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ABSTRACT 
An analytical solution is derived for the probability that a random pair of individuals from a 
panmictic population of size N will share ancestors who lived G generations previously. The 
analysis is extended to obtain 1) the probability that a sample of size s will contain at least 
one pair of (G − 1)th cousins; and 2) the expected number of pairs of (G − 1)th cousins in that 
sample. Solutions are given for both monogamous and promiscuous (non-monogamous) 
cases. Simulation results for a population size of N = 20,000 closely approximate the ana-
lytical expectations. Simulation results also agree very well with previously derived expecta-
tions for the proportion of unrelated individuals in a sample. The analysis is broadly con-
sistent with genetic estimates of relatedness among a sample of 406 Danish school children, 
but suggests that a different genetic study of a heterogenous sample of Europeans overesti-
mates the frequency of cousin pairs by as much as one order of magnitude. 

 

1. INTRODUCTION 
The ability to rapidly and inexpensively genotype humans at thousands or tens of thousands of poly-

morphic loci makes possible identification of relatives in data bases [1-3], assessment of population struc-
ture [4, 5], and estimation of the frequency of relative pairs in large samples [6, 7]. In the latter case, it has 
been suggested that commonly used coalescent-based methods overestimate the number of cousins in 
samples [8]. In this paper, I derive expectations for the probability that a random pair of individuals will 
share at least one ancestor, or one pair of ancestors, who lived G generations in the past—that is, that they 
are (G – 1)th cousins. The analysis is extended to derive the expected number of (G − 1)th cousin pairs in a 
sample. These results complement the analysis of Shchur and Nielsen [9] which gives the expected number 
of individuals in a sample who are unrelated as (G − 1)th cousins. The present analysis assumes a con-
stant-size panmictic population with discrete generations. While that describes no actual human popula-
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tion, this analysis may provide a useful metric for comparison with the results from genetic analyses of real 
populations. 

In a previous paper, pairwise shared ancestry in random-mating, constant-sized population was in-
vestigated by simulation [10]. A principal result was that there is an approximately 50% probability that 
random pairs of individuals will share at least one ancestor who lived 0.5 log2N generations previously, or 
more recently, where N is population size. The probability of pairwise shared ancestry increases rapidly 
with additional generations, and approaches 1.0 for ancestors who lived about 0.65 log2N generations in 
the past, or more recently. In this paper, I show that comparable results can be obtained analytically by 
assuming that a present-day individual represents a sample of ancestors who lived in each earlier genera-
tion. The probability of shared ancestry is then analogous to the probability that two samples drawn with 
replacement share at least one element in common. The analysis is extended to estimate the probability 
that a sample will not contain any pairs of individuals of specified relationship, i.e., no sib pairs, no 1st cou-
sins, etc.; and to derive the expectation of the number of pairs of (G − 1)th cousins in a sample. The present 
analytical results, as well as those of Shchur and Nielsen [9], are confirmed by simulation. 

2. METHODS 
2.1. Population Simulation 

A constant population of size N = 20,000 with non-overlapping generations was simulated. Repro-
duction was either monogamous or promiscuous, and reproductive success was random (Poisson distri-
buted). Sib mating was permitted and presumably occurred at a frequency expected by chance, although 
with promiscuous reproduction virtually all sib mating would have been between half-sibs. Each simula-
tion started at generation 0 and proceeded for 15, 12 or 8 generations (see below). For computational con-
venience, complete genealogical information was not recorded for individuals in descendant generations. 
Instead, only information about generation 0 ancestors was retained. Additional details about the simula-
tion procedure can be found in [10]. 

In order to simulate the probability of pairwise shared ancestry, simulations were run for 15 genera-
tions. In each generation, a sample of 5000 randomly selected pairs was evaluated for shared generation 0 
ancestors. Five hundred replicate simulations were performed for each mode of reproduction (monogam-
ous or promiscuous). In order to simulate the likelihood that a sample of more than two will contain no 
related individuals, the same simulation procedure was used, except that samples of size s were taken 
without replacement in each generation, and all members of the sample examined for shared generation 0 
ancestors. Sample size, s, was either 20 or 200. The number of samples in each generation was adjusted 
according to sample size so that the total number of individuals sampled was 2000 = 20 × 100 or 200 × 10. 
One hundred replicate simulations were performed for each sample size and type of reproduction, and 
each replicate was run for eight generations. A similar procedure was used to determine the number of 
pairs of (G − 1)th cousins in a sample, except that each of the 100 replicates was run for 12 generations. 

With monogamous reproduction, each individual in generation G had 2G−1 ancestor pairs in genera-
tion 0. There is no prohibition against a given ancestor pair occurring more than once in the genealogy of 
a later-generation individual. In fact, with a sufficient number of generations, the number of “ancestors” 
will exceed the past population size and multiple occurrences are guaranteed. With G = 15, for example, 
2G−1 = 16,384, which is greater than the number of pairs in the simulated population. In this sense, then, 
descendant individuals represent samples, with replacement, of generation 0 pairs. A similar argument 
applies to the case of promiscuous reproduction: every individual in generation G had 2G ancestors (rather 
than ancestor pairs) in generation 0. Thus, for G = 15, 2G = 32,768, which, again, is larger than the total 
population size. This “theoretical” sampling of ancestors should not be confused with the actual sampling 
of individuals during the course of simulations, as described in the preceding paragraph. 

2.2. The Probability That Two Random Samples Will Share Elements 

Consider two random samples, A and B, both of size a, taken with replacement from a population of 
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size N, the members of which are numbered 1 through N. What is the probability that the two samples will 
contain at least one of those numbered elements in common? I proceed by comparing each element of 
sample B with each element of sample A. For convenience, the elements are labeled: B1 denotes the first 
element of sample B, and so on. 

The probability that the first element of sample B is the same as the first element of sample A is: 

( )1 1
1Pr B A
N

= =  

And the probability that the first element of sample B is not the same as the first element of sample A is: 

( )1 1
1 1Pr B A 1 N
N N

− ≠ = − = 
 

 

Similarly, the probability that the first element of B is not the same as the thi  element of A is: 

( )1
1Pr B Ai

N
N
−

≠ =  

Sample A has a elements, therefore the probability that the first element of B is not the same as any ele-
ment of A is: 

( )1
1Pr B all A

a

i
N

N
− ≠ =  

 
                              (1) 

But sample B also has a elements. The probability that element 2 of B is not the same as any element of A 
is also given by the right-hand side of Equation (1). It follows, therefore, that the probability that all ele-
ments of B are different from all elements of A is: 

( )
2

1 1Pr all B all A
aa a

i i
N N

N N
 − −   ≠ = =         

 

Lastly, the probability that at least one element of B is the same as at least one element of A is: 

( )
2

11 Pr all B all A 1
a

i i
N

N
− − ≠ = −  

 
                          (2) 

2.3. The Probability That Random Pairs of Individuals Will Share at Least One Pair of Ancestors  
Who Lived G Generations in the Past 

2.3.1. Monogamous Reproduction 
The preceding analysis can be adapted to random-mating, constant-size, monogamous populations as 

follows. With Poisson-distributed reproductive success, approximately 20% of each generation’s lineages 
become extinct, with a mean time to extinction of slightly more than 1.5 generations [10-14]. Thus, all 
present-day individuals will be descended from only 80% of an ancestral population that existed two or 
more generations in the past. In terms of the population modeled by simulation, a “census” size of N = 
20,000 (or 10,000 monogamous pairs) means that approximately 8000 generation 0 pairs gave rise to per-
sistent lineages. To avoid confusion, this “effective monogamous pair population size” will be referred to 
as Nm. An individual in generation G is descended from 2G−1 ancestor pairs in generation 0, and that is the 
size of the ancestor-pair sample represented by that individual. Let CG be the probability that a random 
pair of individuals share at least one pair of ancestors who lived G generations previously; that is, the 
probability that they are (G − 1)th cousins. CG is obtained from Equation (2) by substituting Nm for N and 
2G−1 for a: 
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( )212
11

G

m
G

m

NC
N

−

 −
= −  

 
                                   (3) 

2.3.2. Promiscuous Reproduction 
In the case of promiscuous (non-monogamous) reproduction, each offspring is produced by a newly 

created random pairing of male and female parents. As long as N is reasonably large, almost all sibs will be 
half-sibs and almost all 1st cousins, half-1st cousins, etc. For simplicity, I will generally not use the “half” 
modifier for the remainder of this paper, with the understanding that it is implied when discussing results 
for promiscuous reproduction. With promiscuous reproduction, every individual is descended from 2G 
ancestors who lived G generations previously. Approximately 80% of each generation’s members give rise 
to persistent lineages. Thus, for a total population size N = 20,000, the “effective promiscuous population 
size” is Np = 16,000. Let DG be the probability that a random pair of individuals share at least one ancestor 
who lived G generations in the past. DG is obtained from Equation (2) by substituting Np for N and 2G for 
a: 

( )22
1

1

G

p
G

p

N
D

N
 −

= −   
 

                                 (4) 

If the relationship of interest is sibs, rather than cousins, Equations (3) and (4) are approximations to 
the probability of pairwise shared ancestry, given the suggested values for Nm and Np. That is because sibs 
share ancestors who lived only one generation previously. Therefore, in that case, Nm and Np should be 
about 86.5% of the census population size—that is, the “effective size” of the immediately preceding gen-
eration. This special case is of little consequence for the present investigation and is, therefore, ignored in 
the analytical calculations shown in the Results. 

2.4. Shared Ancestry in Samples Larger than Two 

2.4.1. The Probability That a Sample Will Not Contain Related Individuals 
The analytical model is readily extended to consideration of relationships among individuals in sam-

ples larger than pairs. In a sample of s individuals, drawn without replacement, there are s(s − 1)/2 possi-
ble pairwise comparisons. For monogamous reproduction, the probability that any one pair in the sample 
will not be (G − 1)th cousins is (1 − CG). The probability that all of the pairwise comparisons are not cou-
sins (or sibs if G = 1) is: 

( )( ) ( ) ( )1 2thPr no pairs are 1 cousins 1 s s
GG C −− = −                     (5) 

Therefore, the probability that there is at least one pair of (G − 1)th cousins in the sample is: 

( )( ) ( ) ( )1 2thPr at least one pair of 1 cousins 1 1 s s
GG C −− = − −                (6) 

As an example of a prediction by Equation (5) and Equation (6), consider the case of sampling 20 individ-
uals from a monogamous population of size N = 20,000. There are 190 possible pairwise comparisons. The 
probability that any one pair will not share an ancestor who lived three generations previously (i.e., will 
not be 2nd cousins) is (1 − C3) = 0.998. The probability that none of the 190 possible pairs will be 2nd cou-
sins is 0.998190 ≈ 0.684 (Equation (5)). Or, conversely, there is about a 32% chance that the sample will 
contain at least one pair of 2nd cousins (Equation (6)); and by similar calculation, there is a nearly 100% 
chance that the same sample will contain at least one pair of 4th cousins. If reproduction is promiscuous, 
Equations (5) and (6) are modified by substituting DG for CG. Then, with N = 20,000 and s = 20, the prob-
ability that the sample will contain at least one pair of (half) 2nd cousins is about 53.2%, and there is about 
a 95% chance that a sample will contain at least one pair of 3rd cousins. 
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2.4.2. The Expected Number of Pairs of (G − 1)th Cousins in a Sample 
Equation (3) gives the probability that a random pair of individuals will be (G − 1)th cousins (in the 

monogamous case). As already noted, in a sample of s individuals, there are s(s − 1)/2 possible pairwise 
comparisons. Thus, the expected number of pairs of cousins in the sample is simply the product of (1) the 
probability that any one pair are cousins and (2) the number of possible pairs. Let PG be the number of 
pairs of (G − 1)th cousins in a sample from a population with monogamous reproduction; and QG the 
number of pairs of (mostly half) cousins if reproduction is promiscuous. Then: 

( )1
2G G

s s
P C

 − 
=  

 
                                  (7) 

and 

( )1
2G G

s s
Q D

 − 
=  

 
                                  (8) 

In a sample of 20 individuals taken from a monogamous population of 20,000, the expected number 
of pairs of 2nd cousins is 0.38, which is consistent with the 32% probability that such a sample will contain 
at least one pair of 2nd cousins. That same sample would be expected to contain 5.98 pairs of 4th cousins. 

2.4.3. The Expected Number of Related Individuals in a Sample 
Shchur and Nielsen [9] derive expectations for the quantities, Up and Vp, which are the number of in-

dividuals in a sample which do not have (p − 1)th cousins in that same sample. Up applies to a monogam-
ous population and Vp to a non-monogamous (promiscuous reproduction) population. They depend upon 
both sample size and effective population size, as expected from the preceding discussion. Up, for example, 
and PG (Equation (7)) convey related information. 1 − UP is the expected number of individuals in a sam-
ple who are (p − 1)th cousins of at least one other member of the sample. That is not the same as the num-
ber of pairs of (p − 1)th cousins, but it sets upper and lower bounds on the number of pairs. For example, if 
there are r related individuals, the minimum number of pairs is r/2, and the maximum number of cousin 
pairs is r(r − 1)/2. Thus, there is an approximate test for consistency between the Shchur-Nielsen expecta-
tions for the number of related individuals in a sample and the expected number of cousin pairs in a sam-
ple (Equations (7) and (8)). Given N = 20,000 and monogamy, the expected number of 4th cousins, (1 − 
U5), in a sample of 20 individuals is 9.45. The minimum number of pairs expected by Shchur-Nielsen is, 
therefore, 4.73, which is consistent with the 5.98 pairs obtained with Equation (7). (As explained below, 
Sec. 3.2.3, the effective population size used for the Shchur-Nielsen calculations in this example is 8000.) 

3. RESULTS 
3.1. The Probability of Pairwise Shared Ancestry 

The simulation results and analytical calculations for pairwise shared ancestry are similar for mono-
gamous (Figure 1(a)) and promiscuous (Figure 1(b)) reproduction. There is, however, a slight, but con-
sistent, difference: in both cases, for generations 3 through 7, the probabilities of pairwise shared ancestry 
obtained by simulation are 3% - 6% higher than those obtained by the analytical model. One possible ex-
planation is that two individuals in a genealogical simulation may not represent truly independent samples 
of generation 0 ancestors. The two may be related by more recent shared ancestors. In which case, they 
would necessarily also share generation 0 ancestors. For N = 20,000, the effect is not large, and might be 
expected to diminish with increasing population size. Conversely, for generation 1 (and to a lesser extent 
for generation 2), the analytical model appears to overstate the probability of shared ancestry. As explained 
in Sec. 2.3.2, a likely explanation is that the analytical model assumes that the number of persistent genera-
tion 0 ancestors has already been reduced by 20%, although that reduction actually requires about two 
generations in the simulations. In any event, by either simulation or analysis, the probability of shared an-
cestry in the first two generations is close to zero (Figure 1). 
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Figure 1. The probability that random pairs will share Gth generation ancestors. (a) Monogamous 
reproduction; (b) promiscuous reproduction. N = 20,000, simulation results are the means of 500 
replicates. See text for details of analytical calculations. 
 

For N = 20,000 and monogamy, the time required for the probability of pairwise shared ancestry to 
reach 50% is about 7.2 generations (Figure 1(a)); that is 0.504 log2N, in close agreement with previous re-
sults [10]. By generation 9, the probability of pairwise shared ancestry is very nearly 100%; that is 0.630 
log2 N generations, which is also consistent with earlier results. Promiscuous mating increases the proba-
bility of pairwise shared ancestry, although as already noted the relationships are half degree. 

The present results can be extended in a number of ways. For example, a statement such as “random 
pairs of individuals have an x% chance of sharing ancestors who lived G generations previously” is equiv-
alent to “on average, every individual is related to x% of the other individuals in the population by ances-
tors who lived G generations in the past”. Or, which is the same thing, “an average individual’s (G − 1)th 
cousins will number x% of the population”. 

3.2. The Probability That Samples Larger than Two Will Contain Related Individuals 

3.2.1. The Probability that a Sample of Size, s, Will Contain No Pairs of (G − 1)th Cousins 
There is very close agreement between the analytical model (Equation (5)) and the simulation results 

(Figure 2). It is noteworthy that, at least for panmictic populations, a very small sampling fraction is suffi-
cient to guarantee that even closely related individuals will be included in a sample. For example, with N = 
20,000 and s = 200, there is an approximately 100% probability that at least one pair of 1st cousins will be 
included (Figure 2(b), Figure 2(d)). Furthermore, required sample sizes increase much more slowly than 
the population size. As noted above, with N = 20,000, s = 20, and monogamy, there is about a 32% chance 
that a sample will contain one or more pairs of 2nd cousins (Figure 2(a)). Similar calculations can be per-
formed for any population and sample size. If N is one million, a sample of 140 individuals would also 
have about a 32% chance of including at least one pair of 2nd cousins (from Equation (6)). In other words, 
a 50× increase in population size requires only a 7× increase in sample size to produce a similar probability 
that a sample will include one or more pairs of (G − 1)th cousins. 

Very small sample sizes are sufficient to guarantee that a sample will include at least one pair of rela-
tively distantly related cousins. For N = 20,000 and s = 20, there is an essentially 100% probability that the 
sample will contain at least one pair of 4th, and more distantly related, cousins (Figure 2(a), Figure 2(c)). 

3.2.2. The Number of Pairs of (G − 1)th Cousins in a Sample 
There is close agreement between the simulation results and analytical expectation (Figure 3). With  
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Figure 2. The probability that a sample of size s will contain no pairs of (G − 1)th cousins. (a) and (b) 
monogamous reproduction; (c) and (d) promiscuous reproduction. (a) and (c) s = 20; (b) and (d) s = 
200. Simulation results are means of 100 replicates with N = 20,000. See text for effective population 
sizes used for analytical calculations. 
 
monogamous reproduction, and N = 20,000, every member of a sample is related to every other member 
of a sample as 8th cousins (G = 9, Figure 3(a), Figure 3(b)). That result is independent of sample size, and 
depends only on the population size (effective number of monogamous pairs, Nm). It reflects the fact that 
random pairs of individuals, drawn from the population, will be 8th cousins with probability approaching 
1.0 (Figure 1(a)). To be sure, the actual number of pairs of cousins of a given degree in a sample does de-
pend on sample size, because there are more possible pairwise combinations with larger samples. The 
analytical plots in Figure 3(a) and Figure 3(b) are identical except that every point in Figure 3(b) is 
104.74× higher than the corresponding point in Figure 3(a). With promiscuous reproduction the number 
of cousin pairs of given degree is greater than for monogamous reproduction, as expected (Figure 3(c) 
and Figure 3(d)). Almost all possible pairs in a sample are 7th cousins (G = 8). 

3.2.3. The Proportion of Unrelated Individuals in a Sample of Size, s 
For consistency with the preceding, I will replace Up and Vp of Shchur and Nielsen [9] with UG and 

VG, which are the expected number of individuals in a sample that do not have (G − 1)th cousins, where G 
explicitly references generations. In order to compare expectations for different sample sizes, they divide 
UG and VG by sample size to obtain the expected proportion of unrelated individuals in the sample. A 
possible source of confusion in this analysis has to do with “effective population size”. Shchur and Nielsen  
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Figure 3. The number of pairs of (G − 1)th cousins in a sample of size s. (a) and (b) monogamous 
reproduction; (c) and (d) promiscuous reproduction. (a) and (c) s = 20; (b) and (d) s = 200. Simula-
tion results are means of 100 replicates with N = 20,000. Scale of y-axis differs between left- and 
right-hand graphs. 
 
refer to N as effective population size and later state “we assume that there are exactly N male and N fe-
male individuals” ([9], p. 1281). From that, it would appear that the appropriate value for N in their ex-
pressions for the expectations of UG and VG would be N = 8000, the number of generation 0 males or fe-
males with persistent genealogies, given a total population size of 20,000. Results for the calculated Sh-
chur-Nielsen expectation and the simulations are shown in Figure 4. The correspondence between expec-
tation and simulation is high, especially given that there is some stochasticity in the simulations. The cor-
respondence appears to confirm that the interpretation of N in the Shchur-Nielsen formulas was correct. 

4. SUMMARY AND DISCUSSION 
A simple probabilistic model that treats each present-day individual as a sample of ancestors from 

previous generations was used to derive the probability that random pairs of present-day individuals will 
share Gth generation ancestors. The model was extended to obtain the expected number of pairs of (G − 
1)th cousins (or sibs, if G = 1) in a sample of size s. The predictions of the analytical model are in close 
agreement with simulations of a panmictic population of size N = 20,000, with either monogamous or  
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Figure 4. The proportion of a sample of size s that will consist of individuals who are unrelated as (G 
− 1)th cousins. (a) and (b) monogamous reproduction; (c) and (d) promiscuous reproduction. (a) 
and (c) s = 20; (b) and (d) s = 200. Simulation results are means of 100 replicates with N = 20,000. 
Effective population size used for calculated results was 8000 (see text for explanation). Simulation 
results are from the same simulations shown in Figure 2. 
 
promiscuous reproduction. In addition, simulation results are in very close agreement with the calculated 
expectation of the number of individuals in a sample who are unrelated as (G − 1)th cousins [9]. 

Both the present results and those of Shchur and Nielsen [9] demonstrate that, for panmictic con-
stant-size populations, surprisingly small sample sizes are sufficient to make it likely that relatively closely 
related individuals will be included in a sample. Although there may be a low probability that any one pair 
of individuals will share recent ancestors, the number of pairwise comparisons is essentially a function of 
the square of the sample size (divided by two). Thus, the opportunity for including relatives in a sample is 
larger than might first appear. 

How these results apply to real populations is not obvious. The answer will depend on the degree of 
population subdivision and the sampling scheme. Even in highly subdivided populations, many statistics 
of qualitative pairwise shared ancestry may not be strongly affected, relative to a panmictic population of 
the same total size, provided that global migration rates are on the order of 5% per generation [11]. To be 
sure, global sampling in subdivided populations, reduces the probability of pairwise shared ancestry. On 
the other hand, sampling within restricted subpopulations can result in much higher probabilities of shared 
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ancestry, for the simple reason that the effective population sizes are smaller. To the extent that subpopu-
lations are approximately panmictic, the analytical approaches discussed in this paper may be useful. 

Athanasiadis et al. concluded that the current population of Denmark is only weakly genetically struc-
tured [5]. If so, it may be reasonable to assume that, at least until recently, it was approximately panmictic; 
and, therefore, that the analytical models discussed in the present paper may be reasonably applied to the 
Danish population and samples drawn from it. Three pairs of 2nd degree relatives were found in a sample 
of 406 school children [5]. The sample included only individuals for whom all four grandparents had been 
born in Denmark. Athanasiadis et al. estimated Denmark’s recent effective population size to be about 
500,000. If we assume monogamy, the Shchur-Nielsen expectation for 1 − U2, the number of 1st cousins 
(3rd degree relatives) in this sample, is 2.63. For promiscuous reproduction, the expectation of 1 − V2 is 
5.24. Both numbers are more or less consistent with observation, given that three pairs could entail any-
where from three to six different individuals, and that we expect more 3rd than 2nd degree relatives in a 
sample. (N for the purposes of these calculations is taken to be 250,000, the effective number of individuals 
of either gender, as discussed in Sec. 3.2.3.) With either mode of reproduction, the Shchur-Nielsen expec-
tation is that every member of the sample was related to at least one other member by shared ancestors 
who lived seven generations ago (6th cousins). Assuming 30 years for generation time, those pairs of 6th 
cousins shared ancestors who lived roughly 210 years ago. From Equation (6), this sample had about a 
73% probability of including at least one pair of 1st cousins, a result that also appears to be consistent with 
the data. 

With the assumption of panmixis, and an effective population size of 500,000, we can estimate that 
every present-day Dane (excluding recent immigrants) shares at least one 12th generation, or more recent, 
ancestor with every other Dane: in other words, within approximately the past 360 years (0.65 log2 500,000 
= 12.3). Furthermore, their most recent common ancestor (MRCA) may have lived as recently as 19 gen-
erations, or 570 years, ago [14]. In fact, these estimates may be conservative because the population of 
Denmark was smaller in the past. 

Henn et al. [6], on the basis of genetic data, concluded that a “heterogenous” sample of 5000 Euro-
peans contained tens of thousands of 2nd through 9th cousins—specifically that the sample included on the 
order of 30,000 pairs of 4th cousins. Equations (7) and (8) can be expanded and rearranged to calculate the 
effective population size implied by that result. It is consistent with Nm = 106,500 monogamous pairs or Np 
= 426,000. Shchur and Nielsen calculated similar numbers [9]. Both population estimates would seem to 
be far too small, given the description of the sample. For comparison, if Nm = 10 million, the expected 
number of 4th cousin pairs in a sample of 5000 individuals would be about 320. The present results appear 
to confirm that estimates of relationship among sample members may be inflated when using coalescent- 
based methods to infer identity-by-decent [8]. 
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