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Abstract

This paper presents a general equation for shear stress in turbulent flow over
smooth surfaces at Reynolds numbers ranging from 2 x 10° to 6.5 x 10° (based
on the boundary layer thickness and the velocity at its edge). The equation is
based on a mathematical analysis using the experimental turbulent flow data
in a smooth circular pipe as a reference. The general shear stress equation pre-
sented here was tested by solving the momentum equation for several surfaces,
including a circular pipe, rectangular ducts, flat plates with and without suc-
tion, a very long cylinder perpendicular to the stream, and supersonic turbu-
lent flow over a flat plate and along a circular cylinder. It showed good com-
patibility with the experimental data.
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1. Introduction

Turbulence occurs when the stream’s kinetic energy is too high, and the viscosity
cannot dissipate all of it into heat.

In the presence of a wall, all stress effects occur within a boundary layer, where
the shear stress is the most dominant and the rest are negligible. The shear stress
itself is divided into laminar and turbulent flows. Additionally, as Reynold’s number
increases, the effect of the laminar shear stress decreases until it becomes negligible.

The research in turbulent flow computation began when J. Boussinesq [1] for-

mulated the eddy viscosity theorem. In analogy with the coefficient of laminar
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flow, he suggested a turbulent viscosity that depends on the velocity derivative
components of disturbance in the x and y directions. Prandtl [2] proposed the
mixing length theory, in which the shearing stress depends on the square of the
first derivative of the main velocity, multiplied by the square of the mixing length
and the density. This model yields good results, but each case’s mixing length is
specific and needs to be obtained experimentally.

Based on the empirical data of flow in a pipe, Schlichting [3] suggested calcu-
lating the flow field by the integral of the momentum equation. He assumed that
inside the boundary layer, the velocity profile and the shearing stress are the same
as those of a pipe, where the thickness of the boundary layer replaces the radius of
the pipe. He inserted these equations into the momentum equation, and its inte-
gration yielded the dependence of the boundary layer thickness on the distance
from the leading edge x, and the shear stress on the surface.

The most updated model is the k-w (Wilcox [4]). It predicts turbulence using
two differential equations—the first (k) for the turbulence kinetic energy and the
second (w) for the specific dissipation rate of the turbulent kinetic energy into
internal thermal energy.

In this paper, we derive the shear stress equation for validation, examine turbu-
lent flow over a smooth surface, and find exact solutions for the momentum equa-
tion. Subsequently, we compare these solutions to experimental data of turbulent

flow.

2. Derivation of the Shear Stress Equation

2.1. Modeling the Framework

The fundamental of obtaining the shear stress of turbulent flow over a smooth
surface is to assume a universal function relating it to the first derivative of the
main velocity and apply it to known experimental shear stress data. A mathemat-
ical analysis yields the unique possibility for a general equation. This equation is
used to solve the momentum equation in many cases. The equation can be as-
sumed to be general if the various solutions are compatible with the experimental
data.

The experimental case chosen is the flow in a circular pipe, which was pro-
foundly investigated. The shearing stress has been used to calculate the shear stress

in many other smooth surfaces.

2.2. Flow through a Smooth Circular Pipe—Experimental Data

H. Schlichting [3] summarized the turbulent flow in a circular pipe, a topic that
many researchers have explored. The empirical results for this case are:

1

u_fyy
v (3 -

U, n’
U " (ne1)-(n+05) 22)
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TW=§‘p‘Um (2.3)
1 Umr. 3
N 2.|og[ » ﬁj 0.2 (2.4)

where r is the radius of the pipe, U, is the average velocity (flow rate per pipe

area), U is the velocity in the axis of the pipe, n is the exponent depending on
U

Il

14

, T, is the shear stress on the surface, and € is the resistance coefficient.

w

Table 1 presents the relation of n to Unr and the conversion of the depend-
v

Ur
ence of the shear stressto —.
v

Eqgs. (2.1-2.4) yield the experimental shearing stress. A good approximation of
it is:
z-W
p-U
A comparison of the experimental shearing stress to that obtained from Eq.
(2.5) is provided in Table 1.

—001425( Y js (2.5)
2 u-r ’

Table 1. Shear stress in eq. (1.5) vs. experimental data for various Y values.

v
U‘TI’ 2-10° 1.15-10* 5.5-10* 5.5-10° 1-10°
n 6 6.6 7 8.8 10
Lil’ 2.53-10° 1.43-10* 6.73-10* 6.47-10° 1.16-10°
TWZ data 0.00312 0.00204 0.00147 0.00103 0.000975
p‘ij/ > €q.(1.5) 0.00297 0.00210 0.00154 0.00098 0.000874

Also, the shearing stress along the vertical direction (perpendicular to the pipe

T= TW( —XJ (2.6)
r

2.3. Mathematical Analysis

axis) is:

Under the assumption that there is a general equation for the shearing stress of
turbulent flow over smooth surfaces, we can define:
ou °Q
H——=T—5 (2.7)
a oy
where x and y are the coordinates in the directions along and perpendicular to the
surface, p is the viscosity, and Q is a valid general function that depends only on

xandy.
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Since Q is a general function, eq. (2.7) is also valid in the case of turbulent flow
in a pipe.
Thus, in this case, using eq. (2.6) yields:
ou 0’
y—zrw(l—l)—? (2.8)
oy r) oy
Integrating eq. (2.8) from y = 0 to y = r yields:
This equation gives:

1 p 45
rx)= = e 2.10
Q(rx) 0.01425(p-UJ (2.10)
The only possibility that Q would be a general function is if:
4/5
1 H 6/5
X)=—rro| —— | - 2.11
Q(yx) 0.01425[p~Uj y 210
From this, we obtain:
%0 1 u 45
LA o (2.12)
oy® 0.0594( pUy

Eq. (2.12), together with eq. (2.7) yields an equation for the shearing stress of
incompressible flow (see eq. (3.1)). However, to make it valid also in the case of

compressible flow, it will be:
4/5

ufiedy | au

7=0.0594 7
u oy

(2.13)

It should be noted that since eq. (2.13) is an integral of the momentum equa-

tion, it cannot detect the thin laminar sublayer near the wall.

2.4. Principle of Separated Flow Fields

The principle of separated flow fields enables the solution of 3D cases. It states
that in the case of a flow field over a segmented surface, it is divided into sub-flow
fields, so each segment has its own flow field, which depends on the distance from
the segment and the undisturbed stream, Ze, u=u(y,U). Every two close fields
are separated by a thin separation zone so that the velocity on both sides is equal
and the velocity gradients become equal inside it. This principle has been applied

to the flow of non-circular pipes and is supported by empirical data.

3. Exact Solutions of the Momentum Equation
3.1. Incompressible Turbulent Flow in Smooth Circular Pipes
In the case of turbulence in a pipe, the shear stress in the y direction is given by

comparison of this equation with eq. (3.1) yields:

45
r:ﬁ-p-(%) V%‘ (4=0.0594) (3.1)

Comparison of this equation with eq. (2.6) yields:
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14 r

1/5
Ll(zj (G_XJ (3.3)
U 5\r r

A comparison of the velocity in eq. (3.3) to that in eq. (2.1) is presented in Table
2 and exhibits small differences.

4/5
Ap (ﬂj v%“ -7, (11) (3.2)

The solution of eq. (3.2) is:

Table 2. Calculated vs. experimental velocities for various Y Values.
r
Y 0 0.2 0.4 0.6 0.8 1.0
"
u
T (3.3) 0 0.841 0.932 0.975 0.995 1.000
1
u_(yy 0 0.046 0.055 0.045 0.026  0.000
U r
1
E_(ljg 0 0.005 0.029 0.030 0.019  0.000
U r

For the shear stress on the surface of the pipe, we obtain:

T y ¥
W =0.01425| — 3.4
: ) (.4

This equation is identical to eq. (2.5).

3.2. Incompressible Turbulent Flow in Rectangular Ducts

Turbulent flow in noncircular ducts has been investigated in numerous studies
(Schlichting, [3]). The experiments yield, among others, two important phenomena:

- The curves of constant velocity are, principally, parallel to the nearest wall.
This led to the above-mentioned assumption of the separated flow fields.

- The shear stress on the surface around the cross section is uniform. Thus, the
constant velocity curve is also a constant shear stress.

A scheme of a rectangular duct with wall lengths of 2 H and 2 h so that H >h

is described in Figure 1.

2H

=L 2h

/ \ th
flow field 2—/ ‘/ \ flow field IJ

separation zone

constant velocity curve

Figure 1. Rectangular duct cross-section.
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According to the principle of separated flow fields, two pairs of flow fields—#1
and #2-are separated by 4 + 1 separation zones. The 4 zones extend on the cross
angles between the walls. Thus, we obtain the following:

The distance from the walls to the constant velocity curve is the same, Ze.
Yi=Y, =Y (3.5)

The shear stress and the pressure gradient are related by:
AP
r-(H +h—2y)=—§(h—y)(H—y) (3.6)

Eq. (3.6) can be divided into 2 equations:
_AP Hh

= —_— 3-7
A (H+h) (3.7)
And
4
H-y)(h- H+h 5
T :TW( y)( y) ( + ) :l(wjg) de—u (3.8)
Hh (H+h-2y) v dy
A numerical solution of eq.(3.8) yields, for each ratio of H/h:
5
u 1(y y
— ==/ [6-2 3.9
U s(hj ( hj 32
And
T v v
= 0.01425(—] (3.10)
pU U-h

These equations are compatible with the experimental law of the hydraulic pipe.

4. Incompressible Turbulent Flow in the Boundary Layer

4.1. Governing Equations

The momentum equation in this case is:

4/5
ua—u+va—u:Ud—U+/1i Yy Va_u (4.1)
ox oy dx oy(\ 7 oy

while the continuity equation yields:

oy ox
Assuming that the velocity profile is semi-similar in shape, we can write:
p=UGSF(n,X) (4.3)
where:
Y5
n= (%] and X =x (4.4)

0: Typical length in the y direction
Setting:
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f=— (4.5)

So that:

F=['5-n"f-dp (4.6)

Inserting eqs. (4.2 - 4.6) into eq. (4.1) and separating the variables yields 2 equa-
tions. The first one, which defines the length §, is:

Y5
AR STCEY o
v v ax\ v
After integration:
5/6
Yo_ 0.111(1. [ Xdej (4.8)
1% vy 0
The second one, which describes the relative velocity f, is:
2 U5 ’
a—f2+5|= o, 25774(—)'-U—(1— f2)
on on (U 5) U
(4.9)
Us
) (422t
(U 5)' oX (377 oX
Here, the prime ' denotes differentiation for X.
The boundary condition for eq. (4.9) are:
f(0,X)=0 and f(0,X)=1 (4.10)
After these transformations, the shear stress is:
Y5
A (v of
T=— — | — 4.11
5 AU (U 1) j on (¢11)
4.2. Flow over a Flat Plate Parallel to the Stream
In this case, U is constant.
Inserting it into eq. (4.8) yields:
1
o 0.111(ij6 (4.12)
X Ux
And since U’'=0, we obtain the turbulent flow over the flat plate equation:
d? f df
—+5—F=0 (4.13)
dp® dpy

Eq. (3.23) will be solved by re-integration, ie., we assume an initial f, by a
function that fulfills as many boundary conditions as possible at =0 and
7 =o0 . When inserting it into the equation, we obtain £ and so on until we acquire
2 functions, £, and £,; that are close enough.

Since f =an—Bn®+---, the first function is:

fozj:(a+b-q7)exp(—kn7)dn (4.14)
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b is calculated by the boundary condition at 7 =o0:

bzl—f:aexp(—krf)dn

~ - (4.15)
jo n exp(—kn )dn
The next step is
d*f df
;=—5F (4.16)
dz dn
Integration of eq. (4.16) yields
df 7 "
d—’;:a—zs-[fo-jo f iy foz-n“dn] (4.17)
And an additional integration gives f,.
The boundary condition of f, and % at n=oo vyields
n
a=0.984, b=0 and k =0.56 (4.18)
The comparison of f, to f; is presented in Table 3.
Table 3. f, comparedto f vs. 77.
n 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
fo 0 0.197 0.394 0.589 0.776 0.924 0.991 1
f 0 0.197 0.395 0.591 0.777 0.925 0.991 1

As can be seen, the deviation of f, from f; isless than 0.2%. Thus, the rel-

ative velocity is:

f =0.984[ exp(-0.567" )dny (4.19)
And
df (0
4o _ 0.984 (4.20)
dn

The calculated fwas compared to the empirical one, which follows the power

u Y7 5 v ]/5
rule L= Y| with =037 (—j at a range up to
U \ g X U-x

u

U-X_6ax107.
1%

This comparison is shown in Figure 2.

7, A ( v j”e 0.984

pLJZ = (1.2.2)1/5 & 5

1% i
= 0.0182(—) (4.21)
Ux

Table 4 shows the difference between eq. (4.21) and the experimental data
(Schlichting [3]).
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10 6 6 .

u(m) )
U 04F 5

0.2 - T

0 0.5 1 1.5
n |

Figure 2. Calculated relative velocity fcompared to the empirical one. The shearing stress
on the surface is calculated by inserting eq. (4.12) and eq. (3.30) into eq. (3.11).

Table 4. Shear stress derived from eq. (4.21) versus experimental data for various Usoxv

values.
% 5.10° 1-106 5.108 1-107 5.107
TWZ data 0.00215 0.00187 0.00135 0.00118 0.00085
pﬁ"z eq. (3.32) 0.00204 0.00182 0.00139 0.00124 0.00095

4.3. Flow over Two Vertical Flat Plates (Both Parallel to the Stream)

We assume two vertical flat plates #1 and #2, as described in Figure 3.

yd

Figure 3. The representation of flow over two vertical flat plates.

The flow fields inside the boundary layers are

f, =0.984| "exp(-0.567" )d7 (4.22)
where
i=12 (4.23)
DOI: 10.4236/0alib.1113015 9 Open Access Library Journal
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The separation zone extends where the velocity of the two fields is equal, thus:

N Y. (4.24)
51 é‘2
The angle between flat plate 1 and the separation € zone is:
5 5/6
tang(6) = N_o%_ (ij (4.25)
yZ 52 X2

Ascanbeseen, 0=90" istheleadingedge of flat plate 2,and as X, increases,
6 decreases until it stabilizes on the cross angle between the two flat plates.
4.4. Flow over Wedges

The potential flow over a wedge is

0

U=Ul X* (4.26)

where @ is half of the wedge angle (see Figure 4)

)

Figure 4. Presentation of flow over a wedge.

Eqgs. (4.8) and (4.26) yield

Uo !
( ) Y _ 1,9 (4.27)
U5) U T
The momentum equation is
d*f df o 4 ( 0) 4 2
+25-—- fdnp+25-|1.2—|-n"-(1-f°)=0 4.28
a7 " 25y Jont — |01 17) (4.28)

Eq. (4.28) will be solved using the same method used in the flat plate case. How-

ever,

d’f (0
since (2 ) = —25~(1.2gj~774 . f isassumed to be
T

n

f :J':{a—S(l.Zﬁ)ff+b~n7}exp(—k~n7)dr7 (4.29)
T
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where
1—]5{&1—5-(1.29j~n5}exp(—k~n7)dn
b= —r 7 (4.30)
Jo " -exp(k-n")dn
. df
Then, calculating — by
dn
g 4 2s. f-[/n*fdn—["n"fd +123-j” (1 12)d (4.31)
an o1 fdn= | thdn+12—| 0 n -

Additional integration of eq.(4.31) gives f,.

The boundary conditions at 7 =oo that are 3—1 =0 and f, =1,givek a
n

and b.
Table 5 presents k; a, and b for each 6.

Table 5. &k, a,and bvs. 6.

0 deg. 15 30 45 60 75 90
Us U’
U 0.1 0.2 0.3 0.4 0.5 0.6
(Us)
k 0.64 0.81 0.98 1.15 1.33 1.50
a 1.044 1.092 1.131 1.165 1.194 1.220
b 0.441 0.803 1.059 1.247 1.394 1.516

Figure 5 and Figure 6 present f and f, for 6=30" and 60°

1 P . R
e
£(n) /
f1(n)0-5[ 1
0 1 1 1
0 05 1 15 2
n
Figure 5. f, vs. f, for 6=30".
T T T
1+ //—‘-—-
f(n)
()05 N
0 1 1 1
0 0.5 1 15 2
n
Figure 6. f, vs. f, for 6=60".
11 Open Access Library Journal
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5. Approximate Solutions in 2D Incompressible Turbulent
Flow

5.1. Method of the Solution

The integral method can be used to obtain an approximate solution. This method
yields a quick approximation solution without a step-by-step calculation along the
vertical axis. Instead, we assume a function for the relative velocity f that fulfills as
many boundary conditions as possible on the surface and at the end of the bound-
ary layer, and integrate the momentum equation along the vertical axis.
The boundary conditions of the relative velocity f are:
n=0; f=0; 622 =-25 4MU—,
on (U 5)’ U

n=ow; f=1 ﬁ:o forn>1 (5.2)
on

(5.1)

To fulfill the boundary conditions, together with the results of flow over a flat

plate, the following profile for the relative velocity is assumed:

f=[ a—5n5(u—5)'«u—’+b777 exp(—k-7")dn (5.3)
(Usy Y

The solution of eq.(4.28) yields the value of k at the range

062 @U— >-0.27

(usy Y
(with a deviation of +5%).

0.56+0.15~—(U5)' U—’ if 02—(U5), U—'

(usy Y (usy Y

k= 0.56+O.8-M-% if 0.12(U—5),-UU20 (5.4)
(U 5) (U 5)
0.468+1.72-(U—5)'~UU otherwise
(Us)

aand b are calculated by the boundary condition at 7 =o0:

!

1—'[:{3—5775(U5)'U

(us) Y exp(k -’ d

© 7 7
[ oo Jan
And by the integral of the momentum eq. (3.20):

sy Y (usy &

b= (5.5)

where

K=[ (f-f*)n'dy (5.7)
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And
S=["(1-1*)y'dy (5.8)

To find the initial condition, the leading edge of the surface is assumed to be a

flat plate tangent to the surface, as described in Figure 7.

e /e%

Figure 7. A description of the leading edge of the surface.

Thus, the leading edge is calculated as a bending flat plate, Ze.:

KO, (59
dXx

The derivative of the function K atpoint X, can be calculated as:

dK K —K, (dK
— | =2 1| — 5.10
(dij Xia— X, (dxji 510

i+l i

5.2. Turbulent Flow over a Very Long Cylinder

A scheme of the system is shown in Figure 8.

00 /«
——
R

— 0

Figure 8. A presentation of flow over a long cylinder.

In the case of flow over a long cylinder, the velocity U on the edge of the
boundary layer is given by:
U=2U_sin(0) (5.11)

where U is the velocity far ahead of the cylinder and 6= X/r .
Eq. (4.8) yields:

56

15
l_
9 o111 Y X C_OSG) (5.12)
r 2U,r siné

DOI: 10.4236/0alib.1113015 13 Open Access Library Journal
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And eq. (4.8) together with eq. (5.12)
Uo ! cos(é
(Us) Y 2#

. 5.13
(usy Y 1+cos(6) G139
Thus, the relative velocity in the boundary layer is:
cos(6)
f={"a-6n"———"<+by |exp(-k-n")d 5.14
IO( T Troos(d) " n] p(—k-n")dn (5.14)

Inserting eq. (5.15) in egs. (5.7-5.8) enables to calculate eq. (5.6) numerically
(6., —6 =7/36). The results are presented in Table 6.

Table 6. avs. the angle of location & (degrees).

6 (deg) 0 30 45 60 75 90 100
a 1.22 1.21 1.20 1.18 1.14 1.04 0.94
0 (deg) 105 110 115 120 125 128.2
a 0.87 0.79 0.67 0.52 0.30 0

Figure 9 shows the relative velocity f (77) and its first derivative which pre-

sents the shear stress at an angle of 128.2 deg.

d
fi — £
M 5 1 @ ™ L

Figure 9. The relative velocity f(7) and (;i at an angle of 128.2°.
n

The separation angle, 128.2°, is similar to the separation angle that was found
in an experimental study by Willy Z. Sadeh and Daniel Sharon [5] published in
the NASA contractor report 3622. Their results are shown in Figure 10.

24
{dug)!9?
N. -
by 30?
o) |, ‘ )
5 L] 2% I5
Ra x10~4

‘{-".7.&!‘1:]1 ef mepnracfon anglc in turbulent and smoath ineidami
flows and of chefr diffoxency wien inerzazing Reyiolds number
{TGG masn= tuwhol ooce-genezabing sridl .

Figure 10. NASA report on the separation angle of turbulent flow over a cylinder (Sadeh,
W.Z., Saharon, [5]).
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5.3. Shear Stress of Turbulent Flow over a Slim Aerofoil

Uuo '
The parameter ( ), Y is the most influential on the shear stress. Figure 11
(usy Y
shows the shear stress represented by the first derivative of the relative velocity a
Uo '
in the cases of flow over a cylinder and flow over wedges vs. ( ), Y atranges
G
0.6 to —0.2.
) |
1.2 : el
cylmdi\ ||
1.1 pE
wedge
1.0
0.9
08 o2 0.0 0.2 0.4 HaY
. . , (Us) u’
Figure 11. The parameter a in cases of flow over a cylinder and wedges vs. ——.
(usy Y
. . . o (Usyu' .
Assuming that the aerofoil’s leading edge is cylindrical and that PCITE is
(Us)

decreased monotonically up to —5° at the rear edge, we get the shearing stress with

a maximum deviation of 4%.

6. Supersonic Turbulent Flow of Air at Zero Pressure
Gradient

This case includes all the cases where the flow consists of a constant main flow
and a secondary flow, which is insignificant for the shearing stress. Thus, the
shearing stress can be calculated as a flow at zero pressure gradient.

The flow equations will be solved under the following assumptions:

a) The total Prandtl number is a unit (Pt = 1).

b) The wall is adiabatic.

The viscosity is linear with the temperatures =y, e

w
The momentum equation is
ou ou _or

U—+pV—=— (6.1)
Pl Py oy
While the continuous equation for 2-dimensional flow yields
0
puU = % pV = - (6.2)
oy oX
DOI: 10.4236/0alib.1113015 15 Open Access Library Journal
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Under assumptions a and b, the energy equation is

CpT, =CpT +%u2 (6.3)
Also, the equation of state yields for a perfect gas at constant pressure
P
T =— 6.4
PT =2 (6.4)
Setting now
oLy (6.5)
®pu O
And
s_ v p dy
= = 6.6
n J.O pw 5 ( )
So that
Q= Joy pudy = p, U 5.[: f-5p'dy (6.7)
And the energy equation (6.3)
TW 2
£=1+0.2M (6.8)
Too
yields
2
T o1 tefpoog o M ~f2 (6.9)
T, T, 5+M

Inserting these expressions into the momentum equation (5.1) yields

4

1
us' \df (.. 4 o(Us) AT, (T ) df
_ — [("f5pfdp=—|| == | 2w | | 1 6.10
(vw)dn'[o e 67][1/)55T[de77 (6.10)

w w

Eq. (6.10) can be divided into 2 equations—one depends on x only and the sec-
ond on 75 only.
The first one is

4
' 5
ﬁ%ﬁ} A (6.11)
Vi Vi o
And after integration
1 1
5
9 _(124)s [V—Wje = 0.111("—Wj6 (6.12)
X Ux Ux
The second equation is
df
d d?] _ df n 4
a _—E-jo 25fndn (6.13)

df] MZ 20.8
-~ f
5+M
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The boundary conditions of eq. (6.13) are f(0)=0 and f(x0)=1.
Integration of eq. (6.13) yields
df

( T ma st [t tan (61
- fzj
5+M?2

And an additional integration of the equation. (6.14) yields

J; dzf o5 = f;[a—%fﬂﬂ“ fdn+25("n" f 2dry}dn (6.15)
(1_ M ’ fzj
5+M

Eq. (6.13) can be solved numerically, but a more practical solution is to assume

f=["aexp(—k-n"—m-5*)dn (6.16)

The values of a, & and m are calculated by equations (6.14), (6.15), and (6.16)
at 7=% as follows: Egs. (6.16) and (6.14) yield
1

a= (6.17)
[“aexp(—k-n" —m-n*)dn

a-25["n’(f-1*)dp=0 (6.18)

Then the left side of eq. (6.15) for f =1 is equal to the right side for 77 =00.
The values of a, & and b for some Mach numbers are presented in Table 7.

Table 7. The values of a, k, and m for some Mach numbers.

M 0 0.5 1 1.5 2 2.5 3 3.5
a 0.984 1.003 1.023 1.050 1.096 1.135 1.172 1.207
k 0.56 0.51 0.46 0.40 0.31 0.245 0.192 1.15
m 0 0.085 0.1754 0.291 0.48 0.634 0.775 0.9

The compatibility of faccording to eq. (6.16) to that of eq. (6.15) is presented
in Table 8 for M= 3.

Table 8. fper eq.(6.16) vs. fper eq.(6.15) for M= 3.

n 0.2 0.4 0.6 0.8 1.0 1.2 3
fper eq, (6.16) 0.232 0.450 0.643 0.800 0.914 0.978 1
fper eq. (6.15) 0.230 0.452 0.647 0.807 0.9205  0.9805 1.001

The distance from the surface, y, is calculated by

M 2
%:I;5;74(1—5+M2 fz”Jdn (6.19)
The shearing stress on the surface is
0.0594- .
00 ) -
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6.1. 4.5 Mach Turbulent Flow over a Flat Plate

The previous equations were compared to experimental data of “4.5 Mach turbu-
lent flow over a flat plate” published by NPARC-Alliance Validation Archive [6].

The data of this flow are as follows:

Mach number: 4.512.

Pressure: 0.0974 psia (671.6 Pa).

T,:108.8°R (60.5°K).

X (distance of the measurement): 1.79 ft. (0.546 m).

The thickness of the boundary layer, ¢,, and the velocity profile are presented
in Figure 12 and Figure 13.

0.08
Str-Str SST
Str-Str SST w/Comp Corr, Press Dilat Off
Str-Str S-A
Str-Uns, SST
o] Str-Uns, SST w/Comp Corr, Press Dilat Off]|
- (o] Str-Uns, S-A
0.06 X Uns-Uns, SST
prar x Uns-Uns, S-A
&
*
[%=]
-
&
— 0.04
(=]
=
=
[2=]
0.02 -
0 0 &7 J

x [ft]

Figure 12. Thickness of the boundary layer.

BL profile at:
1.8 - x=1.79 ft, Re =3.81 million
Str-Str, SST
1.6 = — Str-Str, SST w/Comp Corr, Press Dilat OFF
e Str-Str, S-A
—— Str-Uns, SST
4P -imv = Str-Uns, SST w/Comp Corr, Press Dilat OFF
—— Str-Uns, S-A
12k ——— Uns-Uns, SST
. = == == Uns-Uns, S-A
g af
0.8 I~
0.6 I~
04
02
0 I 1 1
0 500 1000 1500 2000 2500

u [ft/s]

Figure 13. Velocity profile vs. distance from the surface.

Based on this empirical data, the following values are calculated
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T, =T, (1+M?)=307"

P
=——=0.00765kg/m?®
Pu=mm 9/

w

1, =1.82x10°kg/m-s (from air properties calculator)

v, =2 =234x10° m/s
Pu

U=M-/yRT, =702m/s

5= 0.111x(G—W]6 =0.0082m=8.2mm
X

And Figure 7 and Figure 8 yield, by measuring 6, =9 mm.
Under these values, a, & and m were found as follows:
a=1.259.

k=0.1.

m=1.077.

Thus, the relative velocity is

f =1.259("exp(-0.1-7" ~1.077 7% )dny (6.21)

The calculated relative velocity fwas compared to the empirical one that follows

y7
the power profile 5 = (%) . This comparison is shown in Figure 14.

u

1F T T =
f(n)
u(n) o.5- .
U .
0 1 1 1
0 0.5 1 1.5 2
n

Figure 14. Calculated relative velocity vs. empirical one (for M4.5).

6.2. 2.4 Mach Turbulent Flow along a Circular Cylinder

Robert M. O’Donnell [7] investigated experimentally at Mach number 2.41,
among the rest, the turbulent boundary layer thickness and the velocity profile.

The experiments were carried out along the exterior surface of a circular cylinder.
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U, x
The range of the Reynolds number was 5.8x10° > —2—>0.3x10°. He found
Ps

that the velocity profile is
2

15
% _ 0.026-(&j (6.23)
X U-x

And by converting from J, to

u

Y5
% 0375, (&j (6.24)
X U-x
And
u y Y
— == 6.25
Calculating now the flow parameters for 2.41 Mach number yields the relative
velocity
f =1.126'exp(-0.26-5" ~0.5995 7" )dny (6.26)
The typical length in the y direction 9 is given by
6 Y6
o_ 0.111("-““) - 0.144(L°°j (6.27)
X Ux Ux

The distance from the surface is given by

1/30
El - (%) [?] —~0.384 [%) (%J (6.28)
u u V00

Setting eq. (6.28) into eq. (6.25) gives the experimental velocity.
The calculated relative velocity is compared to the experimental one in Figure
15.

f(n)

1 1 1
0 0.5 1 1.5 2

n
Figure 15. Calculated relative velocity vs. empirical one. (for M2.4)

6.3. Supersonic Turbulent Flow on a Cylindrical Cone

A scheme of the system is shown in Figure 16.
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RN R R R RS

Figure 16. Presentation of flow on a cylindrical cone.

According to the inviscid supersonic flow theory on a cylindrical cone, the

. . . du
velocity along the surface is constant. Ze. i 0. Thus, the momentum and the
X

energy that are written in eq. (6.1) and (6.3) are valid in the present case. However,
since the cone is a body of revolution where the radius ris linear with the x coor-

dinate, the continuous equation is:

0 0
—(Xpu)+—(xpv)=0 6.29
o (xpu) = (xpv) (6.29)
Setting now
s_np dy
=| —— 6.30
n Io Py S (6.30)
u
u_¢ 6.31
5 =) (6:31)
And insert them, together with eq. (6.9). into the momentum equation, we get
4 1
U (xs 5 AT, 5
_ ( ) irf5774d77=i UspAT,fT ﬂ (6.32)
xv, |dn0 on|lv, ) 5 TLUIl,) dn

Eq. (6.32) can be divided into 2 equations, one depends on x only and the sec-
ond on 75 only.

The first one is

i{%] - z[ﬁjs X (6.33)

dx\ v, 1% 5

w

After integration,

1

9. 0.0574(‘/—Wj6 (6.34)
X Ux

The second equation is

df

d d?] _ df n 4
— __E'I" 25fn'dn (6.35)

df] |\/|2 ) 0.8
1-— f
5+M
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Which is identified as eq. (6.13) and is solved in the same.

7. Conclusions

This article presents and tests a general shear stress equation for turbulent flow
over smooth surfaces. In some cases, the equation yields valid results, flow in a
circular pipe, in rectangular ducts, over a flat plate parallel to the stream, the sep-
aration angle of flow over a circular cylinder, supersonic flow of air on a flat plate,
and along a cylinder and turbulent flow with suction in low and high velocity.
Although these results are encouraging, many more cases must be tested until

this model is approved.
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List of Symbols

coordinate direction along the surface

coordinate perpendicular to the surface

coefficient, equal to 0.0594

density

velocity on the edge of the boundary layer in the x direction
velocity inside the boundary layer in the x direction
relative velocity - u/ U

velocity in the y direction

total shear stress

viscosity

kinematic viscosity

QN | goNE QR NN X

typical length in the ydirection
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Continued
9, boundary layer thickness
. o U u
0, momentum thickness ( J'o ¥ (1 T de)
P absolute pressure
R gas constant (285.7 kJ/kg 1°C for air)
Cp specific heat at constant pressure
Cv specific heat in constant volume
v Cpl Cv (1.4 for air)
M Mach number on the edge of the boundary layer
Subscript
w refers to the surface

refers to the flow far away from the surface
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