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ABSTRACT 
Single-agent reinforcement learning (RL) is commonly used to learn how to play computer 
games, in which the agent makes one move before making the next in a sequential decision 
process. Recently single agent was also employed in the design of molecules and drugs. 
While a single agent is a good fit for computer games, it has limitations when used in mo-
lecule design. Its sequential learning makes it impossible to modify or improve the previous 
steps while working on the current step. In this paper, we proposed to apply the multi-agent 
RL approach to the research of molecules, which can optimize all sites of a molecule simul-
taneously. To elucidate the validity of our approach, we chose one chemical compound Fa-
vipiravir to explore its local chemical space. Favipiravir is a broad-spectrum inhibitor of 
viral RNA polymerase, and is one of the compounds that are currently being used in 
SARS-CoV-2 (COVID-19) clinical trials. Our experiments revealed the collaborative learn-
ing of a team of deep RL agents as well as the learning of its individual learning agent in the 
exploration of Favipiravir. In particular, our multi-agents not only discovered the molecules 
near Favipiravir in chemical space, but also the learnability of each site in the string repre-
sentation of Favipiravir, critical information for us to understand the underline mechanism 
that supports machine learning of molecules.  

 

1. INTRODUCTION 
The COVID-19 pandemic demonstrated an urgent need for speedy methods to design drug and vac-

cine, and to ensure the effectiveness and safety of these products. However, achieving this goal is not an 
easy task as the number of drug-like molecules is estimated to be between 1030 and 1060. In recent years, 
artificial intelligence (AI) has been introduced to guide more intelligent search of drug-like molecules. Re-
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cent applications of machine learning techniques including supervised, unsupervised, and reinforcement 
learning (RL) have shown their success in this challenging area.  

One unique feature of RL is that it doesn’t learn from static data stored in files like supervised and 
unsupervised learning, instead it learns from dynamic data generated by the interaction between an agent 
and the environment. Many deep supervised and unsupervised learning techniques even require large da-
tasets. This requirement can pose challenges in molecule design, and for a molecule of interest there may 
not be a corresponding training dataset existed. The RL approach, however, does not require predefined 
training datasets, instead it only needs to use a reward function. This has the potential to eventually lead to 
unexpected new molecules that no human has thought about so far [1]. Many current machine learning 
techniques are unable to effectively control the properties of the generated molecules, but RL methods can 
treat the design of a molecule as a computer game so an agent can learn to generate molecules with desired 
properties, considering desired properties as its goal in a game. 

Several recent papers showed the feasibility of using reinforcement learning for molecular design 
[2-5]. However, most of current research used single-agent RL approach that works on a molecule at one 
site at a time sequentially, which does not allow for any change or improvement of the previous steps while 
working on the current step. In this paper, we proposed to leverage multi-agent RL for exploring chemical 
space, which has the advantage of optimizing all sites of a molecule concurrently by a team of RL agents. 

The RNA polymerase inhibitor Favipiravir is currently in clinical trials as a treatment for infection 
with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Favipiravir was first used against 
SARS-CoV-2 in Wuhan, China, then in other countries. In June 2020, Favipiravir received the approval in 
India for mild and moderate COVID-19 infections. As of the 23rd of July, 2020, there are 32 studies regis-
tered on clinicaltrials.gov to assess the effect of this drug in the treatment of COVID-19 [6]. The purpose 
of our work was to use multi-agent RL approach to discover the local chemical space of Favipiravir.  

There are several related studies on chemical space using machine learning, including genetic algo-
rithms [7], recurrent neural networks [8], and reinforcement learning [1]. In particular, RL agents can ex-
plore chemical space out of their own motivation, which may discover unexpected new molecules [1].  

2. METHODS 
Reinforcement learning as a field of machine learning adopts a trial and error learning approach. 

There are three important components in RL, state, action, and reward, which define the interaction be-
tween the agent and the environment. The goal of RL is for an agent to learn an optimal policy that can 
achieve maximal long-term reward. There are two main categories of RL, valued-based and policy-based. 
In the value-based, an agent learns a value function that represents long-term rewards, and then uses this 
function to define a policy, which means learning a policy indirectly from a value function. In the poli-
cy-based, an agent directly optimizes its policy. Actor-critic algorithms (Figure 1) incorporate both ideas: 
they have an actor to take actions (policy-based), and then use a critic to evaluate the actions (value-based) 
[9-11].  

Our work employed a multi-agent actor-critic algorithm in which a group of actor-critic agents learn 
from others, and each agent needs to consider its own state as well as the states of its neighboring agents. 
Multi-agent learning can be divided into three major categories: fully cooperative, fully competitive, and 
mixed cooperative–competitive. In this paper, we used a cooperative approach, implying all the agents 
collaborate to maximize a common long-term reward. Our idea is simple: we not only need history to bet-
ter position us for future learning, but also use our current learning outcome to change or improve our 
previous learning. A single-agent can only learn how to move forward based on history.  

There are several challenges of multi-agent learning. In single-agent learning, the agent only interacts 
with the environment, while in multi-agent learning, one agent needs to interacts with the environment as 
well as other agents. In multi-agent learning, one agent not only has to consider the state change of the 
environment caused by its own actions, but also those from other agents. From one agent’s view, the other 
agents may be considered to be part of the environment, which becomes non-stationary from one agent’s  
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Figure 1. Description of actor-critic algorithm, R is an immediate reward, v(s, w) is the long-term 
reward (value) of being in state s, and π(a|s, ϴ) represents the policy, which means taking action a 
given state s for a deterministic policy. For a stochastic policy, π(a|s, ϴ) is a probability distribution 
over actions given state s. 
 
perspective. As the number of agents increases, the size of the joint action space of all agents grows expo-
nentially. In this paper, for any one agent, we used a local joint action space of its neighboring agents. 

3. RESULTS 
A common task in molecule design is to search the local chemical space around known molecules or 

drugs. In this work, the known drug was Favipiravir. Before a molecule can be processed by computers, it 
needs a representation so computers can understand its chemical information. There are several ways to 
encode molecules including graphs and strings. Molecular graph representation uses nodes and edges in a 
graph to reveal the atoms and bonds that make up the molecule, whereas string presentation uses charac-
ters for the same purpose. Another representation is using chemical descriptors to create chemical finger-
prints, which are vectors encoding physicochemical or structural properties. Hashed fingerprints use a 
hash function to hash the vectors into vectors of fixed size usually consisting of 512, 1024, or 2048 bits 
[12]. 

In this paper, we used SELFIES (Self-Referencing Embedded Strings) string representation (version 
1.0.3) which is an improvement over SMILES (Simplified Molecular Input Line Entry System) strings since 
an arbitrary SMILES string could represent a chemically infeasible or invalid molecular structure, whereas 
all possible SELFIES strings represent only valid molecules. Using SELFIES strings therefore can eliminate 
the common post processing step in using SMILES strings, a known deficiency of SMILES strings [13]. 

The alphabet of SELFIES is a collection of symbols or characters used to encode chemical structures 
of molecules, which is made of these elements: {N-1expl, #P, S+1expl, #P+1expl, =S-1expl, =C+1expl, S, 
=P+1expl, #S+1expl, =O+1expl, #P-1expl, =P, Cl, =O, C, S-1expl, P, Expl=Ring1, =S+1expl, =P-1expl, 
O-1expl, C-1expl, Ring3, Branch1_1, #C+1expl, Branch1_3, #O+1expl, Ring1, #N, Ring2, =C-1expl, =N, 
=N-1expl, Branch3_1, Br, Branch2_1, Expl=Ring3, =N+1expl, #S-1expl, O, Branch2_2, Branch3_2, 
P-1expl, =C, =S, #S, P+1expl, Branch2_3, N+1expl, C+1expl, O+1expl, #N+1expl, #C-1expl, Branch1_2, 
#C, I, Expl=Ring2, Hexpl, N, F, Branch3_3}. 

For example, an Favipiravir molecule is encoded as a SELFIES string of length 21: [C][=C] 
[Branch1_1][P][N][=C][Branch1_1][Branch2_1][C][Branch1_2][C][=O][N][Ring1][Branch1_3][C][Bran
ch1_2][C][=O][N][F] (for clarity, square bracket is used to enclose each symbol), and its SMILES repre-
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sentation is C1=C(N=C(C(=O)N1)C(=O)N)F (no square bracket is used). 
This section of results has two parts: multi-agents and single-agent, so we could see the difference of 

the two. At the same time, we employed different reward functions in each part to get better understand-
ing of how reward functions can affect the learning of RL agents in each part. 

3.1. Multi-Agents 

In each episode, a team of 21 actor-critic agents were given a random SELFIES string of length 21, 
and each site of this string was assigned an agent to gain maximal reward based on a given reward func-
tion, which is defined in Sections 3.1 and 3.2 respectively. The SELFIES string for Favipiravir was the tar-
get representation. The learning representation was the string that the 21 agents were updating from a 
random SELFIES string, used as a circular linear list when defining left and right neighboring states for a 
given state. The state of each agent was the character at the assigned site, and the joint state of each agent 
was the collection of three states, left state, state, right state, which corresponded to three agents, left agent, 
current agent, right agent. The action space of each agent was the alphabet of SELFIES of size 61. During 
training each agent j (j from 1 to 21) took one action from the alphabet, and used this action (character) to 
update the current character at site j. One training episode consisted of 21 updates, with one update from 
each agent.  

3.1.1. Character and Molecule Similarity Based Multi-Agents 
The range of molecule similarity between learning and target molecules in Table 1 is (0, 1) and that of 

character similarity is (0, 21). To visualize the correlation between character similarity and molecule simi-
larity in the reinforcement learning process, we scaled the molecule similarity from (0, 1) to (0, 21). Three 
experiments were conducted and the average of the collaborative learning outcomes from the multiple ac-
tor-critic agents were collected (Figure 2). To smooth the collaborative learning curves, a moving average 
of window size 50 was applied. The molecule similarity increased as the character similarity (Figure 2). 
Each agent’s cumulative rewards based on the reward function introduced in Table 1 are shown in Figure 
3, with a total of 21 agents. Varied learnability of different 21 sites was observed in Figure 3 and the 21 
reward curves were not clustered together at the end. 
 

 
Figure 2. Collaborative learning curves of character and molecule similarity based multi-agents. 
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Figure 3. Cumulative rewards of each character and molecule similarity based agent trained with 
reward function in Table 1. 
 
Table 1. Reward function based on character similarity and molecule similarity. The Tanimoto 
similarity of ECFP4 fingerprints between two molecules (we called it molecule similarity in this 
paper) is calculated using software RDKit with fingerprint length = 2048, and fingerprint radius = 3. 

reward(learning_representation, target_representation, j): 
score = TanimotoSimilarity(learning_representation[left,j,right], target_representation[left,j,right],) 
score = 2.0*score 
if learning_representation[j] == target_representation[j] 

score += 1 
return score 

3.1.2. Character Similarity Based Multi-Agents 
To understand the contributions of character similarity and molecule similarity respectively to the 

overall collaborative learning of multi-agents, we trained 21 agents with a reward function that was solely 
based on character similarity (Table 2). Three experiments were conducted and the average of the colla-
borative learning outcomes from the multi-agents were collected (Figure 4). The correlation between the 
increase of character similarity and molecule similarity in Figure 4 was not as strong as that in Figure 2, 
which implied adding the molecule similarity in the reward function boosted the increase of molecule si-
milarity. In other words, the multi-agents trained with character similarity and molecule similarity using 
the reward function in Table 1 could find molecules that were closer to the target molecule in chemical 
structures, a desired property of machine learning for molecules. The learnability of different 21 sites was 
similar as displayed in Figure 5 and the 21 reward curves were clustered together at the end, a clear con-
trast to the behaviors of the curves in Figure 3. 
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Figure 4. Collaborative learning curves of character similarity based multi-agents. 
 

 
Figure 5. Cumulative rewards of each character similarity based agent trained with reward function 
in Table 2. 
 

To visualize the learnability of different sites by multi-agents, we scaled the last cumulative rewards in 
Figure 3 and Figure 5 to the range of (0, 10) (Figure 6). In general, different sites were similarly learnable 
by character based agents in this section but they showed much varied learnability by character and mole-
cule based agents in Section 3.1.1. This could be interpreted as characters in SELFIES string representation  
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Table 2. Reward function based on character similarity. 

reward(learning_representation, target_representation, j): 
score = −1 
if learning_representation[j] == target_representation[j] 

score = 1 
if learning_representation[left] == target_representation[left] 

score += 1 
if learning_representation[right] == target_representation[right] 

score += 1 
return score 

 

 
Figure 6. Learnability of different sites by multi-agents trained with reward functions in Table 1 and 
Table 2. 
 
play similar roles in the learning of character based agents whereas character and molecule based agents 
need to learn extra chemical information so the learning is harder and more varied.  

From the documents for SELFIES https://selfies.readthedocs.io/en/latest/tutorial.html, we could ana-
lyze the varied learnability of different sites by the multi-agents in Section 3.1.1 as shown in Figure 6. Let’s 
recall that the Favipiravir SELFIES string is [C][=C][Branch1_1][P][N][=C][Branch1_1][Branch2_1][C] 
[Branch1_2][C][=O][N][Ring1][Branch1_3][C][Branch1_2][C][=O][N][F]. The character [P] at site 4 is 
after [Branch1_1] so it is used as a symbol (not as an atom) to specify the length of the branch. [P] has a Q 
value of 15, and therefore the length of the branch = Q + 1 = 16 that covers the 16 SELFIES characters 
from first [N] to the second [N] in Favipiravir, which correspond to the SMILES branch 
(N=C(C(=O)N1)C(=O)N) in the SMILES representation of Favipiravir C1=C(N=C(C(=O)N1)C(=O)N)F. 
Because [P] can have dual meanings so it is harder to learn. The same reason could be given to 
[Branch2_1] at site 8 in [Branch1_1][Branch2_1], because [Branch2_1] has a Q value of 6, so the length of 
the branch [Branch1_1] = Q + 1 = 7, which covers [C][Branch1_2][C][=O][N][Ring1][Branch1_3] that 
corresponds to the SMILES branch C(C(=O)N1). [Branch1_3] at site 15 has a Q value of 5, so [Ring1] has 
a length of Q + 1 that connects the current atom [N] with the 6th preceding atom through a single bond 
(Q + 1 = 6), which is C1 in the SMILES ring C1=C(N=C(C(=O)N1. In summary, these results suggested 
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that the symbols after branch in SELFIES were harder to learn because of their dual meanings when the 21 
agents were trained with a reward function that included both character similarity and molecule similarity. 

3.1.3. Chemical Structures of the Molecules Discovered by Multi-Agents 
This section illustrates the molecules found by our multi-agents near the target Favipiravir in chemi-

cal space. We first display the chemical structure of the target molecule Favipiravir (Figure 7) and then 
several molecules discovered by our multi-agents (Figures 8-13). As expected, the molecule similarity of 
the learned molecule and the target decreased as the character similarity decreased. In this context, the 
similarity of the two molecules serves as a distance, which measures the closeness between the learned 
molecule and the target in chemical space. 
 

 
Figure 7. Target molecule: Favipiravir, SMILES: C1=C(N=C(C(=O)N1)C(=O)N)F, SELFILES: 
[C][=C][Branch1_1][P][N][=C][Branch1_1][Branch2_1][C][Branch1_2][C][=O][N][Ring1][Branc
h1_3][C][Branch1_2][C][=O][N][F]. 
 

 
Figure 8. SMILES: C1=C(N=C(C(=P)N1)C(=O)N)F, SELFIES: [C][=C][Branch1_1][P][N][=C] 
[Branch1_1][Branch2_1][C][Branch1_2][C][=P][N][Ring1][Branch1_3][C][Branch1_2][C][=O][N]
[F], Char similarity: 20, Mol similarity: 0.6571428571428571. 
 

 
Figure 9. SMILES: C1=C(N=C(C(=[N+1])N1)C(=O)N)F, SELFIES: [C][=C][Branch1_1][P][N][=C] 
[Branch1_1][Branch2_1][C][Branch1_2][#N+1expl][#N+1expl][N][Ring1][Branch1_3][C][Branch1
_2][C][=O][N][F], Char similarity: 19, Mol similarity: 0.6571428571428571. 
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Figure 10. SMILES: C1=C(N=C(C(=O)N1)C(=O)N) [P-1], SELFIES: [C][=C][Branch1_1][P][N] 
[=C][Branch1_1][Branch2_1][#C][Branch1_2][=O][=O][N][Ring1][Branch1_3][C][Branch1_2][C]
[=O][N][P-1expl], Char similarity: 18, Mol similarity: 0.6571428571428571. 
 

 
Figure 11. SMILES: C1=C(N=C(C(=O)N1)C(=O)N)P, SELFIES: [C][=C][Branch1_1][P][N][=C] 
[Branch1_1][Branch2_1][#C][Branch1_2][#P][=O][N][Ring1][Branch1_3][C][Branch1_2][=O+1ex
pl][=O][N][P], Char similarity: 17, Mol similarity: 0.6571428571428571. 
 

 
Figure 12. SMILES: C1=C(N=C(C(=[N-1])N1)C(=O)N) [P+1], SELFIES: [C][=C][Branch1_1][P][N] 
[=C][Branch1_1][Branch2_1][#C][Branch1_2][=S][=N-1expl][N][Ring1][Branch1_3][C][Branch1_
2][=O+1expl][=O][N][=P+1expl], Char similarity: 16, Mol similarity: 0.4146341463414634. 
 

 
Figure 13. SMILES: C=1=C(N=C(C=1)C(=O)N)Br, SELFIES: [C][=C][Branch1_1][P][N][=C] 
[Branch1_1][Branch2_1][=C][Ring3][Branch2_3][C][N][Ring1][Branch1_3][C][Branch1_2][#P+1e
xpl][=O][N][Br], Char Similarity: 15, Mol Similarity: 0.23255813953488372. 
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3.2. Single-Agent 

In this single-agent setting, at the start of training the agent was given a random SELFIES string of 
length 21, and the state at site j (j from 1 to 21) was the character at this site. The agent learned to take one 
action from the SELFIES alphabet of size 61 and used this action (character) to update the current charac-
ter at j. One training episode consisted of 21 updates that went through 21 sites (from 1 to 21) of the string 
sequentially by the same agent. 

3.2.1. Character and Molecule Similarity Based Single-Agent with Joint State Reward Function 
To make a fair comparison between multi-agent and single-agent methods, the same reward function 

(Table 3) is used for the single-agent here as in Section 3.1 for the multi-agent experiments (Table 1). In 
this case, the input state of the single agent was a joint state made of three states, left state, state, right state. 
The SELFIES string was used as a circular linear list when defining left state and right state of the current 
state. Three experiments were conducted and the average of the learning outcomes from a single agent was 
collected. The learning curves based on the training with the joint state reward function in Table 3 are in 
Figure 14. As in the sections on multi-agents, a moving average of window size = 50 was used in Figure 
14, and we scaled the molecule similarity from (0, 1) to (0, 21). 

3.2.2. Character and Molecule Similarity Based Single-Agent with Single State Reward Function 
In this section, we chose a reward function that is only meaningful in the single-agent setting (Table 

4). In this case, the character at site j (j from 1 to 21) was a state, which was used as input state to the single 
agent. This input state was a single state as compared to the joint state in Table 3. However, the molecule 
similarity was measured from the first character to the current character j (Table 4). Three experiments 
were conducted and the average of the learning outcomes from a single agent was collected. The learning 
curves of the agents trained with the single state reward function in Table 4 were in Figure 15, and again a 
moving average of window size = 50 was used in Figure 15, and we scaled the molecule similarity from (0, 
1) to (0, 21). Compared to the results of multi-agents in Section 3.1, the performance of single-agent was 
not as good as that of multi-agents. Furthermore, in this single-agent setting, the joint state reward func-
tion (Table 3) seemed to be better than the single state reward function (Table 4), in the learning of cha-
racter similarity and molecule similarity (Figure 14 and Figure 15). 
 

 
Figure 14. Learning curves of character and molecule similarity based single-agent with joint state 
reward function in Table 3. 
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Figure 15. Learning curves of character and molecule similarity based single-agent with single state 
reward function in Table 4. 
 
Table 3. Reward function based on character similarity and molecule similarity (joint state). 

reward(learning_representation, target_representation, j): 
score = TanimotoSimilarity(learning_representation[left,j,right], target_representation[left,j,right],) 
score = 2.0*score 
if learning_representation[j] == target_representation[j] 

score += 1 
return score 

 
Table 4. Reward function based on character similarity and molecule similarity (single state). 

reward(learning_representation, target_representation, j): 
score = TanimotoSimilarity(learning_representation[0 to j], target_representation[0 to j],) 
score = 2.0*score 
if learning_representation[j] == target_representation[j] 

score += 1 
return score 

 
Our findings reported in this section suggested that multi-agent RL approach increased learning sig-

nificantly compared to single-agent RL, which could be attributed to the synergy of team work of a group 
of agents and a more focused individual responsibility of each agent in the group. 

4. CONCLUSION 
In drug discovery, study of the structural neighborhood of known molecules is critical for local opti-

mization, and machine learning can be employed for this task to enhance structure-based molecule and 
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drug design. By viewing molecule design as a game, RL can be applied to de nova drug design of molecules 
with desired properties without using a large training dataset. The RL agents can also search chemical 
space without any prior knowledge, which may lead to discovery of molecules unknown before. We pro-
posed to use multi-agent RL to study the local chemical space of Favipiravir in this work. To assess the va-
lidity of our idea, we ran our algorithm on Favipiravir molecule with a group of RL agents. Our experi-
ments confirmed multi-agents outperform single-agent in exploring local chemical space, and showed the 
collaborative learning of this team of agents as well as the individual learning of each agent therein. Mul-
ti-agents exhibit the advantage of concurrent learning of all sites of a molecule, compared to the sin-
gle-agent approach that can only work on one site at a time and cannot change or improve any previous 
sites while working on the current site. Essentially, a single-agent approach can only learn to move for-
ward, but cannot backward. But in a real learning task, we typically need to use our current learning out-
come to better inform us of how to change or improve our previous learning, in addition to using history 
to help us move forward.  
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