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ABSTRACT 
The solar climate of our Moon is analyzed using the results of numerical simulations and 
the recently released data of the Diviner Lunar Radiometer Experiment (DLRE) to assess (a) 
the resulting distribution of the surface temperature, (b) the related global mean surface 
temperature sT , and (c) the effective radiation temperature eT  often considered as a 

proxy for sT  of rocky planets and/or their natural satellites, where eT  is based on the 
global radiation budget of the well-known “thought model” of the Earth in the absence of 
its atmosphere. Because the Moon consists of similar rocky material like the Earth, it comes 
close to this thought model. However, the Moon’s astronomical features (e.g., obliquity, 
angular velocity of rotation, position relative to the disc of the solar system) differ from 
that of the Earth. Being tidally locked to the Earth, the Moon’s orbit around the Sun shows 
additional variation as compared to the Earth’s orbit. Since the astronomical parameters 
affect the solar climate, we predicted the Moon’s orbit coordinates both relative to the Sun 
and the Earth for a period of 20 lunations starting May 24, 2009, 00:00 UT1 with the plane-
tary and lunar ephemeris DE430 of the Jet Propulsion Laboratory of the California Institute 
of Technology. The results revealed a mean heliocentric distance for the Moon and Earth of 
1.00124279 AU and 1.00166376 AU, respectively. The mean geocentric distance of the Moon 
was 384792 km. The synodic and draconic months deviated from their respective means in a 
range of −5.7 h to 6.9 h and ±3.4 h, respectively. The deviations of the anomalistic months 
from their mean range between −2.83 d and 0.97 d with the largest negative deviations oc-
curring around the points of inflection in the curve that represents the departure of the 
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synodic month from its mean. Based on the two successive passages of the Sun through the 
ascending node of the lunar equator plane, the time interval between them corresponds to 
347.29 days, i.e., it is slightly longer than the mean draconic year of 346.62 days. We com-
puted the local solar insolation as input to the multilayer-force restore method of Kramm et 
al. (2017) that is based on the local energy budget equation. Due to the need to spin up the 
distribution of the regolith temperature to equilibrium, analysis of the model results covers 
only the last 12 lunations starting January 15, 2010, 07:11 UT1. The predicted slab temper-
atures, slabT , considered as the realistic surface temperatures, follow the bolometric tem-
peratures, bolT , acceptably. According to all 24 DLRE datasets related to the subsolar lon-
gitude ssφ , the global averages of the bolometric temperature amounts to  

bolT 201.1 K 0.6 K= ± . Based on the globally averaged emitted infrared radiation of  

IRF 2 2290.5 W m 3.0 W m− −= ⋅ ± ⋅  derived from the 24 DLRE datasets, the effective radiative 

temperature of the Moon is e M bolT T
1 44

, 271.0 K 0.7 K= = ±  so that bol e MT T ,0.742≅ . 

These empirical results confirm Kramm et al.’s theoretical results for the Moon of  

slabT 197.9 K≅ , e MT , 266.4 K≅ , and slab e MT T ,0.743≅ . The DLRE observations suggest 

that in the case of rocky planets and their natural satellites, the globally averaged surface 
temperature is notably lower than the effective radiation temperature. They differ by a fac-
tor that depends on the astronomical parameters especially on the angular velocity of rotation. 

 

1. INTRODUCTION 
According to von Hann [1, 2], the notion “solar climate” to which, for instance, Ptolemy’s climatic 

zones are related is based on the thought model of an Earth in the absence of its atmosphere. Von Hann 
stated [2]: 

“If the surface of the Earth were occupied altogether by land, and if there were no surrounding at-
mosphere, the condition of our planet would be somewhat similar to that of the Moon at the 
present time. Under these conditions, the distribution of temperature over the Earth would depend 
solely upon the amount of heat received from the sun at any given place, and upon the loss of heat 
by radiation at that place. As these two factors would necessarily be the same at all points along the 
same parallel of latitude, the zones of equal temperature would coincide with the parallels of lati-
tude. Even the presence of a vaporless atmosphere would interfere but little with this distribution of 
temperature, for only the absolute amounts of heat received at, and radiated from, the surface of the 
earth would thereby be affected. It is true that convectional currents would be produced under these 
conditions; but as there would be no reason for the more frequent occurrence of warm or cold air 
currents along some meridians than others, the distribution of temperature in zones bounded by 
the parallels of latitude would not thereby be interfered with.” 

Thus, the solar climate (also called the mathematical climate [1, 2]) of the Earth and its Moon essen-
tially depends on astronomic conditions like the heliocentric distance, the obliquity of rotation axis with 
respect to the normal of the ecliptic plane, the angular velocity of the rotation, and the total solar irra-
diance (TSI), if scaled to 1 AU customarily called the solar constant. With respect to geological time scales, 
also changes in the precession of Earth’s rotation axis, and long-term variations of the eccentricity, obliq-
uity, and precession of the Perihelion caused by the Sun, Moon and planets of our solar system must be 
addressed [3-9]. In the case of the Moon, the precession of the perigee as well as the precession of the lunar 
orbit’s longitude of the ascending node must be taken into account, which have periods of 8.85 years and 
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18.6 years, respectively. 
The formula for the effective radiation temperature, eT , either of the Earth (with or without an at-

mosphere) or the Moon (or any other planet and natural satellites), 

( )
1
41

4
G

e
G

S
T

α
ε σ

 −
=  

 
                                  (1.1) 

is crudely based on the solar climate. This formula is based on a global radiative equilibrium which means 
that the infrared radiation emanating from this conceptual Earth, 4

G eTε σ , is equal to the globally aver-
aged absorbed solar radiation, ( )1 4G Sα−  [10]. Here, Gα  is the global (or planetary) albedo in the 
solar range, S is the solar constant, Gε  is the global emissivity, and 8 2 45.67 10 W m Kσ − − −= × ⋅ ⋅  is Ste-
fan’s constant. Note that the power law of Stefan [11] and Boltzmann [12] is only valid on a local scale. 
Applying it on a global scale notably disagrees with the prerequisites and assumptions on which the deri-
vation of this power law is based. In the case of the Earth, the solar constant is about 21361 W mS −= ⋅  
[13-16]. With the usual assumptions of 0.30Gα =  and 1.0Gε = , one obtains 255 K 18 CeT ≈ = −  . Thus, 
the so-called natural atmospheric greenhouse effect is usually quantified by 33 Kns eT T T∆ = − ≈ , where 

288 KnsT ≈  (e.g., [2, 17-26]) is the globally averaged near-surface air temperature. Here, the angle 
brackets,  , define the global average (e.g., [19, 27-29]) 

( ) ( )
2

0 0 0

1 1, sin d d sin d
4 2

ψ ψ θ ϕ θ θ ϕ ψ θ θ θ
π π π

= =
π ∫ ∫ ∫                     (1.2) 

with the zonal average (e.g., [28-32]), 

( ) ( )
2

0

1 , d
2

ψ θ ψ θ ϕ ϕ
π

=
π ∫                                (1.3) 

where ( ),ψ θ ϕ  is a field quantity like the solar insolation, ( ),SF θ ϕ , the absorbed solar irradiance, 
( ),Q θ ϕ , the infrared irradiance, ( ),IRF θ ϕ , and the surface temperature, ( ),sT θ ϕ . 

The assumption of a global albedo of about 0.30Gα = , however, is far from reality because this value 
is related to the entire Earth-atmosphere system. For 0.30Gα = , the infrared radiation emitted to space 
would be that at the top of the atmosphere (TOA) of about 2238.2 W mIRF −≅ ⋅ . The cloud cover pri-
marily contributes to this value of the global albedo, but a cloud cover cannot exist in the thought model of 
the Earth in the absence of its atmosphere. Furthermore, the global emissivity of such a conceptual Earth is 
unknown. Both quantities might be related to those of the Earth’s Moon, as done by Kramm et al. [29]. 

Since, however, the thought model of an Earth in the absence of an atmosphere eludes observation, 
there are some assumptions that can be combined at will. Inserting, for instance, 0.8Gε =  as assumed by 
Schack [33], and 0.07Gα =  as suggested by Budyko [34] for the Earth in the absence of its atmosphere 
into Equation (1.1) would provide 289 KeT = . Thus, we would obtain 1 Kns eT T T∆ = − ≈ − . 

The effective radiation temperature of the Earth either with or without an atmosphere is only a syn-
onym for the global average of the infrared radiation emitted to space. It is a measure of the intensity of 
the radiation emanating from the Earth and, therefore, says nothing about the existing temperature dis-
tribution [35]. It was considered, for instance, by Defant and Obst [36], Lenard [37], Möller [38], and later 
adopted by many others like Hansen et al. [24] to quantify the so-called greenhouse effect. However, in the 
case of the Earth in the absence of its atmosphere, eT  would only correspond to a globally averaged sur-
face temperature if the surface temperature were uniformly distributed, which is, by far, not the case. A 
uniform distribution of the surface temperature would only exist in the trivial case that the solar constant 
for the planet or natural satellite would be zero. As illustrated in Figures 1-3, the distribution of the sur-
face temperature on a planet or a natural satellite (like Earth’s Moon or Jupiter’s Galilean moon Io) in the 
absence of an atmosphere is non-uniform. As outlined by von Hann, this distribution of the surface tem-
perature is mainly governed by the solar insolation defined as the flux of solar radiation per unit of hori-
zontal area for a given location [8]. 
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Figure 1. Distributions of (a) the bolometric temperature obtained from the Lunar Reconnaissance 
Orbiter Diviner Lunar Radiometer Experiment for the subsolar longitude ss 0 Eφ =   according to 
Williams et al., [39], and the daily mean values of (b) the slab temperature, (c) the solar insolation at 
Moon’s surface, and (d) the absorbed solar radiation calculated for twelve synodic months starting 
with TDB = 2455211.8 (January 15, 2010, 11:07 UT1, New Moon) and the latitudes ranging from 

90φ =  (North Pole) to 90φ = −  (South Pole) at an equidistant distance of 5φ∆ = , where 144 
values per day were used for daily averaging. The numerical simulations were performed using the 
multilayer-force-restore method that is based on Equation (2.1) and a multilayer numerical model 
that is based on Equation (2.6) for calculating the heat transfer in the regolith (adopted from Kramm 
et al. [29]). 
 

Note that the notion “terrestrial day” used in Figure 1 means the length of the day of 86,400 s = 24 h. 
It is about 236 s longer than the Earth’s sidereal rotation period. Hereafter, we only use “day” (d), where 
365.25 d = 1 Julian year. 
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Figure 2. Daily mean values of (a) the slab temperature according to Equation (2.1), and (b) the solar 
insolation at the surface of the Earth in the absence of the atmosphere which were calculated for all 
days of a year, starting with TDB = 2455197.5 (January 1, 2010, 00:00 UT1) and the latitudes ranging 
from 90φ =  (North Pole) to 90φ = −  (South Pole) at an equidistant distance of 5φ∆ = , where 
144 values per day were used for daily averaging. The numerical simulations were performed using 
the so-called multilayer-force-restore method as well (adopted from Kramm et al. [29]). 
 

 
Figure 3. Map of daytime brightness temperature in the PPR 27 μm filter, superimposed on an SSI 
map of Jupiter’s Galilean moon Io, from the 31IPDGTM_01 observation. Contour interval is 5 K. 
Approximate location of the sub-solar point is marked with an * (adopted from Rathbun et al. [51]). 
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The concept of effective radiation temperature was originally developed for stars like our Sun (e.g., 
[35, 40-42]). It seems that this concept is unsuitable for planets and their natural satellites. The solar irra-
diance, F, reaching the TOA or—if an atmosphere plays no role—the surface of either a planet or a natural 
satellite in our solar system at the sub-solar point is given by 

2
Sun

Sun
rF F
r

 =  
 

                                   (1.4) 

where SunF  is the solar emittance [8, 9, 43, 44], 56.963 10 kmSunr ≅ ×  [45] is the visible radius of the Sun, 
and r is the actual heliocentric distance of either the planet or the natural satellite. Formula (1.4) is based 
on the fact that the radiant power emitted by the Sun is kept constant when the solar radiation is propa-
gating through the space because of energy conservation principles in the absence of an intervening me-
dium [8, 46, 47]. This radiant power (also called the luminosity) is given  
by 

2 2 264 4 3.828 10 WSun SunL r F r Fπ π= = = ×                         (1.5) 

Inserting the mean heliocentric distance, 0r , of a planet or a natural satellite into Equation (1.4) pro-
vides the respective solar constant 

2

0

Sun
Sun

rS F
r

 
=  

 
                                   (1.6) 

Combining formulae (1.4) and (1.6) yields 
2

0rF S
r

 =  
 

                                    (1.7) 

The solar constant of the Earth of 21361 W mS −≅ ⋅  mentioned before is related to the mean helio-
centric distance of 8

0 1.496 10 kmr ≅ ×  (nearly 1 AU) [14, 48-50], where the actual heliocentric distance of 
the Earth (strictly spoken the Earth-Moon barycenter, EMB) ranges from 81.471 10 kmr ≅ ×  at the Peri-
helion to 81.521 10 kmr ≅ ×  at the Aphelion. 

Inserting Equation (1.6) into Equation (1.1) provides 

( )
1 1 1 11
4 2 4 24

0 0

1 1
2 2

G Sun Sun Sun G Sun
e

G G

F r F rT
r r

α α
ε σ σ ε

 −      − = =        
       

                (1.8) 

Introducing the effective radiation temperature of the Sun, ( )1 4
Sun SunT F σ=  [41], assuming 1Gε =  

and replacing 0r  by the orbital semi-major axis, a yield [52] 

( )
1

1 2
41

2
Sun

e Sun G
rT T

a
α  ≅ −  

 
                              (1.9) 

The formula should also serve for determining the effective radiation temperature of Earth analogs. 
Furthermore, the luminosity (Equation (1.5)) is used to define the scaled semi-majsor axis by [52] 

( )
1
24s

aa S
L

−π= =                                 (1.10) 

Unfortunately, the effective radiation temperature is not unambiguous because non-uniform distri-
butions of the surface temperature are also compatible with the global radiation balance. Gerlich and 
Tscheuschner [53], for instance, derived the following formula for the globally averaged surface tempera-
ture of a radiation-exposed static globe in the absence of its atmosphere: 

3 22 0.566
5s e eT T T= ≅                               (1.11) 
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As assumed by these authors, ( ),sT θ ϕ  is the surface temperature that is based on the local radiation 
balance given by 

( )( ) ( ) ( )4
0 01 , , cos , ,sF Tα θ ϕ ε θ ϕ σ θ ϕ− Θ Θ =                      (1.12) 

where ( )( )0 01 , , cosQ Fα θ ϕ= − Θ Θ  is the absorbed solar radiation, ( )0 , ,α θ ϕΘ  is the integral albedo of 
the solar range, 0Θ  is the local zenith distance of the Sun’s center, and the infrared radiation emitted by 
the regolith in the close vicinity of the surface is given by the power law of Stefan and Boltzmann 

( ) ( )4, ,IR sF Tε θ ϕ σ θ ϕ= , where ( ),ε θ ϕ  is the integral relative emissivity and σ  is Stefan’s constant. As 
both the Earth and the Moon are considered as spheres, the location is simply characterized by the zenith 
and azimuthal angles θ  and ϕ , respectively. The zenith angle, θ , ranges from 0 (North Pole) to π 
(South Pole), and the azimuthal angle, ϕ , ranges from 0 to 2π. The global average of the absorbed solar 
radiation is given by 

( ) ( )0 0 0 0cos , , cos 1 cosGQ F F Fα θ ϕ α= Θ − Θ Θ = − Θ              (1.13) 

where 

( )0 0

0

, , cos
cosG

F
F

α θ ϕ
α

Θ Θ
=

Θ
                            (1.14) 

defines the globally averaged albedo in the solar range. Generally, ( )0 , ,Gα α θ ϕ≠ Θ , except for  
( )0 , , constα θ ϕΘ = . Note that 0cos 4F SΘ ≅ . The global average of the emitted infrared radiation is 

given by 

( ) ( ) ( )4 4, , ,IR s G sF T Tε θ ϕ σ θ ϕ ε σ θ ϕ= =                     (1.15) 

where 

( ) ( )
( )

4

4

, ,

,
s

G
s

T

T

ε θ ϕ θ ϕ
ε

θ ϕ
=                              (1.16) 

defines the globally averaged emissivity, where ( ),Gε ε θ ϕ≠ , except for ( ), constε θ ϕ = . 
Choosing 0.30Gα = , and 1.0Gε = , as done for instance by Gerlich and Tscheuschner [53], provides 

144.3 KsT ≅ . Even though this global average of the surface temperature drastically differs from effec-
tive radiation temperature, the globally averaged emitted infrared radiation is  

( )4 2, 238 W mIR sQ F Tσ θ ϕ −= = ≅ ⋅ . They denoted sT  as the “physical temperature.” This notion, 
however, is infelicitous. As a global average, sT  has no physical meaning. Its sole purpose is to compare it 
with nsT  because both quantities are globally averaged in the same manner. With respect to their results, 
Gerlich and Tscheuschner argued that the average temperatures are considerably lower than the absolute 
temperature’s fourth root of the averaged fourth power expressed by their temperature inequality [53] 

44
s sT T≤ ,                                  (1.17) 

verified by them with the aid of Hölder’s [54] inequality, but formulated for integrals [55]. 
Kramm et al. [29] obtained 148.4 KsT ≅ , 2279.7 W mQ −≅ ⋅ , and 2279.6 W mIRF −≅ ⋅  for an 

obliquely rotating Earth in the absence of its atmosphere when using Equation (1.12), ( ), 0.98ε θ ϕ = , and 
Keihm’s [56] empirical formula rearranged to 

( )
3 5

0 0
0 0 45 45

a bα α
 Θ Θ   Θ = + +          

                          (1.18) 

where 0 0.10α =  is the normal albedo, 0.045a =  and 45.47 10b −= ×  are empirical parameters (with 
exception of b, all other values are from observations of the Diviner Lunar Radiometer Experiment 
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(DLRE) [57, 58] aboard NASA’s Lunar Reconnaissance Orbiter (LRO) [59-61]). Because 0.178Gα = , the 
effective radiation temperature is 266.4 KeT ≅ . This means that the result of Gerlich and Tscheuschner 
[53] for a non-rotating Earth in the absence of its atmosphere holds even for an obliquely rotating globe if 
atmospheric effects were negligible. 

Equation (1.12) expresses the solar climate in its historical sense, i.e., the distribution of temperature 
over the Earth in the absence of its atmosphere would depend solely upon the amount of heat received 
from the Sun at any given place, and upon the loss of heat by radiation at that place [1, 2]. However, as 
already demonstrated by Wesselink [62] in the case of the Moon, the local radiation balance fails com-
pletely during the nighttime because it would provide 0 KsT = . It is therefore essential to expand the 
concept of solar climate in such a way that such a model artifact is generally excluded. Consequently, the 
soil heat flux has to be considered as well, as done, for instance, by Wesselink [62], Jaeger [63], Cremers et 
al. [64], Mitchell and de Pater [65], Vasavada et al. [58, 66], Bauch et al. [67, 68], Hu et al. [69], and 
Kramm et al. [29]. 

An Earth in the absence of an atmosphere, however, is beyond the scope of observation. Consequent-
ly, at least, the plausibility of this thought model must be assessed in another way. In our solar system, for 
instance, the planet Mercury and our Moon are suitable approximations for a rocky planet without an at-
mosphere because the densities of their atmospheres are very low. Therefore, these Earth analogs come 
very close to the thought model of an Earth in the absence of its atmosphere. However, their astrometric 
features considerably differ from those of the Earth. 

The Earth’s period of rotation is 23.9345 hours, which corresponds to an angular velocity of rotation 
of 5 17.292 10 sEω − −≅ × . Since the sidereal period of rotation of the Moon is 655.73 hours, which corres-
ponds to an angular velocity of 6 12.662 10 sMoω − −≅ × , the Moon rotates 27.4 times slower than the Earth. 
Mercury’s sidereal period of rotation is 1407.6 hours and consequently the angular velocity of its rotation 
is 6 11.240 10 sMeω − −≅ × . This means that Mercury rotates 58.8 times slower than the Earth and 2.15 times 
slower than the Moon. 

The mean heliocentric distance of Mercury is only 7
0, 5.791 10 km 0.3871 AUMe Mer a≈ = × =  leading 

to a solar constant of 
2

0, 2

0,
9083 W mE

Me
Me

r
S S

r
− 

= ≅ ⋅  
 

                         (1.19) 

In addition, Mercury’s orbit shows an extremely high eccentricity of 0.2056Mee ≅ , while that of the 
Earth orbit is only 0.0167Ee ≅ . Since Mercury’s heliocentric distance ranges between 4.600 × 107 km (Pe-
rihelion) and 6.982 × 107 km (Aphelion), its total solar irradiance (TSI) varies from 214395 W mMeF −≈ ⋅  
at Perihelion to 26249 W mMeF −≈ ⋅  at Aphelion. A special feature of Mercury is that the angular velocity 
of the orbit near the Perihelion slightly exceeds that of the rotation, which leads to a secondary sunrise 
(e.g., [66, 68, 70, 71]). Against this background, the Moon is preferable for testing the plausibility of the 
thought model of an Earth in absence of its atmosphere. Further reasons are the existence of (a) the in-situ 
temperature measurements carried out with the help of thermocouples as part of the heat flow experi-
ments of the Apollo Lunar Surface Experiment Package (ALSEP) at the Apollo 15 landing site Hadley 
Rille/Apennine Mountains [72] and the Apollo 17 landing site Taurus-Littrow [73] and (b) the bolometric 
temperatures provided by the DLRE [57], available to us since April 2018. Nonetheless, the Mercury Ra-
diometer and Thermal Infrared Spectrometer (MERTIS) that is part of the BepiColombo Mission 
launched in October 2018 [68, 74] may provide a reliable database for evaluating model results regarding 
Mercury’s solar climate. 

Kramm et al. [29] used their multilayer-force-restore method to compute the global average of the 
Moon’s surface temperature and in a further step that of the Earth in the absence of its atmosphere. 
Kramm et al. obtained for the Moon 197.9 KslabT ≅  and for the Earth in the absence of its atmosphere 

220.7 KslabT ≅ . Thus, the outcome notably differs. This difference can be explained by the 27.4 times 
higher angular velocity of the Earth compared to that of the Moon, i.e., the response time of the emitted 
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infrared radiation with respect to the absorbed solar radiation causes different effects [29]. Kramm et al.  

obtained for the Moon ( )
1 44 , 266.4 KslabT θ ϕ ≅  and for the Earth ( )

1 44 , 266.5 KslabT θ ϕ ≅ , i.e., 

( )
1 44 ,slabT θ ϕ  and eT  substantially agree with each other, but in contrast to Equation (1.11),  

( )
1 440.743 ,slab slabT T θ ϕ≅  is valid for the obliquely rotating Moon and ( )

1 440.828 ,slab slabT T θ ϕ≅   

for the obliquely rotating Earth in the absence of its atmosphere. These results confirm the temperature 
inequality of Gerlich and Tscheuschner [53]. 

Kramm et al. [29] preliminarily validated their model results obtained for the Moon by comparing 
the zonal mean bolometric temperatures of the DLRE published by Williams et al. [39] for numerous par-
allels of latitude. As mentioned before, these DLRE datasets are meanwhile available. The goals of our pa-
per are, therefore, (a) to expand the notion “solar climate” to predict the related distribution of the surface 
temperature in a realistic manner, (b) to evaluate the model results of Kramm et al. on the basis of the 24 
DRLE datasets, (c) to compare the globally averaged surface temperature with the effective radiation tem-
perature, and (d) to assess the temperature inequality of Gerlich and Tscheuschner [53] in the case of 
Earth analogs, where we exemplarily consider our Moon as a test bed. 

2. THE NUMERICAL MODEL FOR THE MOON REGOLITH 
Since the soil heat flux has to be considered in deriving the surface temperature [53], Kramm et al. 

[29] derived the following local energy budget equation for a thin slab of the regolith adjacent to the sur-
face of either the Moon or the Earth in the absence of its atmosphere: 

( )( ) ( ) ( ) ( )4
0 0

d 1 , , cos , , ,
d slab slab slVc T F T H
t

ϑ ρ α θ ϕ ε θ ϕ σ θ ϕ θ ϕ= − Θ Θ − −         (2.1) 

Here, t is time, slabT , ρ , and c, are the temperature, bulk density, and specific heat of this slab, re-
spectively. The soil volume average is defined by 

1 d
slab

slab slabV
slab V

c T c T V
V

ρ ρ= ∫                           (2.2) 

The volume slabV  is given by slab slabV C ϑ= , where slabC  is the cross section, and 2 cmϑ =  is the 
thickness of this slab. Thus, the temperature slabT  represents the temperature of the slab adjacent to the 
surface. Assuming that slabT , ρ , and c are homogeneously distributed in this thin layer leads to 

( )( ) ( ) ( ) ( )4
0 0

d 1 , , cos , , ,
d

slab
t slab sl

TR F T H
t

α θ ϕ ε θ ϕ σ θ ϕ θ ϕ= − Θ Θ − −             (2.3) 

where tR cρϑ=  is the thermal inertial coefficient. Furthermore, ( ),slH θ ϕ  is the vertical component of 
the soil heat flux density expressed by the one-dimensional form of Fourier’s law of heat conduction (e.g., 
[62-66, 75-77]), 

( ) ( )
,

, , sl
sl h

TH k
z θ ϕ

θ ϕ θ ϕ
∂

= −
∂

                           (2.4) 

Here, slT  is the soil temperature, and ( ),hk θ ϕ  is the thermal conductivity. The soil heat flux den-
sity characterizes the exchange of the slab with soil layers below. Henceforth, a flux density is called a flux 
for ease of readability. The difference between the absorbed solar radiation and the emitted infrared radia-
tion mainly governs the direction of ( ),slH θ ϕ .  

Under steady-state conditions, the left-hand side of Equation (2.3) is zero leading to 

( )( ) ( ) ( ) ( )4
0 01 , , cos , , , 0s slF T Hα θ ϕ ε θ ϕ σ θ ϕ θ ϕ− Θ Θ − − =               (2.5) 

This means that the slab, characterized by slabT , ρ , c, and ϑ , no longer occurs, and slabT  is re-
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placed by the “surface temperature” sT . Wesselink [62], Jaeger [63], Cremers et al. [64], Mitchell and de 
Pater [65], Vasavada et al. [58, 66], Bauch et al. [67, 68], for instance, used Equation (2.5) together with 
Equation (2.4) to compute the surface temperature for various areas on the Moon. 

Kramm et al. [29] used Equation (2.3) together with Equation (2.4) to predict the distributions of slab 
temperatures for both the Earth’s Moon and the Earth in the absence of its atmosphere. A numerical mul-
tilayer model for the regolith based on  

sl sl
h

T Tc k
t z z

ρ
∂ ∂∂  =  ∂ ∂ ∂ 

                               (2.6) 

was used to predict the both the temperature and the heat flux in the layer of the regolith below the slab. 
Kramm et al. used 16 levels in their computations and a maximum depth of zr = 3.20 m, at which Tsl.r, is 
considered as time-invariant, but dependent on latitude [66].  

For the bulk density and the thermal conductivity, Kramm et al. considered the formulae of Vasavada 
et al. [58], 

( ) ( )exp
0.06b b t

zzρ ρ ρ ρ  = − − − 
 

                         (2.7) 

where 31300 kg mtρ −= ⋅  and 31800 kg mbρ −= ⋅  are the bulk densities close to the surface and at the 
depth rz , respectively, and 

( ) ( )
3

, , , ,
350

, exp
0.06h h b h b h t h t

z Tk z T k k k k
T

χ
  = − − − +   

   
                 (2.8) 

with 4 1 1
, 6.0 10 W m Kh tk − − −= × ⋅ ⋅ , 3 1 1

. 7.0 10 W m Kh bk − − −= × ⋅ ⋅ , and 2.7χ = . The heat capacity was 
calculated by 

2 3 4
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350 350 350 350

350
350
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e
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        
 + + − + ≤       
        = 

  
− − >     

−



    (2.9) 

The formula for 350T T≤  is based on the analysis of lunar soils samples from the lunar landing sites 
Fra Mauro (Apollo 14), Hadley-Apeninne Base (Apollo 15), and Descartes Highlands (Apollo 16) by He-
mingway et al. [78], but their results are normalized by 350T . Wechsler et al. [79] recommended an expo-
nential function for 350T T> . For a detailed discussion of the numerical procedures and results provided 
by this multilayer force-restore method see Kramm et al. [29]. As mentioned before, Figures 1(b)-(d) and 
Figure 2 are based on the results provided by this multilayer force-restore method.  

3. ASTROMETRIC ASPECTS 
The local energy budget equation for a thin slab of the regolith adjacent to the surface of either the 

Moon or the Earth in the absence of its atmosphere given by Equations (2.1), (2.3), and (2.5) as well as the 
local radiation budget expressed by Equation (1.12) requires the solar input. For computing the TSI, we 
need Equation (1.7), the solar constant, and the local zenith distance of the Sun’s center.  

In the case of the Earth, 0cosΘ  can be determined using the rules of spherical trigonometry (e.g., [8, 
9, 36, 80-85]) 

0cos sin sin cos cos cos
cos sin sin cos cos

S S

S S

h
h

φ δ φ δ
θ δ θ δ

Θ = +

= +
                      (3.1) 

Here, Sδ  is the declination of the Sun, φ  is latitude, and h is the hour angle with respect to the lo-
cal meridian. We use a spherical coordinate frame with its origin in the center of a planet or a natural sa-
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tellite, the zenith angle, θ , is counted with respect to the body’s rotation axis, which shows in the direc-
tion of the Northern Celestial Hemisphere. The declination of the Sun can be determined using  

( )sin sin sin sin sinSδ ε λ ε υ ϖ= = +                         (3.2) 

where ε  is the obliquity of the ecliptic, and λ υ ϖ= +  is the true longitude of the Earth counted coun-
terclockwise from the vernal equinox (e.g., [8, 9, 84, 86, 87]), υ  is the true anomaly, i.e., the positional 
angle of the Earth on its orbit counted counterclockwise from the Perihelion, and ϖ  is the longitude of 
the Perihelion counted counterclockwise from the moving vernal equinox of the Northern Hemisphere. 
The declination Sδ  ranges from 23 26 21 SSδ ′= ″  (Tropic of Capricorn; 3 2λ = π ) to 23 26 21 NSδ ′= ″  
(Tropic of Cancer; 2λ = π ), and h ranges from −H to H, where H represents the half-day, i.e., from su-
nrise to solar noon or solar noon to sunset. The half-day must fulfill the condition H < π , where π  cor-
responds to 12 hours. This condition is not fulfilled for those points within the polar domes delimited by 
the polar circles for which the Sun does not set within 24 hours, because then 0cos 0Θ =  does not hold 
[81, 82]. Therefore, the condition H = π  is that of the polar circle, i.e., 66 33 39φ = ″− ′  (Antarctic circle) 
and 66 33 39φ = ′ ″  (Arctic circle). Furthermore, the obliquity is given by ε ε ε= + ∆ , where the mean 
obliquity of date, 

2 384381 .448 46 .815 0 .00059 0 .001813T T Tε ′′ ′′ ′′ ′′= − − +                 (3.3) 

is adopted from Folkner et al. [88] and Park et al. [89]. The nutation in the obliquity is given, for instance, 
by 9. 205348cosε ′′∆ = Ω  [88], where the ascending node of Moon’s orbit on the ecliptic reads [88, 89] 

2 3125 02 40 .280 1934 08 10 .549 7 .455 0 .008T T T′ ′′ ′ ′′ ′′ ′′Ω = − + +               (3.4) 

Here, T is the TDB time in centuries with respect to J2000.0, where the Julian century corresponds to 
36525 d.  

For the Moon, Sδ  has to be replaced by the selenographic latitude, Sb , of the Sun. In accord with 
Taylor et al. [90], Kramm et al. [29] computed the selenographic longitude, Sl , and the selenographic la-
titude, Sb , of the Sun using 

( ) ( )
( )

cos cos sin sin sin
tan

cos cos
H H H

S M
H H

I I
l L

β λ ψ β
β λ ψ

− Ω − ∆ −
+ − Ω =

− Ω − ∆
           (3.5) 

and 

( )sin sin cos sin cos sinS H H Hb I Iβ λ ψ β= − − Ω − ∆ −                 (3.6) 

where the selenographic colongitude is 90 Sl− . Here, 5553 .6 1.54267I ′′= ≅   is the inclination of the 
ecliptic to the mean lunar equator adopted from Newhall and Williams [91], ML  is the mean longitude of 
the Moon adopted from Simon et al. [92], and ψ∆  is the nutation in longitude given, for instance, by

17 .206262sinψ ′′∆ = − Ω  [88]. Kramm et al. [29], however, used the data provided by the planetary and 
lunar ephemeris DE430 of the Jet propulsion Laboratory (JPL), California Institute of Technology. Since 
2020, JPL’s planetary and lunar ephemeris DE440 is available [89]. Therefore, we confirmed the astrome-
tric results of Kramm et al. from 2017 using DE440. In some cases, we compared our astrometric results 
with those from the JPL Horizons on-line solar system (https://ssd.jpl.nasa.gov/horizons/) that are based 
on DE441 because these results are provided by independent calculations. 

The heliocentric ecliptic latitude and longitude of the Moon, Hβ  and Hλ , are given by 

sin SM
H

SM

Z
d

β =                                   (3.7) 

and 

tan SM
H

SM

Y
X

λ =                                   (3.8) 

https://doi.org/10.4236/ns.2022.149034
https://ssd.jpl.nasa.gov/horizons/


 

 

https://doi.org/10.4236/ns.2022.149034 397 Natural Science 
 

Here, SM SMd = d  is the length of the heliocentric vector to the Moon, ( ), ,SM SM SM SMX Y Z=d  with 
the coordinates SMX , SMY , and SMZ . Kramm et al. [29] also used JPL’s DE430 to compute the heliocen-
tric distances of the Moon, Mr , and the Earth, Er , the declination, Sδ , and the selenographic latitude, 

Sb , of the Sun, respectively.  
Results for these quantities obtained for about twenty synodic months (about 591 days) starting May 

24, 2009, 00:00 UT1 (TDB = 2454975.5), denoted hereafter as Period I, are illustrated in Figure 4(a) and 
Figure 5, respectively. Based on Equation (1.7) and the values of Mr , Er , and S, the corresponding TSI 
reaching either the Moon or the Earth are predicted as well (Figure 4(b)). The results illustrated in Figure 
4(a) lead to a mean heliocentric distance for the Moon of 1.0012479 AU and for the Earth of 1.00166376 
AU, where 1 AU = 149597870.700 km. Since the multilayer-force-restore method has to be spun up to 
equilibrium prior to analysis of the results [93], only the results provided by it for the last twelve synodic 
months starting January 15, 2010, 07:11 UT1 (TDB = 2455211.8, New Moon), hereafter denoted as Period 
II, were analyzed by Kramm et al. [29]. 
 

 

Figure 4. Variation of (a) the heliocentric distances of the Moon, Mr , and the Earth, Er , during the 
Period I, derived from the data provided by JPL’s ephemeris DE430, and (b) the TSI reaching the 
sub-solar point either of the Earth or Moon as obtained with Equation (1.7) for S 21361 W m−= ⋅ . 
 

 

Figure 5. Variation of (a) the selenographic latitude, Sb , and (b) the selenographic longitude, Sl  of 
the Sun during the Period I. The results are based on the data provided by JPL’s ephemeris DE430. 
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The synodic month (also referred to as a lunation) is defined as the interval between two consecutive 
New Moons. It is nearly 2.21 days longer than the lunar orbital period with respect to the fixed stars called 
the sidereal month (see Table 1). While the Moon revolves around Earth, both objects also progress in 
orbit around the Sun. After completing one revolution with respect to the fixed stars, the Moon must con-
tinue a little farther along its orbit to catch up to the same position it started from relative to the Sun and 
Earth [94]. 

At the time of the New Moon, solar radiation reaches a local maximum. Thus, the calculation of the 
TSI requires an accurate determination of the New Moon. It occurs when the geocentric ecliptic longitudes of 
the Sun ( Sλ ) and the Moon ( Mλ ) are the same (e.g., [94-96]), customarily expressed by ( ) 0f t = , where 

( ) M Sf t λ λ= −  for New Moon ( ) 90M Sf t λ λ= − −   for the first quarter, ( ) 180M Sf t λ λ= − −   for the 
Full Moon, and ( ) 270M Sf t λ λ= − −   for the last quarter. Because the times are determined from geo-
centric coordinates, they are independent of location on the Earth [96]. The variation of Mλ  and Sλ  as 
well as the New Moons are illustrated in Figure 6. This figure also shows the variation of the ecliptic z 
coordinate eclz . 

 
Table 1. Mean values of the different orbital periods. 

Orbital period 
Duration 

Source 
[day] [hour] [min] [sec] [day] 

Sidereal month (fixed star to fixed star) 27 7 43 12 27.32167 [94-100] 

Tropical month (equinox to equinox) 27 7 43 5 27.32159 [94, 96, 98, 100] 

Synodic month (New Moon to New Moon) 29 12 44 3 29.53059 [94-100] 

Draconic month (node to node) 27 5 5 36 27.21222 [94-96, 98-100] 

Anomalistic month (perigee to perigee) 27 13 18 33 27.55455 [94-96, 98-100] 
 

 

Figure 6. Variation of (a) the geocentric ecliptic longitudes of the Moon, Mλ , and the Sun, Sλ , and 
(b) the ecliptic z coordinate, eclz , for the Period I, derived from the data provided by JPL’s epheme-
ris DE430. The red open circles in (a) represent the New Moons, and the black open circles in (b) the 
passages of the Moon through the ascending node, respectively. 
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According to astrometric calculations of Kramm et al. [29], the first New Moon of Period I took place 
on May 24, 2009, 12:09 UT1 and the last one on January 4, 2011, 8:59 UT1. As listed in Table 1, the mean 
synodic month is about 29.53059 days. However, as illustrated in Figure 7(a), the true lunation deviates 
from the mean one by up to seven hours during the Period I. For this period, the results differ from those 
derived by Roncoli [101] using JPL’s ephemeris DE403/LE403 by less 420 s, i.e., within the range of the 
maximum time step of about 600 s used by Kramm et al. during the integration of Equation (2.3). 

Obviously, the reliable determination of the New Moon requires accurate astrometric calculations of 
the geocentric ecliptic longitudes of the Sun ( Sλ ) and the Moon ( Mλ ). It can be achieved the best within 
the framework of the calculation of well-known geocentric quantities of the Moon.  

The geocentric distance, the astrometric right ascension, and the declination of the Moon for the Pe-
riod I are illustrated in Figure 8. As shown in Figure 8(a), the perigee distance varies significantly more 
with time than the apogee distance. According to our astrometric calculations, Moon’s perigee distance 
ranges from 356,593 km to 369,733 km while the apogee distance only ranges from 404,167 km to 406,541 
km during the Period I. The corresponding mean geocentric distance of the Moon amounts to 384,792 km. 

The actual geocentric distance of the Moon is given by  
 

 
Figure 7. Difference from (a) the mean synodic month, (b) the mean draconic month, and (c) the 
mean anomalistic month and the mean synodic month for the Period I, derived from the data pro-
vided by JPL’s ephemeris DE430. 
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Figure 8. Variation of (a) Moon’s geocentric distance, (b) the astrometric right ascension, and (c) 
the declination of the Moon’s center during the Period I, derived from the data provided by JPL’s 
ephemeris DE430. The blue open circles in (a) mark the perigee. 
 

2 2 2
eq eq eqr x y z= + + +                                 (3.9) 

Here, eqx , eqy , and eqz  are the equatorial coordinates, where eqx  points to the first point of 
Aries that corresponds to the vernal equinox of the Northern Hemisphere. These equatorial coordinates 
are provided by JPL’s ephemeris DE430.  

Perigee and apogee can simply be determined using the first and second derivative tests. In accord 
with Equation (3.9), the first derivative of the actual geocentric distance with respect to time is given by 

d d dd 1
d d d d

eq eq eq
eq eq eq

x y zr x y z
t r t t t

 
= + + 

 
                        (3.10) 

The ephemeris DE430 provides both the components of the position vector and the components of 
the velocity vector for computing this derivative. The optimum is given when the expression in parenthes-
es is equal to zero (i.e., d d 0r t ≅ ). The sign of the second derivative for the time of the optimum marks 
either the perigee ( 2 2d d 0r t > ) or the apogee ( 2 2d d 0r t < ). Because 2 2d deqx t , 2 2d deqy t , and 

https://doi.org/10.4236/ns.2022.149034


 

 

https://doi.org/10.4236/ns.2022.149034 401 Natural Science 
 

2 2d deqz t  are not delivered by the ephemeris, we determine the second derivative numerically from the 
d dr t  curve. The results for about twelve anomalistic months of 2010 are illustrated in Figure 9. 

In addition to the sidereal and synodic months, three other orbital periods or months are distin-
guished (e.g., [94-96, 99]): 1) The orbital period with respect to the equinox called the tropical month, 2) 
the draconic (or nodical) month defined as the interval between two successive passages of the Moon 
through the ascending node (see Figure 6(b)), and 3) the anomalistic month related to the interval re-
quired by the Moon to move in its path around the Earth from perigee to perigee (see Figure 8(a)). 

It is well-known that the lengths of these different months vary with time (e.g., [94, 100]). For con-
venience, their mean values are listed in Table 1. The deviations of these different months from their 
mean values during the Period I are illustrated in Figure 7. While the synodic and draconic months de-
viate from their mean values only by hours, the anomalistic month departs from its mean even by days. 
The largest negative deviations occur around the points of inflection in the curve representing the depar-
ture of the synodic month from its mean (see Figure 7(c)).  

As pointed out by Paige et al. [57], the Moon experiences seasonal insolation variations due to the 
combined effects of the 5.14˚ obliquity of the Moon’s orbital plane relative to the ecliptic, and the 6.68˚ 
obliquity of the Moon’s spin axis relative to the Moon’s orbital plane. The net effect is that the latitude of 
the subsolar point undergoes a seasonal variation with an amplitude of about 1.54˚ and a period of about 
346 days, which is less than a full Earth year due to the precession of the Moon’s orbital plane. According 
to Figure 5(a), the time interval between the two passages of the Sun through the ascending node (charac-
terized by the open circles) of the lunar equator plane corresponds to 347.29 days, i.e., it is slightly longer 
than the mean draconic year of 346.62 days [57, 96, 99] that is based on the 223 synodic months of the Sa-
ros period of about 18a11d8h and 19 eclipse years [94, 99, 100]. Based on our calculations, these ascending 
nodes are related to January 11, 2010, 2:24:00 UT1 (TDB = 2455207.60) and December 24, 2010, 9:21:36 
UT1 (TDB = 2455554.89). The draconic year is connected with the occurrence of eclipses [99, 102]. 

4. MODEL RESULTS 
The variations of the solar insolation and the absorbed solar radiation, and the soil heat flux at the 

depths of 2 cm for numerous parallels of latitude for Moon’s northern and southern hemispheres predicted  
 

 

Figure 9. First and second derivative tests for determining the perigee ( r td d 0≅  and r t2 2d d 0> , 

open circles) and the apogee ( r td d 0≅  and r t2 2d d 0< , open triangles) for about twelve anoma-
listic months of 2010. The results are based on the data provided by JPL’s ephemeris DE430. 
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for the Period II are illustrated in Figure 10. The distributions of the daily mean values of the solar insola-
tion at Moon’s surface and the absorbed solar radiation predicted for this period are illustrated in Figure 
1(c) and Figure 1(d), respectively. The variations of the respective slab temperatures are illustrated in 
Figure 11. 
 

 
Figure 10. Variations of the solar insolation and the absorbed solar radiation at the surface, and the 
soil heat flux at the depths of 2 cm for various parallels of latitude for Moon’s northern hemisphere 
((a), (c), (e)) and southern hemisphere ((b), (d), (f)) predicted for the Period II. 
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Since the rotation axis of the Moon is tilted at an angle of about 1.54˚ with respect to the normal of 
the ecliptic plane, the lunar polar circles are located at latitudes of ±88.46˚ and insolation conditions at 
these lunar latitudes depend on both local time and season [57]. Figure 10 and Figure 11 already illustrate 
this dependence, but Figure 12 and Figure 13 exhibit this dependence in a more convenient manner. 
They illustrate the variations of the solar insolation and the local surface temperature sT  at latitudes of 
89˚N, 90˚N, 89˚S and 90˚S for the respective white nights of the polar regions, where sT  is based on a 
local radiative equilibrium expressed by Equation (1.12). For comparison, the local slab temperature slabT  
provided by the multilayer-force restore method is illustrated as well. Obviously, the thermal inertia of the 
system, expressed by the thermal inertial coefficient tR  in Equation (2.3) and the heat flow slH  in the 
regolith, are responsible for the differences between sT  and slabT . Outside these polar white nights, sT  
drops to 0 K during nighttime. Therefore, Equation (1.12) is an unsuitable approximation of Equations 
(2.3) and (2.5). for most regions of the Moon, as already demonstrated by Wesselink [62]. 
 

 
Figure 11. Variations of the slab temperature for numerous parallels of latitude for Moon’s northern 
hemisphere (a) and southern hemisphere (b) during Period II (adopted from Kramm et al. [29]). 
 

 

Figure 12. Variation of (a) the solar insolation and (b) the surface temperature sT  given by Equa-
tion (1.12) and the slab temperature slabT  according to Equation (2.3) for a white night of the polar 
region of the northern hemisphere. 
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Figure 13. As in Figure 12, but for a white night of the polar region of the southern hemisphere. 
 

According to Espenak and Meeus [94, 100], an annular solar eclipse occurred on January 15, 2010, 
and a total lunar eclipse occurred on December 21, 2010 (Saros 125). The latter occurred during the 
twelfth lunation of the Period II. Furthermore, a partial lunar eclipse occurred on June 26, 2010 (Saros 
120). To estimate the effect of these two lunar eclipses on the global mean of the surface temperature, we 
considered the surface temperature measurements performed at the landing site of the Apollo 15 mission, 
Hadley Rille/Apennine Mountains (26˚5'N, 3˚40'E,) from July 31, 1971 to December 31, 1974 during the 
Heat Flow Experiment using the Apollo Lunar Surface Experiment Package (ALSEP) [72]. From this da-
taset, we considered the period from January 8, 1974 (Full Moon) to December 29, 1974 (Full Moon) that 
is comparable with twelve synodic months. Figure 14 shows the time series TC2 of the probe 2 at the 
Hadley Rille site, the partial lunar eclipse from June 4, 1974 (Saros 120), and the total lunar eclipse from 
November 29, 1974 (Saros 125). A comparable drop in the surface temperature of about 220 K during a 
total lunar eclipse was already observed and modeled by Fontain et al. (1976). From this time series at the 
Hadley Rille site, we computed the zonal average of the surface temperature by including these two lunar 
eclipses. We obtained a zonal average of 201.9 K. Then, we repeated our calculation by considering the 
same dataset in which, however, the effects of these lunar eclipses were arbitrarily removed by using an 
interpolation procedure for bridging the surface-temperature decreases. Ignoring these lunar eclipses leads 
to a zonal average of 202.0 K, i.e., without the two lunar eclipses the zonal average would be 0.1 K higher. 

5. THE DIVINER LUNAR RADIOMETER EXPERIMENT 
The Diviner Lunar Radiometer Experiment (DLRE) is one of seven instruments aboard NASA’s Lu-

nar Reconnaissance Orbiter (LRO) [59-61]. The LRO was launched on June 18, 2009 and entered a lunar 
orbit five days later. Beside the exploration mission of the LRO not considered here, the DLRE was the first 
experiment to systematically map the global thermal state of the Moon and its diurnal and seasonal varia-
bility [57]. Paige et al. [57] described the instrument, its specifications, the spectral channel passbands, and 
the archived data products in detail. The data are based on a nine-channel radiometer that maps solar ref-
lectance using channels 1 and 2 of high and reduced sensitivity (0.35 - 2.8 μm passband), and infrared 
emission using four thermal channels, where channel 6 (13 - 23 μm passband) is most sensitive for 

178 KsT > , channel 7 (25 - 41 μm passband) is most sensitive for 69 K 178 KsT≤ ≤ , channel 8 (50 - 100 
μm passband) is most sensitive for 43 K 69 KsT≤ ≤ , and channel 9 (100 - 400 μm passband) is most sen-
sitive for 43 KsT < . Figure 15 shows the nine spectral passbands of the DLRE. The respective blackbody  

https://doi.org/10.4236/ns.2022.149034


 

 

https://doi.org/10.4236/ns.2022.149034 405 Natural Science 
 

 
Figure 14. (a) Thermocouple temperature TC2 of the probe 2 at the landing site Hadley 
Rille/Apennine Mountains (26˚5'N, 3˚40'E) of the Apollo 15 for twelve synodic months, (b) partial 
lunar eclipse from June 4, 1974 (Saros 120), and total lunar eclipse from November 29, 1974 (Saros 
125). 
 

 
Figure 15. The nine spectral passbands of the Diviner Lunar Radiometer Experiment (DLRE) [39]. 
 
curves for both the solar range at 1 AU and for various possible surface temperature of the Moon in the 
infrared range based on Planck’s [103] radiation function are illustrated in Figure 16.  

The bolometric temperatures of the DLRE is a measure of the spectrally integrated flux of infrared 
radiation emerging from the surface [104]. These bolometric temperatures are available since April 2018 
under http://luna1.diviner.ucla.edu/~jpierre/diviner/level4_raster_data/ (referenced to Williams et al. 
[39]). They comprise 24 datasets for various subsolar longitudes ranging from 0 Essφ =   to 345 Essφ =  , 
spaced by 15ssφ∆ =  . Williams et al. [39] compiled all nadir observations (defined to be emission angles 
<10˚ relative to a sphere) from July 5, 2009 to April 1, 2015 (over 25,000 orbits) into bins of 0.5˚ latitude 
and longitude and 0.25 h of local time. Because these authors discussed the accuracy of the DLRE observa-
tions in detail, the reader is referred to their paper and the cited sources, especially [57, 104-107]. 
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Figure 16. Representative blackbody curves for the solar range at 1 AU and for various possible sur-
face temperature of the Moon in the infrared range that are based on Planck’s [103] blackbody radi-
ation function (adopted from Paige et al. [57], but with the solar spectral emittance at 1 AU added). 

6. MODEL RESULTS VERSUS DLRE OBSERVATIONS 
Figure 17 and Figure 18 illustrate the results of the comparison between slabT  of the eleventh luna-

tion shown in Figure 11 (which is close in length to the mean synodic month, see Figure 7(a)) and bolT  
of the DLRE related to the subsolar longitude 180 Essφ =   [39] for the equator and various parallels of 
latitude of the northern hemisphere and the southern hemisphere, respectively. Obviously, the predicted 
slab temperatures follow the bolometric temperatures acceptably. Between 75˚N and 75˚S, (most impor-
tant to compute slabT  and bolT , respectively, see Figure 19), the zonally averaged differences and the 
respective standard deviations are: 3.5 K ± 12.0 K for 75˚N 1.4 K ± 8.0 K for 60˚N, 0.9 K ± 6.5 K for 45˚N, 
0.7 K ± 6.4 K for 30˚N, 0.4 K ± 6.3 K for 15˚N, 0.3 K ± 5.8 K for 0˚, 0.0 K ± 5.1 K for 15˚S, 0.1 K ± 5.8 K 
for 30˚S, 0.4 K ± 6.3 K for 45˚S, −0.4 K ± 8.1 K for 60˚S, and 0.2 K ± 10.2 K for 75˚S.  

Figure 19(a) shows meridional distributions of the zonal averages of the bolometric temperature, 
( )bolT θ , for various zenith angles θ  that are based on Equation (1.3) choosing ( ) ( ), ,bolTψ θ ϕ θ ϕ= . 

These meridional distributions represent the range of all 24 DLRE datasets. Figure 19(b) shows the cor-
responding meridional distributions of ( )sinbolT θ θ , as required by Equation (1.2) for global averaging. 
Obviously, the higher nighttime temperatures and standard deviations for the polar spherical caps at lati-
tudes beyond ±80˚ (i.e., low and high values of θ ) resulting from the occurrence of low-angle illumina-
tion of surfaces, especially during polar summers, as already reported by Williams et al. [39], are of minor 
importance in global averaging. Figure 19 also shows the slab-temperature results of Kramm et al. [29] 
provided by their multilayer force-restore method. These results agree the best with the distribution of the 
bolometric temperature related to 180 Essφ =  . In this case, 197.9 KslabT =  and 200.0 KbolT = .  

The zonal averages derived from the 24 DLRE datasets and the respective standard deviation for var-
ious parallels of latitude are listed in Table 2. Also listed are the zonal averages obtained from model si-
mulations using the multilayer-force-restore method [29], and the in-situ measurement of the Apollo 15 
and 17 missions using the probe 2 of the Heat Flow Experiment (HFE) of the Apollo Lunar Surface Expe-
riment Package (ALSEP) [72, 73], where the entire periods were considered. Thus, these results slightly  
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Figure 17. Comparison between the slab temperature, slabT , of the eleventh lunation shown in Figure 
11 (adopted from Kramm et al. [29]) and the bolometric temperature, bolT , of the Diviner Lunar 
Radiometer Experiment related to the subsolar longitude ss 180 Eφ =   (with reference to Williams et 
al. [39]) for the Equator and various parallels of latitude of the northern hemisphere. Note that the 
eleventh lunation is close in length to the mean synodic month (see Figure 7(a)). Furthermore, the 

bolT  curves are averages for the respective parallels of latitude. 
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Figure 18. As in Figure 17, but only for the southern hemisphere. 
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Figure 19. (a) Typical meridional distributions of the zonal averages (see Equation (1.3)) of the bo-
lometric temperature, ( )bolT θ , for various values of the zenith angle θ  and the subsolar longitude 

ssφ , and (b) the corresponding meridional distributions of ( )bolT sinθ θ  as required by Equation 
(1.2) for global averaging. The black open circles in (a) represent the zonal averages listed in Table 2 
that were derived from the 24 datasets of the Diviner Lunar Radiometer Experiment [39]. 
 
differ from those published by Keihm et al. [72] and Keihm and Langseth [73]. 

The global averages of the bolometric temperature, bolT , for all 24 datasets related to the subso-
lar longitude ssφ  are illustrated in Figure 20. The arithmetic mean and the standard deviation of this  

distribution amount to 201.1 K 0.6 KbolT = ± . Since 
1 44 271.0 K 0.7 KbolT = ± , averaged over these 24 

datasets, we have 
1 440.742bol bolT T≅ . This means that the DLRE observations confirm the result 

1 440.743slab slabT T≅  theoretically derived by Kramm et al. [29]. These observations also confirm the  

temperature inequality (1.17) of Gerlich and Tscheuschner [53].  
The meridional distributions of the zonal averages of the absorbed solar radiation, ( )Q θ , and the 

emitted infrared radiation, ( )IRF θ , both weighted by sinθ  as required for global averaging, are shown 
in Figure 21 for different values of the normal albedo and the integral relative emissivity, 0 0.08α =  and 

0.95ε =  derived by Williams et al. [39] from the DLRE observations, and 0 0.10α =  and 0.98ε =  sug-
gested by Vasavada et al. [58] and used by Kramm et al. [29] in their model simulations. It seems that in 
the case of 180 Essφ =  , the normal 0 0.08α =  is a little bit too low. In this case, the global average of the 
absorbed solar radiation computed for the twelve lunations analyzed by Kramm et al. is  

2288.7 W mQ −= ⋅  for 0 0.08α = . Whereas the global average of the emitted infrared radiation is 
2285.7 W mIRF −= ⋅  for 0.95ε =  leading to a radiative imbalance of 23.0 W mIRQ F −− = ⋅ . The pre-

dicted results of Kramm et al. provided by the multilayer-force-restore method read  
2279.9 W mQ −= ⋅  for 0 0.10α =  and 2280.0 W mIRF −= ⋅  for 0.98ε =  leading to a radiative im-

balance of −0.1 W·m−2. 
Based on the globally averaged emitted infrared radiation of 2 2290.5 W m 3.0 W mIRF − −= ⋅ ± ⋅  de-

rived from these 24 datasets (see Figure 22), the effective radiative temperature for the Moon would be  
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Table 2. Zonal averages for various parallels of latitude obtained from model simulations using the 
multilayer-force-restore method ( slabT ) [29], the Diviner Lunar Radiometer Experiment ( bolT ) [39], 
and the in-situ measurement of the Apollo 15 and 17 missions using the probe 2 data of the Heat 
Flow Experiment (HFE) of the Apollo Lunar Surface Experiment Package (ALSEP) [72, 73]. 

Latitude in ˚ slabT  in K bolT  in K 
HFE-probe-2  

temperature in K 

 NH SH NH SH TC1 TC2 TC3 

0 213.4 - 217.1 ± 1.3 - - - - 

5 213.1 213.2 216.9 ± 1.3 216.7 ± 1.3 - - - 

10 212.6 212.6 216.3 ± 1.3 215.8 ± 1.0 - - - 

15 211.5 211.5 215.2 ± 1.3 214.6 ± 0.9 - - - 

20 210.0 210.0 213.7 ± 1.2 213.2 ± 0.7 - - - 

20.17 (Apollo 17) - - 213.6 ± 1.2* - 220.3 - - 

25 208.1 208.1 211.6 ± 1.2 211.2 ± 0.5 - - - 

26.08 (Apollo 15) 207.8 - 210.9 ± 1.3# - 206.5 202.8 198.6 

30 205.7 205.6 209.0 ± 1.1 208.5 ± 0.5 - - - 

35 202.7 202.7 205.7 ± 1.5 205.5 ± 0.4 - - - 

40 199.1 199.1 201.8 ± 1.4 202.1 ± 0.6 - - - 

45 195.0 195.0 197.9 ± 1.2 197.7 ± 0.6 - - - 

50 190.1 190.1 192.8 ± 0.9 192.9 ± 0.7 - - - 

55 184.4 184.4 187.3 ± 0.9 187.2 ± 0.7 - - - 

60 177.8 177.8 180.7 ± 0.8 180.5 ± 0.7 - - - 

65 170.1 170.1 173.2 ± 0.6 173.3 ± 0.6 - - - 

70 160.8 160.8 164.2 ± 0.7 162.7 ± 1.1 - - - 

75 149.5 149.5 152.4 ± 0.7 152.4 ± 2.2 - - - 

80 135.0 135.0 136.8 ± 1.3 137.2 ± 2.4 - - - 

85 114.3 114.3 111.2 ± 3.3 112.4 ± 8.3 - - - 

89 85.7 85.4 87.7 ± 9.9 106.1 ± 7.7 - - - 

90 82.8 82.6 - - - - - 
*For the latitude 20.25˚N. #For the latitude 26.25˚N. 
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Figure 20. Globally averaged bolometric temperature, bolT , for all 24 DLRE datasets related to the 

subsolar longitude ssφ . 
 

 

Figure 21. Meridional distributions of the zonal averages of the absorbed solar radiation, ( )Q θ , and 

the emitted infrared radiation, ( )IRF θ , both weighted by sinθ  as required by Equation (1.2) for 
global averaging. 
 

1 44
, 271.0 K 0.7 Ke M bolT T= = ± . Figure 22 also shows the emission of infrared radiation calculated by  

applying the Stefan-Boltzmann power law to the globally averaged bolometric temperatures illustrated in 
Figure 20, i.e., 

4 4
bol bolT Tεσ εσ<                                  (6.1) 
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Figure 22. Globally averaged emitted infrared radiation bolT 4εσ , derived from the 24 DLRE data-

sets of the bolometric temperature related to the subsolar longitude ssφ . Also illustrated are the re-
sults provided by the inadequate application of the Stefan-Boltzmann law to the global mean of the 
bolometric temperature expressed by bolT 4εσ . 
 

 
Figure 23. Spectral distribution of solar radiation at the TOA, and a typical distribution of that 
which reaches the Earth’s surface, compared with the radiation emitted by a blackbody at a temper-
ature of 6000 K (adopted from Coulson [110]). 
 

Apparently, this kind of calculation is meritless. Therefore, it is time to acknowledge that the Ste-
fan-Boltzmann power law must not be applied to globally averaged temperatures. 

The DLRE data provide observational evidence that the concept of the effective radiation temperature 
must be discarded for planets and their natural satellites. In the case of stars, for which the concept of the 
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effective radiation temperature was derived, the condition of a uniformly distributed emittance may be 
crudely fulfilled, and the stars’ emission spectra may be approximated by Planck’s blackbody radiation 
function related to their effective radiation temperatures, as illustrated in Figure 23 for our Sun. The con-
dition of a uniform distribution of the emittance, however is, by far, not fulfilled in the case of planets and 
their natural satellites. In addition, their emission spectra vary with latitude and time. This fact is the rea-
son why radiometers use different channels as illustrated by Figure 15 and Figure 16 to cover the wide 
range of surface temperatures. Since the maximum of the intensity of Planck’s blackbody radiation func-
tion is proportional to the fifth power of the temperature [8, 86, 108, 109], averaging over the Planck func-
tions for different temperatures is physically and mathematically awkward. 

7. SUMMARY AND CONCLUSIONS 
In our paper, we discussed the solar climate of the Moon and the distribution of its resulting surface 

temperature. Since the solar climate, when handled in its historical sense, would lead to a surface temper-
ature of 0 K for the dark site of the Moon, it is essential to expand the concept of solar climate in such a 
way that such an artifact is generally excluded. Consequently, the local radiation balance (Equation (1.12)) 
must be replaced, at least, by a local energy flux budget (Equation (2.5)) to compute the related distribu-
tion of the surface temperature in a realistic manner. In this study, we used the multilayer-force-restore 
method by Kramm et al. [29] which applies the more advanced local energy budget expressed by Equation 
(2.3) to compute the distribution of the slab temperature, slabT  of the Moon. Predicted slab temperature is 
considered as the realistic surface temperature, and in a further step the global average of Moon’s surface 
temperature. Their astrometric results derived from the data provided by JPL’s planetary and lunar ephe-
meris DE430 underlined that the calculated solar insolation, required by their multilayer-force-restore 
method [29], meets the required accuracy criteria.  

The numerical prediction was performed for 20 lunations starting May 24, 2009, 00:00 UT1 (Period 
I). Based on the astrometric results, we found for this period a mean heliocentric distance for the Moon of 
1.00124279 AU and for the Earth of 1.00166376 AU. The corresponding mean geocentric distance of the 
Moon amounts to 384,792 km. Furthermore, we found that the synodic months deviate from their mean 
in a range of −5.7 h to 6.9 h and the draconic months depart from their mean by ±3.4 h. Whereas the 
anomalistic months depart from their mean in a range of −2.83 d to 0.97 d with the largest negative devia-
tions occurring around the points of inflection in the curve that represents the departure of the synodic 
month from its mean. Moreover, based on the two successive passages of the Sun through the ascending 
node of the lunar equator plane during that Period I, we found that the time interval between them cor-
responds to 347.29 days, i.e., it is slightly longer than the mean draconic year of 346.62 days. 

Because the multilayer-force-restore method has to be spun up to equilibrium prior to analysis of the 
results, we analyzed only the results provided by it for the last 12 lunations starting January 15, 2010, 07:11 
UT1 (Period II). As shown in our paper, the predicted slab temperatures follow the bolometric tempera-
tures in an acceptable manner. Between 75˚N and 75˚S, most important to compute slabT  and bolT , 
the zonally averaged differences and the respective standard deviations are: 3.5 K ± 12.0 K for 75˚N 1.4 K 
± 8.0 K for 60˚N, 0.9 K ± 6.5 K for 45˚N, 0.7 K ± 6.4 K for 30˚N, 0.4 K ± 6.3 K for 15˚N, 0.3 K ± 5.8 K for 
0˚, 0.0 K ± 5.1 K for 15˚S, 0.1 K ± 5.8 K for 30˚S, 0.4 K ± 6.3 K for 45˚S, −0.4 K ± 8.1 K for 60˚S, and 0.2 K 
± 10.2 K for 75˚S. Based on the observations performed at the landing site of the Apollo 15 mission, we 
showed that the occurrence of the two lunar eclipses has only a negligible effect on the zonal averages of 
the surface temperature if twelve lunations are considered.  

The global averages of the bolometric temperature, bolT  for all 24 DLRE datasets related to the 
subsolar longitude ssφ  amount to 201.1 K 0.6 KbolT = ± . Based on the globally averaged emitted infra-
red radiation of 2 2290.5 W m 3.0 W mIRF − −= ⋅ ± ⋅  derived from these 24 DLRE datasets, the effective  

radiative temperature of the Moon is 
1 44

, 271.0 K 0.7 Ke M bolT T= = ±  so that ,0.742bol e MT T≅ . This  

means that in the case of the Moon, the effective radiation temperature is about 60 K higher than the glo-
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bally averaged surface temperature.  
Furthermore, our results obtained by means of the DLRE observations confirm Kramm et al. [29]  

who obtained for the Moon 197.9 KslabT ≅  and ( )
1 44

, , 266.4 Ke M slabT T θ ϕ= ≅  resulting in  

,0.743slab e MT T≅ . Our results also empirically confirm the temperature inequality (1.17) of Gerlich and  

Tscheuschner [53], i.e., 
1 44

,bol bol e MT T T< = .  

Obviously, the relationship between the global average of the surface temperature and the effective 
radiative temperature of a rocky celestial body differs by a factor that depends on the astronomical para-
meters, especially on the angular velocity of rotation. Kramm et al. [29], for instance, found for the solar 
climate of the 27.4 times faster rotating Earth ,0.828slab e ET T≅ . Consequently, the DLRE observations 
provide empirical evidence that in the case of rocky planets and their natural satellites, the globally aver-
aged surface temperature is notably lower than their effective radiation temperature. Finally, based on the 
24 DLRE datasets our study showed that applying the Stefan-Boltzmann power law to the globally aver-
aged bolometric temperatures provides meritless results for rocky celestial bodies. 
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