u u dU Uy uu v U
x y dx y y

λ ν
γ

  ∂ ∂ ∂ ∂
+ = +   ∂ ∂ ∂ ∂   

             (4.1) 

while the continuity equation yields: 

u
y
ϕ∂

=
∂

 v
x
ϕ∂

= −
∂

                      (4.2) 

Assuming that the velocity profile is semi-similar in shape, we can write: 

( ),U F Xϕ δ η=                        (4.3) 

where: 
1 5yη

δ
 =  
 

 and X x=                      (4.4) 

δ: Typical length in the y direction  
Setting: 
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uf
U

=                           (4.5) 

So that: 
4

0
5 dF f

η
η η= ⋅ ⋅ ⋅∫                       (4.6) 

Inserting eqs. (4.2 – 4.6) into eq. (4.1) and separating the variables yields 2 equa-
tions. The first one, which defines the length δ, is: 

1 5 d
d

U U U
x

δ δλ
ν ν ν

⋅ ⋅   =    
   

                   (4.7) 

After integration: 
5 6

0

10.111 d
xU U Xδ

ν ν
 = ⋅ 
 ∫                    (4.8) 

The second one, which describes the relative velocity f, is: 

( )
( )

( )

( )
( )

2
4 2

2

4

5 25 1

5 5

Uf f UF f
UU

U f f Ff
X XU

δ
η

ηη δ

δ
η

ηδ

∂ ∂
+ + ⋅ −

∂∂ ′

 ∂ ∂ ∂
= ⋅ − ∂ ∂ ∂′

′

 

               (4.9) 

Here, the prime ' denotes differentiation for X. 
The boundary condition for eq. (4.9) are: 

( )0, 0f X =  and ( ), 1f X∞ =                 (4.10) 

After these transformations, the shear stress is: 
1 5

2

5
fU

U
λ ντ ρ

δ η
∂ =   ∂ 

                    (4.11) 

4.2. Flow over a Flat Plate Parallel to the Stream 

In this case, U is constant. 
Inserting it into eq. (4.8) yields: 

1
6

0.111
x Ux
δ ν =  

 
                      (4.12) 

And since 0U ′ = , we obtain the turbulent flow over the flat plate equation: 
2

2
d d5 0

dd
f f F

ηη
+ =                       (4.13) 

Eq. (3.23) will be solved by re-integration, i.e., we assume an initial 0f  by a 
function that fulfills as many boundary conditions as possible at 0η =  and 
η = ∞ . When inserting it into the equation, we obtain f1 and so on until we acquire 
2 functions, fn, and fn+1, that are close enough. 

Since 8f αη βη= − + , the first function is: 

( ) ( )7 7
0 0

exp df a b k
η

η η η= + ⋅ −∫                 (4.14) 
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b is calculated by the boundary condition at η = ∞ :    

( )
( )

7
0

7 7
0

1 exp d

exp d

a k
b

k

η

η

η η

η η η

− ⋅ −
=

−

∫
∫

                  (4.15) 

The next step is 
2

01
02

dd 5
dd
ff F
ηη

= −                       (4.16) 

Integration of eq. (4.16) yields 

0
1

0 0
4 2 4

0 0
d 25 d d
d

f a f f f
η η

η η η η
η

 = − ⋅ ⋅ − ⋅  
⋅ ∫ ∫           (4.17) 

And an additional integration gives 1f .   

The boundary condition of 1f  and 1d
d

f
η

 at η = ∞  yields 

0.984, 0 and 0.56a b k= = =                 (4.18) 

The comparison of 1 f  to 0f  is presented in Table 3. 
 

Table 3. 0f  compared to 1f  vs. η . 

η  0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 

0f  0 0.197 0.394 0.589 0.776 0.924 0.991 1 

1f  0 0.197 0.395 0.591 0.777 0.925 0.991 1 

 
As can be seen, the deviation of 1f  from 0f  is less than 0.2%. Thus, the rel-

ative velocity is: 

( )7
0

0.984 exp 0.56 df
η

η η= −∫                (4.19) 

And 

( )d 0
0.984

d
f
η

=                     (4.20) 

The calculated f was compared to the empirical one, which follows the power  

rule 
1 7

u

u y
U δ

 
=  
 

 with 
1 5

0.37u

x U x
δ ν =  ⋅ 

 at a range up to  

76.4 10U x
ν
⋅

= × . 

This comparison is shown in Figure 2. 

( )

1 6 1 6

2 1/6
0.984 0.0182

51.2
w

Ux UxU
τ λ ν ν
ρ λ

   = =   
   ⋅

        (4.21) 

Table 4 shows the difference between eq. (4.21) and the experimental data 
(Schlichting [3]). 
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Figure 2. Calculated relative velocity f compared to the empirical one. The shearing stress 
on the surface is calculated by inserting eq. (4.12) and eq. (3.30) into eq. (3.11). 

 
Table 4. Shear stress derived from eq. (4.21) versus experimental data for various 𝑈𝑈∞𝑥𝑥𝑥𝑥 
values. 

U x
ν
⋅  5∙105 1∙106 5∙106 1∙107 5∙107 

2
w

U
τ
ρ

 data 0.00215 0.00187 0.00135 0.00118 0.00085 

2
w

U
τ
ρ

 eq. (3.32) 0.00204 0.00182 0.00139 0.00124 0.00095 

4.3. Flow over Two Vertical Flat Plates (Both Parallel to the Stream) 

We assume two vertical flat plates #1 and #2, as described in Figure 3. 
 

 
Figure 3. The representation of flow over two vertical flat plates. 

 
The flow fields inside the boundary layers are 

( )7
0

0.984 exp 0.56 di
if

η
η η= −∫                 (4.22) 

where 

1,2i =                           (4.23) 
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The separation zone extends where the velocity of the two fields is equal, thus: 

1 2

1 2

y y
δ δ

=                          (4.24) 

The angle between flat plate 1 and the separation θ  zone is: 

( )
5 6

1 1 1

2 2 2

tang y x
y x

δθ
δ

 
= = =  

 
                 (4.25) 

As can be seen, 90θ =  is the leading edge of flat plate 2, and as 2x  increases, 
θ  decreases until it stabilizes on the cross angle between the two flat plates. 

4.4. Flow over Wedges 

The potential flow over a wedge is 

1U U X
θ
θπ−= ⋅                        (4.26) 

where θ  is half of the wedge angle (see Figure 4) 
 

 
Figure 4. Presentation of flow over a wedge. 

 
Eqs. (4.8) and (4.26) yield 

( )
( )

1.2
U U

UU

δ θ

δ

′
⋅ = ⋅

π′
                     (4.27) 

The momentum equation is 

( )
2

4 4 2
2 0

d d25 d 25 1.2 1 0
dd

f f f f
η θη η η

ηη
 + ⋅ ⋅ + ⋅ ⋅ ⋅ − = π ∫         (4.28) 

Eq. (4.28) will be solved using the same method used in the flat plate case. How-
ever,  

since 
( )2

4
2

d 0
25 1.2

d
f θ η
η

 = − ⋅ ⋅ π 
. f  is assumed to be 

( )5 7 7
0

5 1.2 exp df a b k
η ϑ η η η η  = − ⋅ ⋅ + ⋅ − ⋅  π  
∫           (4.29) 
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where 

( )
( )

5 7
0

7 7
0

1 5 1.2 exp d

exp d

a k
b

k

ϑ η η η

η η η

∞

∞

  − − ⋅ ⋅ − ⋅  π  =
⋅ − ⋅

∫

∫
            (4.30) 

Then, calculating 1d
d

f
η

 by 

( )4 4 2 4 21
0 0 0

d 25 d d 1.2 1 d
d

f a f f f f
η η ηθη η η η η η

η
 = − ⋅ ⋅ − + ⋅ ⋅ − π ∫ ∫ ∫      (4.31) 

Additional integration of eq.(4.31) gives 1f . 

The boundary conditions at η = ∞  that are 1d 0
d

f
η
=  and 1 1f = , give k, a,  

and b. 
Table 5 presents k, a, and b for each θ . 
 

Table 5. k, a, and b vs. θ . 

θ  deg. 15 30 45 60 75 90 

( )
U U

UU

δ

δ

′
′

 0.1 0.2 0.3 0.4 0.5 0.6 

k 0.64 0.81 0.98 1.15 1.33 1.50 
a 1.044 1.092 1.131 1.165 1.194 1.220 
b 0.441 0.803 1.059 1.247 1.394 1.516 

 
Figure 5 and Figure 6 present f  and 1f  for 30θ =  and 60 
 

 
Figure 5. 0f  vs. 1f  for 30θ = . 

 

 
Figure 6. 0f  vs. 1f  for 60θ = . 

https://doi.org/10.4236/oalib.1113015


A. R. Oron 
 

 

DOI: 10.4236/oalib.1113015 12 Open Access Library Journal 
 

5. Approximate Solutions in 2D Incompressible Turbulent  
Flow 

5.1. Method of the Solution 

The integral method can be used to obtain an approximate solution. This method 
yields a quick approximation solution without a step-by-step calculation along the 
vertical axis. Instead, we assume a function for the relative velocity f that fulfills as 
many boundary conditions as possible on the surface and at the end of the bound-
ary layer, and integrate the momentum equation along the vertical axis. 

The boundary conditions of the relative velocity f are: 

( )
( )

2
4

20; 0; 25
Uf Uf

UU

δ
η η

η δ

∂
= = = ⋅

′
′

−
∂

              (5.1) 

; 1; 0 for 1
n

n
ff nη

η
∂

= ∞ = = ≥
∂

                (5.2) 

To fulfill the boundary conditions, together with the results of flow over a flat 
plate, the following profile for the relative velocity is assumed: 

( )
( )

( )5 7 7
0

5 exp d
U Uf a b k

UU

η
η η η

δ
η

δ

 
 = − ⋅ + − ⋅



′
 ′


∫          (5.3) 

The solution of eq.(4.28) yields the value of k at the range  

( )
( )

0.6 0.27
U U

UU

δ

δ

′
≥ ⋅ ≥ −

′
 

(with a deviation of ∓5%). 

( )
( )

( )
( )

( )
( )

( )
( )

( )
( )

0.56 0.15 if 0

0.56 0.8 if 0.1 0

0.468 1.72 otherwise

U UU U
U UU U

U UU Uk
U UU U

U U
UU

δ δ

δ δ

δ δ

δ δ

δ

δ

 ′ ′ + ⋅ ⋅ ≥ ⋅
 ′ ′

 ′ ′= + ⋅ ⋅ ≥ ⋅ ≥

′ ′


′ + ⋅ ⋅ ′

         (5.4) 

a and b are calculated by the boundary condition at η = ∞ : 

( )
( )

( )

( )

5 7
0

7 7
0

1 5 exp d

exp d

U Ua k
UU

b
k

δ
η η η

δ

η η η

∞

∞

 ′ − − ⋅ − ⋅
 ′
 =

− ⋅

∫

∫
            (5.5) 

And by the integral of the momentum eq. (3.20): 

( )
( )

( )
( )

d25 0
d

U UU KK S a
U xU U

δ δ

δ δ

 ′ + ⋅ + ⋅ − =
 ′ ′
 

             (5.6) 

where 

( )2 4
0

dK f f η η
∞

= −∫                     (5.7) 
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And 

( )2 4
0

1 dS f η η
∞

= −∫                      (5.8) 

To find the initial condition, the leading edge of the surface is assumed to be a 
flat plate tangent to the surface, as described in Figure 7. 

 

 
Figure 7. A description of the leading edge of the surface. 

 
Thus, the leading edge is calculated as a bending flat plate, i.e.: 

( )d 0
0

d
K

X
=                        (5.9) 

The derivative of the function K  at point 1iX +  can be calculated as: 

1

1 1

d d2
d d

i i

i ii i

K KK K
X X X X

+

+ +

−   = −   −   
                (5.10) 

5.2. Turbulent Flow over a Very Long Cylinder  

A scheme of the system is shown in Figure 8. 
 

 
Figure 8. A presentation of flow over a long cylinder. 

 
In the case of flow over a long cylinder, the velocity U  on the edge of the 

boundary layer is given by: 

( )2 sinU U θ∞=                     (5.11) 

where U∞  is the velocity far ahead of the cylinder and X rθ = . 
Eq. (4.8) yields: 

( )1 5 5 61 cos
0.111

2 sinr U r
θδ ν
θ∞

− 
=  

 
⋅              (5.12) 
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And eq. (4.8) together with eq. (5.12) 

( )
( )

( )
( )

cos
1.2

1 cos
U U

UU

δ θ
θδ

′
⋅ =

+′
               (5.13) 

Thus, the relative velocity in the boundary layer is: 

( )
( ) ( )5 7 7

0

cos
6 exp d

1 cos
f a b k

η θ
η η η η

θ
 

= − + − ⋅  + 
∫         (5.14) 

Inserting eq. (5.15) in eqs. (5.7-5.8) enables to calculate eq. (5.6) numerically 
( 1 36i iθ θ+ − = π ). The results are presented in Table 6. 

 
Table 6. a vs. the angle of location θ (degrees). 

θ (deg) 0 30 45 60 75 90 100 
a 1.22 1.21 1.20 1.18 1.14 1.04 0.94 

θ (deg) 105 110 115 120 125 128.2  
a 0.87 0.79 0.67 0.52 0.30 0  

 
Figure 9 shows the relative velocity ( )f η  and its first derivative which pre-

sents the shear stress at an angle of 128.2 deg. 
 

 

Figure 9. The relative velocity ( )f η  and f
η
∂
∂

 at an angle of 128.2˚. 

 
The separation angle, 128.2˚, is similar to the separation angle that was found 

in an experimental study by Willy Z. Sadeh and Daniel Sharon [5] published in 
the NASA contractor report 3622. Their results are shown in Figure 10. 

 

 
Figure 10. NASA report on the separation angle of turbulent flow over a cylinder (Sadeh, 
W.Z., Saharon, [5]). 
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5.3. Shear Stress of Turbulent Flow over a Slim Aerofoil 

The parameter ( )
( )
U U

UU

δ

δ

′
⋅
′

 is the most influential on the shear stress. Figure 11  

shows the shear stress represented by the first derivative of the relative velocity a  

in the cases of flow over a cylinder and flow over wedges vs. ( )
( )
U U

UU

δ

δ

′
⋅
′

 at ranges  

0.6 to −0.2. 
 

 

Figure 11. The parameter a in cases of flow over a cylinder and wedges vs. 
( )
( )
U U

UU

δ

δ

′
⋅
′

. 

 

Assuming that the aerofoil’s leading edge is cylindrical and that ( )
( )
U U

UU

δ

δ

′
′

 is  

decreased monotonically up to −5˚ at the rear edge, we get the shearing stress with 
a maximum deviation of 4%.  

6. Supersonic Turbulent Flow of Air at Zero Pressure  
Gradient 

This case includes all the cases where the flow consists of a constant main flow 
and a secondary flow, which is insignificant for the shearing stress. Thus, the 
shearing stress can be calculated as a flow at zero pressure gradient.  

The flow equations will be solved under the following assumptions:  
a) The total Prandtl number is a unit (Pt = 1). 
b) The wall is adiabatic. 

The viscosity is linear with the temperatures w
w

T
T

µ µ= . 

The momentum equation is 
u uu v
x y y

τρ ρ∂ ∂ ∂
+ =

∂ ∂ ∂
                    (6.1) 

While the continuous equation for 2-dimensional flow yields 

u
y
ϕρ ∂

=
∂

 v
x
ϕρ ∂

= −
∂

                    (6.2) 

https://doi.org/10.4236/oalib.1113015


A. R. Oron 
 

 

DOI: 10.4236/oalib.1113015 16 Open Access Library Journal 
 

Under assumptions a and b, the energy equation is 

21
2wCpT CpT u= +                       (6.3) 

Also, the equation of state yields for a perfect gas at constant pressure 

PT
R

ρ =                            (6.4) 

Setting now 

5
0

dy

w

yρη
ρ δ

= ∫                         (6.5) 

And 

5
0

dy

w

yρη
ρ δ

= ∫                         (6.6) 

So that 
4

0 0
d 5 dw

y
u y U f

η
ϕ ρ ρ δ η η= = ⋅∫ ∫                  (6.7) 

And the energy equation (6.3) 

21 0.2wT M
T∞

= +                       (6.8) 

yields 
2

2 2
21 1 1

5w w

TT Mf f
T T M

∞ 
= − − = −  + 

               (6.9) 

Inserting these expressions into the momentum equation (5.1) yields 
4 1
5 5

4
0

d d5 d
d 5 d

w

w w w

TU f U T ff
T I

ηδ δ λη η
ν η η ν δ η

 
     ∂  − =      ∂    

′

 
∫       (6.10) 

Eq. (6.10) can be divided into 2 equations—one depends on x only and the sec-
ond on η only. 

The first one is 
4
5 1

w w

U Uδ δλ
ν ν δ

 ′
= ⋅ 

 
                   (6.11) 

And after integration 

( )
1 1

5 6 6
61.2 0.111w w

x Ux Ux
ν νδ λ    = =   
   

             (6.12) 

The second equation is 

4
0.8 02

2
2

d
d dd 25 d

d d
1

5

f
f f

M f
M

ηη η η
η η

 
 
  = − ⋅   −  +  

∫          (6.13) 
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The boundary conditions of eq. (6.13) are ( )0 0f =  and ( ) 1f ∞ = . 
Integration of eq. (6.13) yields 

4 4 2
0.8 0 02

2
2

d
d 25 d 25 d

1
5

f

a f f f
M f

M

η ηη η η η η= − +
 
− + 

∫ ∫        (6.14) 

And an additional integration of the equation. (6.14) yields 

4 2 2
0.80 0 0 02

2
2

d 25 d 25 d d

1
5

f f a f f f
M f

M

η η η
η η η η η = − +   

− + 

∫ ∫ ∫ ∫    (6.15) 

Eq. (6.13) can be solved numerically, but a more practical solution is to assume 

( )7 2
0

exp df a k m
η

η η η= − ⋅ − ⋅∫                (6.16) 

The values of a, k, and m are calculated by equations (6.14), (6.15), and (6.16) 
at η = ∞  as follows: Eqs. (6.16) and (6.14) yield 

( )7 2
0

1

exp d
a

a k mη η η
∞=

− ⋅ − ⋅∫
               (6.17) 

( )2 2
0

25 d 0a f fη η
∞

− ⋅ − =∫                  (6.18) 

Then the left side of eq. (6.15) for 1f =  is equal to the right side for η = ∞ . 
The values of a, k, and b for some Mach numbers are presented in Table 7. 
 

Table 7. The values of a, k, and m for some Mach numbers. 

M 0 0.5 1 1.5 2 2.5 3 3.5 
a 0.984 1.003 1.023 1.050 1.096 1.135 1.172 1.207 
k 0.56 0.51 0.46 0.40 0.31 0.245 0.192 1.15 
m 0 0.085 0.1754 0.291 0.48 0.634 0.775 0.9 

 
The compatibility of f according to eq. (6.16) to that of eq. (6.15) is presented 

in Table 8 for M = 3. 
 

Table 8. f per eq.(6.16) vs. f per eq.(6.15) for M = 3. 

η 0.2 0.4 0.6 0.8 1.0 1.2 3 
f per eq, (6.16) 0.232 0.450 0.643 0.800 0.914 0.978 1 
f per eq. (6.15) 0.230 0.452 0.647 0.807 0.9205 0.9805 1.001 

 
The distance from the surface, y, is calculated by 

2
4 2

20
5 1 d

5
y M f

M
η ηη η

δ
 

= − + 
∫                 (6.19) 

The shearing stress on the surface is 
0.2

20.0594
5

w
w w

a U
Ux
ν

τ ρ⋅  =  
 

                (6.20) 
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6.1. 4.5 Mach Turbulent Flow over a Flat Plate 

The previous equations were compared to experimental data of “4.5 Mach turbu-
lent flow over a flat plate” published by NPARC-Alliance Validation Archive [6]. 

The data of this flow are as follows: 
Mach number: 4.512. 
Pressure: 0.0974 psia (671.6 Pa). 
T∞ : 108.8˚R (60.5˚K). 
X (distance of the measurement): 1.79 ft. (0.546 m). 
The thickness of the boundary layer, uδ , and the velocity profile are presented 

in Figure 12 and Figure 13. 
 

 
Figure 12. Thickness of the boundary layer. 

 

 
Figure 13. Velocity profile vs. distance from the surface. 

 
Based on this empirical data, the following values are calculated 

https://doi.org/10.4236/oalib.1113015


A. R. Oron 
 

 

DOI: 10.4236/oalib.1113015 19 Open Access Library Journal 
 

( )21 307wT T M∞= + =  

30.00765 kg mw
w

P
RT

ρ = =  

51.82 10 kg m swµ
−= × ⋅  (from air properties calculator) 

3 22.3 1 s4 0 mw
w

w

µ
ν

ρ
−= = ×  

702 m sU M RTγ ∞= ⋅ =  

1
6

0.111 0.0082 m 8.2 mmwx
Ux
νδ  = = = 
 

 

And Figure 7 and Figure 8 yield, by measuring 9 mmuδ = . 
Under these values, a, k, and m were found as follows: 
a = 1.259. 
k = 0.1. 
m = 1.077. 
Thus, the relative velocity is 

( )7 2
0

1.259 exp 0.1 1.077 df
η

η η η= − ⋅ − ⋅∫             (6.21) 

The calculated relative velocity f was compared to the empirical one that follows 

the power profile 
1 7

u

u y
U δ

 
=  
 

. This comparison is shown in Figure 14. 

 

 
Figure 14. Calculated relative velocity vs. empirical one (for M4.5). 

6.2. 2.4 Mach Turbulent Flow along a Circular Cylinder 

Robert M. O’Donnell [7] investigated experimentally at Mach number 2.41, 
among the rest, the turbulent boundary layer thickness and the velocity profile. 
The experiments were carried out along the exterior surface of a circular cylinder.  
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The range of the Reynolds number was 6 65.8 10 0.3 10U x
ρ
∞

∞

⋅
× ≥ ≥ × . He found 

that the velocity profile is 
1 5

2 0.026
x U x
δ ρ∞ = ⋅ ⋅ 

                  (6.23) 

And by converting from 2δ  to  uδ  
1 5

0.375u

x U x
δ ρ∞ = ⋅ ⋅ 

                  (6.24) 

And 
1 7

u

u y
U δ

 
=  
 

                     (6.25) 

Calculating now the flow parameters for 2.41 Mach number yields the relative 
velocity 

( )7 2
0

1.126 exp 0.26 0.5995 df
η

η η η= − ⋅ − ⋅∫           (6.26) 

The typical length in the y direction  δ   is given by 
1 6 1 6

0.111 0.144w

x Ux Ux
ν νδ ∞   = =   

  
             (6.27) 

The distance from the surface is given by 
1 30

0.384
u u

y y y Uxδ
δ δ δ δ ν∞

      = =      
     

           (6.28) 

Setting eq. (6.28) into eq. (6.25) gives the experimental velocity. 
The calculated relative velocity is compared to the experimental one in Figure 

15. 
 

 
Figure 15. Calculated relative velocity vs. empirical one. (for M2.4) 

6.3. Supersonic Turbulent Flow on a Cylindrical Cone 

A scheme of the system is shown in Figure 16. 
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Figure 16. Presentation of flow on a cylindrical cone. 

 
According to the inviscid supersonic flow theory on a cylindrical cone, the 

velocity along the surface is constant. i.e. d 0
d
U
x
= . Thus, the momentum and the 

energy that are written in eq. (6.1) and (6.3) are valid in the present case. However, 
since the cone is a body of revolution where the radius r is linear with the x coor-
dinate, the continuous equation is: 

( ) ( ) 0x u x v
x x

ρ ρ∂ ∂
+ =

∂ ∂
                 (6.29) 

Setting now 

5
0

d

w

yη ρη
ρ δ

= ∫                      (6.30) 

( )u f
U

η=                       (6.31) 

And insert them, together with eq. (6.9). into the momentum equation, we get 

( )
4 1
5 5

4
0

d d5 d
d 5 d

w

w w w

U x Tf U T ff
x T I

ηδ δ λη η
ν η η ν δ η

  ′    ∂   − =       ∂        
∫      (6.32) 

Eq. (6.32) can be divided into 2 equations, one depends on x only and the sec-
ond on η only. 

The first one is 
4
5d

d w w

Ux U x
x

δ δλ
ν ν δ

   
= ⋅   

   
                 (6.33) 

After integration, 
1
6

0.0574 w

x Ux
νδ  =  
 

                   (6.34) 

The second equation is 

4
0.8 02

2
2

d
d dd 25 d

d d
1

5

f
f f

M f
M

ηη η η
η η

 
 
  = − ⋅   −  +  

∫          (6.35) 
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Which is identified as eq. (6.13) and is solved in the same. 

7. Conclusions 

This article presents and tests a general shear stress equation for turbulent flow 
over smooth surfaces. In some cases, the equation yields valid results, flow in a 
circular pipe, in rectangular ducts, over a flat plate parallel to the stream, the sep-
aration angle of flow over a circular cylinder, supersonic flow of air on a flat plate, 
and along a cylinder and turbulent flow with suction in low and high velocity.  

Although these results are encouraging, many more cases must be tested until 
this model is approved. 
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List of Symbols 
x coordinate direction along the surface 
y coordinate perpendicular to the surface 

λ  coefficient, equal to 0.0594 
ρ  density 
U velocity on the edge of the boundary layer in the x direction 
u velocity inside the boundary layer in the x direction 
f relative velocity - u/U 
v velocity in the y direction 
τ  total shear stress 
µ  viscosity 
ν  kinematic viscosity 
δ  typical length in the y direction 
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Continued  

uδ  boundary layer thickness 

2δ  momentum thickness (
0

1 du u y
U U

∞  ⋅ − 
 ∫ ) 

P absolute pressure 
R gas constant (285.7 kJ/kg 1˚C for air) 

Cp specific heat at constant pressure 
Cv specific heat in constant volume 
γ  Cp/Cv (1.4 for air) 
M Mach number on the edge of the boundary layer 

Subscript 
w refers to the surface 
∞ refers to the flow far away from the surface 
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