Determination of Gum Arabic (*Acacia nilotica*) Constituents Using Laser Induced Breakdown Spectroscopy

Mashair Ahmed Mohammed Yousif¹, Nafie A. Almuslet², Elfatih A. Hassan³, Fatima Medany Mohamed Taha⁴, Mohammed Idriss Ahmed Mohammed³, Abeer Eltaybe Fagir Osman⁵

¹College of Science in Alkhurma, Taif University, Alkhurma, Saudi Arabia; ²Almogran College of Science and Technology, Khartoum, Sudan; ³Sudan University of Science and Technology, Khartoum, Sudan; ⁴College of Science, University of Khartoum, Khartoum, Sudan; ⁵College of Education, Qassim University, Osman, KSA

Correspondence to: Mashair Ahmed Mohammed Yousif, garaof@yahoo.comKeywords: Gum Arabic, LIBS, Laser Spectroscopy, Gum InvestigationReceived: February 15, 2021Accepted: March 26, 2021Published: March 29, 2021

Copyright © 2021 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). <u>http://creativecommons.org/licenses/by/4.0/</u>

CC ① Open Access

ABSTRACT

In this work, Laser Induced Breakdown Spectroscopy (LIBS) was used to determine the constituent of Gum Arabic (*Acacia nilotica*) collected from five different locations in Sudan. Gum samples were irradiated with 80 mJ pulse energy of Nd-YAG laser (1064 nm) and Atomic spectra Database was used for the spectral analysis of the plasma emitted from these samples. It was found that the samples contain the elements C, O, H, S, N, P, Na, Mg, Ca, Fe, Cr, Mn, Co with different amounts. Some elements like (Ti, Br, Ar, Th, Kr, Sc and Pr) are recorded here for the first time.

1. INTRODUCTION

Laser-induced breakdown spectroscopy (LIBS) is a method of atomic emission spectroscopy (AES) that uses laser-generated plasma as the hot vaporization, atomization, and excitation source [1-4]. Fore-most of these is the ability to interrogate samples *in situ* and remotely without any preparation. In its basic form, a LIBS measurement is carried out by forming laser plasma on or in the sample and then collecting and spectrally analyzing the plasma light. Qualitative and quantitative analyses are carried out by monitoring emission lines positions and intensities [5-7]. LIBS can be used to investigate different materials especially those composed of large molecules such as Gum Arabic. *Acacia nilotica* Sunt has been found the most valuable timber-producing species [8-10]. An ability to regenerate successfully on flooded sites along the Nile and its tributaries, coupled with timber properties that satisfy most of the utilization standards make the species the most important in the economy of the Sudan. This work aimed to use LIBS for Identification of Gum Arabic (*Acacia nilotica*).

2. METHODS AND MATERIAL

2.1. Experimental Setup

Figure 1 illustrates the LIBS setup which was used in this work. The LIBS system composed of Q-switched Nd-YAG Laser (Laser wavelength is 1064 nm, pulse duration 10 ns, Pulse Energy 80 mj, Spot size 2 - 8 mm, and repetition rate 2 Hz), Ocean Optics 4000+ spectrometer, connected with PC.

2.2. The Materials

Four samples of GumArabic (*Acacia nilotica*) (sunt) obtained from different locations in Sudan. Were used in this work, they are illustrated in Table 1.

2.3. Experimental Procedure

Each sample was put in a quartz cell and irradiated by the Nd-YAG laser where the spark of the sample plasma was collected by a fiber optic to the spectrometer which was interfaces to a computer. The emission spectra were collected in the range from 200 - 900 nm. In order to test the homogeneity of Gum Arabic samples, several LIBS measurements were performed at its surface. The recorded spectra of the samples were analyzed using Atomic Spectral Database (NIST) data.

Irradiation with pulse energy of 80 mJ resulted in generating exited elemental species and cations in higher oxidation states. This was evident from the emission spectral lines corresponding to species such as Cr^{3+} , Ti^{2+} and Ar^{3+} .

Although the samples of GA in this study were collected from different locations in Sudan having different soil characteristics, their LIBS emission spectra reflect presence of the same elements in all samples. This may indicate that there is no influence of the soil type on the elemental composition of exudates gums like GA.

3. RESULTS AND DISCUSSION

LIBS emission spectra of *Acacia nilotica* (sunt)gum samples irradiated with laser of 80 mJ pulse energy are shown in **Figures 2-5** while **Table 2** shows the results of analysis and elemental composition of the mentioned gum samples, which were obtained with the help of Atomic spectra database and the Handbook of basic Atomic spectroscopy.

The elements constituting the samples observed in the emission spectra were C, O, H, S, N, P, Na, Mg, Ca, Fe, Cr, Mn, Co. This is in agreement with findings of other researches published previously. [11-13]. In addition to these, other elements had been detected for the first time in natural gums, namely

Figure 1. Schematic diagram of the setup.

Table 1. Samples grouping.

Classification	Location of samples collection
Sample (1)	South Kordofan
Sample (2)	Blue Nile state
Sample (3)	White Nile state
Sample (4)	Khartoum state

Figure 2. LIBS emission spectrum of sample (1).

Figure 3. LIBS emission spectrum of sample (2).

Figure 4. LIBS emission spectrum of sample (3).

Figure 5. LIBS emission spectrum of sample (4).

(Ti, Br, Ar, Th, Kr, Sc and Pr).

Interestingly the elements Th, Pr, Kr, and Sc have not been observed in any of the previous studies undertaken on *Acacia nilotica* using the conventional (AAS or ICP) techniques. These elements and their ions are reported here for the first time in the elemental analysis of *Acacia nilotica* using LIBS, this adds to the many advantages of this technique, compared to other conventional techniques mentioned above. Sample of *Acacia nilotica* showed the presence of heavy metals like Fe, Cr, Pr and Th which may hinder its application in food and pharmaceutical formulation.

Element $\chi(hm)$ (S_{11}) (S_{12}) (S_{13}) 217.0590217.0590121.0267228.7649106.2807159.9672	(S ₁₄) 110.7591 135.4997
217.0590121.0267228.7649106.2807159.9672	110.7591 135.4997
228.7649 106.2807 159.9672	135.4997
	135.4997
314.4824 137.4112	
Fe I345.0688128.9459133.2605	
401.3327 119.3883 135.4997	
498.3784115.2375137.4112112.7252	151.8842
516.5037 125.1774 104.2053	127.4713
185.7174 111.0868 108.7930	
215.7110 104.9699 121.0267	110.7591
258.5961 110.7591 141.6166	
Fe II510.0844125.1774112.9437	
633.5628 116.8760 121.3544	110.7591
684.1625103.0038149.6450	
797.4455 149.6450 125.5051	158.0010
364.3269 118.7329 114.9098 135.4997	110.7591
512.7276 125.1774 127.4713	
538.7827 129.0005 116.8760	
Fe III 596.5570 114.5821	
618.4584 129.0005	
731.7414 123.3205 122.6990	110.7591
823.1230 165.4833	112.9437
249.1559 131.2943	114.9098
261.2394 103.0038 110.7591 165.4287	
Na I 355.2643 126.8159 137.4112	
589.4944 104.6422	119.0606
691.7147 148.0611 104.3691 104.3145	141.9442
242.7364 131.2943	
254.8200 135.4997 116.8760 152.2119	149.6450
Na II 308.0630 104.6422 122.9929	
316.3705 126.8159 158.2195	135.4997
519.1470 104.2053	127.4713

Table 2. The analyzed data of *Acacia nilotica* (sunt) collected from different locations after irradiation by laser energy of 80 mJ.

Continued

Na III	203.0875	106.6084	104.9699	141.6166	139.0497
	323.9227	137.7389		125.1774	113.2168
	395.6685	125.1774	118.7329	135.1720	
	590.8929		114.9098		119.0606
	652.4433	129.3282	127.1436		113.5991
	713.6161	162.2610			138.0666
	272.1901		103.0038	108.7930	122.9929
Cal	616.9480	143.8558	129.0005	127.7990	
Cal	720.0355			163.7902	111.0868
	734.7623	119.7160	123.3205	112.9437	119.0606
	423.2341	119.0606	103.0038	108.7930	119.0606
Ca II	608.6406		126.8159	119.0606	
	757.0413	164.1179	115.2375		
	199.3114		129.9836	114.9098	
ColUI	281.6303	120.8083		136.7558	139.3773
Calli	508.1963		137.4112	112.9437	
	535.0066		129.0005	116.8760	133.2605
	265.7707	120.8083	114.9098	118.8421	
	548.6006			192.7362	121.0267
	631.6748	116.8760	121.3544		110.7591
Mg I	748.7338	135.4997			113.2714
	781.2083	114.9098	111.0868		
	805.3753	141.2889	153.8503	129.3282	112.9437
	847.2900	129.3282		125.1774	125.1774
	355.2643		126.8159	108.5745	
	427.0102		103.0038	108.7930	
Mg II	545.2021	141.6166		192.7362	121.0267
	787.6277		111.0868	112.9437	
	811.4171	137.0835	153.8503	126.7613	
	183.0741	111.0868		165.4287	135.4997
Mg III	425.1221	119.0606	103.0038	108.7930	119.0606
	562.5721	133.2605	139.0479	112.9437	125.5051
	692.4700	148.0611	104.3691		141.9442
	704.5535	143.5281		123.3205	133.2605

Continued					
	297.1123	137.7389	165.7564	116.8760	113.2168
VI	690.9595	141.9442	104.3691	104.3145	106.3353
K I	710.9729	162.2610	114.9098	106.9361	138.0666
	785.7396	137.7389		112.9437	
	368.8582	125.1774	121.0267	141.6166	
K II	380.9418	115.2375		118.8421	
	579.1870	103.0038	108.7930		112.6160
	334.1181		111.0868		
	348.0897			133.2605	116.5483
K III	388.4940			139.0497	
	457.5966	120.8083		112.7252	112.6160
	767.2367	104.6422	106.9361	114.5821	145.7673
	540.2932	119.0606		192.7362	121.0267
	558.0408		125.1774	125.8328	125.5051
	595.8018		114.5821	119.0606	
SI	673.9671	123.3205	112.9437	112.9437	
	724.1892		110.8137	163.7902	111.0868
	792.9142		126.7613	108.7930	
	866.5482	108.7930	139.3773		127.1436
	361.6836		110.7591		
	405.8640	119.3883	135.4997		
	500.6441	106.9361			164.1179
S II	522.9231	131.2943	109.1206	188.2577	135.4997
	536.8947	114.9098	129.0005	116.8760	
	687.9386	141.9442		155.8164	119.0606
	740.4264	112.9437	137.4112		
	252.1768	135.4997	116.8760		114.9098
S III	337.5166	161.9333	104.9699		
	632.4300	143.5281		106.2807	110.7591
	473.4562	103.0038	133.2605	165.4287	147.7334
	529.3425	114.9098	116.5483		
CI	568.9915	139.3773	112.6160	129.3282	121.0267
	579.9422			112.6160	103.0038
	763.4606	136.1551	110.8137	163.7902	111.0868

Jontinuea					
	359.0404		125.1774	112.9437	
CII	625.2554	110.7591	129.0005	106.6084	133.2605
	663.7716	122.9929			119.0606
	803.1097	141.2889	153.8503	129.3282	
	218.1919	131.2943	109.1206	151.6056	135.4997
C III	794.8023	149.6450		108.7930	
CIII	853.709	114.9098	116.8760	104.6422	
	880.5197	137.7389	139.3773		112.9437
	493.4695	110.7591	103.0038	106.6084	135.4997
	672.0790	106.6084	117.2037	112.9437	
N I	765.3487	104.6422		114.5821	
	789.8933		111.0868	112.9437	
	870.3243	108.7930		121.0267	
	384.7179	120.8083		118.8421	
	502.5322	106.9361		176.0240	164.1179
N II	531.9857	114.9098	116.5483	116.8760	133.2605
IN 11	593.1585		126.8159	119.0606	119.0606
	683.4073	103.0038		149.6450	
	700.0222		151.8842	155.8164	119.0606
	184.5846	111.0868	104.9699	108.7930	104.9699
NI III	471.1905	103.0038		136.8651	145.7673
IN 111	489.6934			171.8732	
	644.5135	110.7591	129.0005	106.6084	133.2605
	613.9271	143.8558	127.1436	141.6166	106.6084
ΟI	777.4322			122.6990	110.7591
	840.8707	121.0267	108.7930	141.6166	
	296.469			116.8760	
	394.9133	125.1774	118.7329	135.1720	110.7591
O II	444.7578			145.7673	110.7591
0.11	638.094	111.4145		106.2807	
	736.6503	119.7160	103.0038	106.9361	122.6652
	762.7054	104.6422		114.5821	

Continued

Continued					
	319.3913		105.2976	158.2195	135.4997
	351.4882		128.9459		116.5483
	394.5257	125.1774	118.7329	135.1720	
	650.9329	129.3282	127.1436		113.5991
O III	673.5895	123.3205	117.2037	112.9437	
	729.4757	119.3883	110.8137	112.9437	
	749.8667	135.4997	149.6450		113.2714
	809, 5290	137.0835		125.5051	158.0010
	817 0812	161 9333	110 4314	110 7591	127 1436
	194 0248	101.7555	110.1311	114 9098	135 4997
	212 1501	106 6084	104 9699	111.9090	155.1777
CrI	212.1301	114 0009	120,6000	152 8503	147 7334
CII	234.4291	114.9098	120.0990	133.8505	116 5493
	456 3637	110 2992		112 7252	104 6422
	450.5057	119.3883	116 9760	152 2110	140.6450
	255.0672	104 6422	110.8700	152.2119	149.0430
C II	275.9002	104.0422		130.0407	147.7554
Cr II	550.0059	110.0606	125 1774	139.0497	109 7030
	554.2047	119.0000	125.1774	120.0990	108.7950
	5/2.76/6			111.0868	
Cr V	637.7165	123.3205		106.2807	
	731.3638	119.3883	123.3205	112.9437	149.6450
	259.3513	104 (400	110.7591	114 0000	1560040
Ti I	370.7463	104.6422	121.0267	114.9098	156.0349
	478.3651		133.2605	104.6422	
	562.1945	139.3773	139.0479	112.9437	125.5051
	229.1426	114.9098	106.2807	159.9672	100 0550
Ti II	299.0004	100 1100	103.0038	136.7558	139.3773
	430.7863	103.1130		163.7902	111.0868
	521.0350	131.2943		188.25/7	135.4997
	350.7330	1 40 5001	111.0070	133.2605	116.5483
Ti III	755.1532	143.5281	111.0868	119.0606	104.6422
	829.9200	112.9437	114.9098	110.7591	119.0606
	238.582	119.0606	103.0038	103.0038	14/.404/
Br I	518.769	100 0000		104.2053	12/.4/13
	668.302	122.9929		125.1774	106.3353
	813.305	161.9333	110.4314	126.7613	127.1436

Continued

Br 11 797.8231 149.6450 108.7930	
375.2776 121.0267 1	156.0349
437.9609 104.9699 135.4997	
526.6992 109.1206 151.6056	
AF1 556.1528 125.1774 125.8328 1	108.7930
565.2154 139.3773 110.7591 112.9437	
654.7090129.3282127.1436127.79901	13.5991
380.9418 120.8083 118.8421 1	104.6422
523.6783 131.2943 109.1206 151.6056 1	135.4997
538.4051 129.0005 135.4997 1	106.6084
684.5402 143.5281 149.6450 1	103.3315
783.8516 114.9098 131.2943	
879.0093 121.0267 1	12.9437
244.6246 111.0868 131.2943 1	104.9699
Ar IV464.7712103.1130176.02401	10.7591
803.4873 141.2889 153.8503 129.3282	
373.0119 120.8083 118.8421 1	156.0349
585.6069 104.6422 104.6422 1	47.7334
Th I721.1683103.1130163.79021	111.0868
764.2159 104.6422 114.5821 1	45.7673
778.5650 108.7930 111.0868 122.6990 1	10.7591
376.7880 121.0267	
478.3651 133.2605 104.6422	
537.2723 129.0005 116.8760	
11111 594.6690 114.5821 1	19.0606
621.1017110.7591106.60841	33.2605
858.6183 114.9098 104.6422	
213.6605 106.6084 104.9699 1	10.7591
251.0493 135.4997 116.8760 152.2119 1	14.9098
Kr III 285.0288 136.7558 1	139.3773
371.1239 105.2976 114.9098 1	156.0349
452.3100 112.7252 1	104.6422

Continued					
	255.4424	135.4997	116.8760	152.2119	149.6450
	313.7272			137.4112	
IVIII 11	320.5242	137.7389	105.2976	125.1774	135.4997
	635.4509	116.8760	121.3544	106.2807	110.7591
	460.9951			112.7252	110.7591
Se I	474.5890	103.0038	133.2605	104.6422	145.7673
3C I	544.0693	141.6166		192.7362	
	632.0524	116.8760	121.3544		110.7591
	513.4828		125.1774	127.4713	
Pr II	550.8662			192.7362	121.0267
	587.8720		104.6422		
	594.6690	129.3282	114.5821		119.0606
	667.5477	122.9929		125.1774	106.3353
Co III	743.8249	112.9437	111.0868	163.7902	104.6422
	794.4247	149.6450	111.0868	108.7930	
	274.8334	104.6422			
DI	342.4255		128.9459	104.6968	
r I	474.9666	103.0038	133.2605	104.6422	145.7673
	551.6215	136.1551	125.1774	120.6990	108.7930
	373.7672		121.0267	114.9098	156.0349
ΗI	393.0253		118.7329		
	410.395	119.3883	113.5991		111.0868
	434.184	103.1130		135.4997	117.2037
	486.0502	103.0038	133.2605	171.8732	
	656.5970	202.2938	202.6215	131.6220	110.7591
	832.5633			110.7591	135.4997

4. CONCLUSIONS

Sample of *Acacia nilotica* showed the presence of heavy metals like Fe, Cr, Pr and Th which may hinder its application in food and pharmaceutical formulation and the elemental composition of Gum Arabic by LIBS technique enabled observing elements, such as Br, Ti and Ar, to be reported for the first time.

CONFLICTS OF INTEREST

The authors declare no conflicts of interest regarding the publication of this paper.

REFERENCES

- 1. Cremers, D.A. and Radziemski, L.J. (2006) Appendix D: Major LIBS References. Handbook of Laser-*Induced Breakdown Spectroscopy*, 271-273. <u>https://doi.org/10.1002/0470093013.app4</u>
- 2. Miziolek, A.W., Palleschi, V. and Schechter, I., Eds. (2006) Laser Induced Breakdown Spectroscopy. Cambridge University Press, Cambridge. <u>https://doi.org/10.1017/CBO9780511541261</u>
- 3. Ahmed, R. and Baig, M.A. (2009) A Comparative Study of Single and Double Pulse Laser Induced Breakdown Spectroscopy. *Journal of Applied Physics*, **106**, 033307. <u>https://doi.org/10.1063/1.3190516</u>
- 4. Ahmed, R. and Baig, M.A. (2010) On the Optimization for Enhanced Dual-Pulse Laser-Induced Breakdown Spectroscopy. *IEEE Transactions on Plasma Science*, **38**, 2052-2055. <u>https://doi.org/10.1109/TPS.2010.2050784</u>
- 5. Palleschi, A. and Salvetti, E.T. (2002) Spectrochim. *Acta, Part B*, **57**, 339. (F.C. DeLucia Jr, J.L. Gottfried, Mater., 2011)
- Wisbrun, R., Schechter, I., Niessner, R., Schroeder, H. and Kompa, K.L. (1994) Detector for Trace Elemental Analysis of Solid Environmental Samples by Laser Plasma Spectroscopy. *Analytical Chemistry*, 66, 2964-2975. <u>https://doi.org/10.1021/ac00090a026</u>
- Cáceres, J.O., López, J.T., Telle, H.H. and Ureña, A.G. (2001) Quantitative Analysis of Trace Metal Ions in Ice Using Laser-Induced Breakdown Spectroscopy. *Spectrochimica Acta Part B: Atomic Spectroscopy*, 56, 831-838. https://doi.org/10.1016/S0584-8547(01)00173-2
- 8. Wickens, G.E. (1995) Role of Acacia Species in the Rural Economy of Dry Africa and the Near East (No. 27). Food & Agriculture Org.
- 9. (2016) *Acacia nilotica* (Gum Arabic Tree). Invasive Species Compendium. Centre for Agriculture and Biosciences International. Retrieved 24 January.
- 10. Smolinske, S.C. (1992) CRC Handbook of Food, Drug, and Cosmetic Excipients. CRC Press.
- Renard, D., Lavenant-Gourgeon, L., Ralet, M.C. and Sanchez, C. (2006) Acacia Senegal Gum: Continuum of Molecular Species Differing by Their Protein to Sugar Ratio, Molecular Weight, and Charges. *Biomacromolecules*, 7, 2637-2649. <u>https://doi.org/10.1021/bm060145j</u>
- Anderson, D.M.W., Douglas, D.B., Morrison, N.A. and Weiping, W. (1990) Specifications for Gum Arabic (Acacia Senegal); Analytical Data for Samples Collected between 1904 and 1989. *Food Additives & Contaminants*, 7, 303-321. <u>https://doi.org/10.1080/02652039009373896</u>
- Bulajic, D., *et al.* (2002) A Procedure for Correcting Self-Absorption in Calibration Free-Laser Induced Breakdown Spectroscopy. *Spectrochimica Acta Part B: Atomic Spectroscopy*, 57, 339-353. <u>https://doi.org/10.1016/S0584-8547(01)00398-6</u>